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Abstract: This paper presents an extension of a previously reported method for object tracking in video sequences to 
handle the problems of object crossing and occlusion by other objects in the same class that the one 
followed. The proposed solution is embedded in a system that integrates recognition and tracking in a 
probabilistic framework. In a recent work, a method to approach the object occlusion problem was proposed 
that failed when the object crossed or was occluded by another object of the same class. Here we present an 
attempt to overcome this limitation and show some promising results. The method is based on the 
assumption that when two objects cross each other there is not a brusque change of the trajectories. Our 
system uses object recognition results provided by a neural net that are computed from colour features of 
image regions for each frame. The location of tracked objects is represented through probability images that 
are updated dynamically using both recognition and tracking results. From these probabilities and a 
prediction of the motion of the object in the image, a binary decision is made for each pixel and object. 

1 INTRODUCTION 

Over recent years, much research has been 
developed to solve the problem of object tracking 
under occlusions, because, in real-world tracking, a 
target being partly or entirely covered by other 
objects for an uncertain period of time is common. 
Occlusions pose several challenges to object 
tracking systems such as determining the beginning 
and the end of an occlusion and predicting the 
location of the target during and at the end of the 
occlusion.  

Determining occlusion status is very hard for the 
trackers, nevertheless, various approaches that 
analyze occlusion situations have been proposed. 
The most common one is based on background 
subtraction (Senior et al., 2006). Although this 
method is reliable, yet it only works with a fixed 
camera and a known background. Other approaches 
are based on examining the measurement error for 
each pixel (Nguyen, 2004; Zhou, 2004). The pixels 
that their measurement error exceeds a certain value 

are considered to be occluded. A mixture of 
distributions is used in (Jepson et al., 2003) to model 
the observed value of each pixel, where the occluded 
pixels are characterized by having an abrupt 
difference with respect to a uniform distribution. On 
the other hand, contextual information is exploited 
in (Ito and Sakane, 2001; Hariharakrishnan, 2005). 

Determining the re-emergence of the target and 
recapture its position after it is completely occluded 
for some time is the other main challenge. Setting a 
similarity threshold is one method, yet the optimal 
threshold value is difficult to determine. This 
problem is circumvented in (Nguyen, 2004), where 
the image region that matches the best with the 
template over a prefixed duration is assumed to be 
the reappearing target. Recently, new object tracking 
methods that are robust to occlusion have been 
reported with very promising results (Pan and Hu, 
2007; Zhu et al., 2008).  

When the occluder has similar features than the 
target, both are mistaken in the re-emergence 
process, even more if we are dealing with 
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deformable objects of changing shape. This paper 
presents an extension of a previously reported 
method for object tracking in video sequences 
(Amézquita, 2007; Amézquita, 2008) to handle the 
problems of object tracking in the re-emergence 
process when the target is deformable and it is 
occluded by other objects in the same class that the 
one followed. The extended tracking method is 
embedded in a system that integrates recognition and 
tracking in a probabilistic framework. Our system 
uses object recognition results provided by a neural 
net that are computed from color features of image 
regions for each frame. The location of tracked 
objects is represented through probability images 
that are updated dynamically using both recognition 
and tracking results. The prediction of the object’s 
apparent motion and size takes into account the 
cases of occlusion entering, full occlusion and 
occlusion exiting, which are detected automatically. 

The rest of the paper is organized as follows. A 
formal description of our probabilistic approach for 
object recognition and tracking is given in Section 2. 
The new part of the tracking method that deals with 
same-class object crossing is described in Section 3 
and the experimental results obtained are shown in 
Section 4. Conclusions are presented in Section 5. 

2 A PROBABILISTIC APPROACH 
FOR OBJECT RECOGNITION 
AND TRACKING 

Let us assume that we have a sequence of 2D color 
images I t(x,y)  for t=1,…,L, and we want to track in 
the sequence N objects of interest of different types 
(associated with classes c=1,…,N, where N≥1 and a 
special class c=N+1 is reserved for the background).  
Furthermore, let us assume that the initial position of 
each object is known and represented by N binary 
images, pc

0(x,y), for c=1,…,N. We want to obtain N 
sequences of binary images Tc

t(x,y) that mark the 
pixels belonging to each object in each image. We 
can initialize these tracking images from the given 
initial positions of each object, i.e. Tc

0(x,y)= pc
0(x,y). 

In our approach (Amézquita, 2008), we divide the 
system in three main modules. The first one 
performs object recognition in the current frame 
(static recognition) and stores the results in the form 
of probability images. This can be achieved by using 
a classifier (e.g. a neural network) that has been 
trained previously to classify image regions of the 
same objects using a different but similar sequence 
of images, where the objects have been segmented 

and labeled. Hence, we assume that the classifier is 
now able to produce a sequence of class probability 
images Qc

t(x,y)  for t=1,…,L and c=1,…,N+1, where 
the value Qc

t(x,y)  represents the estimated 
probability that the pixel (x,y) of the image I t(x,y)  
belongs to the class c. 

In the second module (dynamic recognition), the 
results of the first module are used to update a 
second set of probability images, Pc , with a meaning 
similar to that of Qc  but now taking into account as 
well both the recognition and tracking results in the 
previous frames through a dynamic iterative rule 
(Amézquita, 2007). We store and update N+1 
probability images Pc

t(x,y), where the value Pc
t(x,y)  

represents the probability that the pixel (x,y) in time 
t belongs to the tracked object of class c (for 
c=1,…,N) or to the background (for c=N+1). 

Finally, in the third module (tracking decision), 
tracking binary images are determined for each 
object from the current dynamic recognition 
probabilities, the previous tracking image of the 
same object and some other data that contribute to 
provide a prediction of the object’s apparent motion 
in terms of translation and scale changes as well as 
to handle the problems of object occlusion and 
crossing. The tracking images Tc

t(x,y) for the objects 
(1≤c≤N) can be calculated dynamically using the 
pixels probabilities pt(x,y) according to a decision 
function d that involves additional arguments and 
results:  
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where we distinguish between the a posteriori 
tracking image Tc

t(x,y) and an a priori prediction 
( )yxT t

c ,ˆ , which is robust (to some extent) to 
occlusion; an occlusion flag Oc

t is determined at 
each step and the two previous flags Oc

t-1 and Oc
t-2 

help to know whether the object is entering or 
exiting an occlusion; the object mass center Cc

t and 
area Ac

t needed for estimating the apparent motion 
are measured either from Tc

t(x,y) or ( )yxT t
c ,ˆ  

depending on whether the object is visible or 
occluded; εc

t and δc
t are two adaptive parameters that 

control the level of uncertainty in the a priori 
prediction ( )yxT t

c ,ˆ , since the uncertainty grows with 
the duration of an occlusion; finally, t

cm  is a 
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movement weighted average vector that represents 
the past trajectory direction of the tracked object. 

A specific tracking decision function d was 
proposed in (Amézquita, 2008), which is able to 
cope with the object crossing and occlusion 
problems if the occluding objects are from different 
class that the tracked objects. Experimental results 
showed the effectiveness of the method except when 
the target object was occluded by an object with 
similar appearance (same class from the static-
recognition module). In the next section, we describe 
a new method to deal with this problem. 

3 DEALING WITH SAME-CLASS 
OBJECT CROSSING 

In order to circumvent the same-class crossing 
problem, we carry out a post-processing step that 
removes from both Tc

t(x,y) and ( )yxT t
c ,ˆ  some 

possible artifacts or distracters (setting some initially 
1-valued pixels to zero). In fact, we only do that in 
the case that Tc

t(x,y) contains non-connected 
components. This typically occurs when the same-
class crossing or occlusion has just finished and the 
tracking method is misled to follow both the object 
and the distracter. Then, we need to choose one 
component and discard the other(s). The movement 
vector t

cm  is used for that purpose in the following 
way. Let Cci

t  be the mass center of the i-th connected 
component and define an associated movement 
vector 1−−= t

c
t
ci

t
ci CCz  for each component. We 

select the component i whose vector has the 
maximal projection (normalized by its norm) to the 
previous movement vector and set the pixels of the 
rest of components to zero in the tracking images 
Tc

t(x,y) and ( )yxT t
c ,ˆ . This is, we select i such that 
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which is the one for which t

ciz is the most collinear 
vector with respect to 1−t

cm . The movement weighted 
average vector  t

cm  is updated afterwards as follows:  
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where β is a positive parameter between 0 and 1, and 

t
cv  is the current movement defined by t

ci
t
c zv =  

(being i the selected component if many or the 
unique one). Note that the second row in (3) is a 
typical moving average computation, while the first 
row denotes a simple average for the starting steps, 
and both give the same result for t=1/β. 

4 EXPERIMENTAL RESULTS 

Several video sequences have been employed for an 
experimental validation of the proposed approach. 
They all show an office scene where two blue balls 
are moving on a table and one occludes temporally 
the other one. Hence, we defined N=1 objects of 
interest: the blue ball to track. A test sequence is at 
http://deim.urv.cat/∼francesc.serratosa/test.avi. A 
similar but different sequence was used for training 
a neural network to discriminate between blue balls 
and typical sample regions in the background (at 
http://deim.urv.cat/∼francesc.serratosa/bluetraining. 
avi). 

All images in the sequences were segmented 
independently using the EDISON implementation of 
the mean-shift segmentation algorithm (Comaniciu 
and Meer, 1999), code available at 
http://www.caip.rutgers.edu/riul/research/code.html.
The local features extracted for each spot were the 
RGB colour averages and variances. For object 
learning, spots selected through ROI (region-of-
interest) windows in the training sequence were 
collected to train a two-layer perceptron using 
backpropagation. The trained network was applied 
to estimate the class probabilities for all the spots in 
the test sequences. The spot class probabilities were 
replicated for all the pixels in the same spot.  

For object tracking in the test sequences, ROI 
windows for the blue ball to track were only marked 
in the first image to initialise the tracking process 
and the dynamic class probabilities.  

The results for the test sequences were stored in 
videos where each frame has a layout of 2 x 3 
images with the following contents: the top left is 
the image segmented by EDISON; the top middle is 
the image of static probabilities given by the neural 
net for the current frame; the top right is the a priori 
binary tracking image; the bottom left is the image 
of dynamic probabilities; the bottom right is the a 
posteriori binary tracking image; and the bottom 
middle is a labelled image where yellow pixels 
correspond to pixels labelled as “certainly belonging 
to the object”, light blue pixels correspond to pixels 
initially labelled as “uncertain” but with a high 
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dynamic probability, dark blue pixels correspond to 
pixels labelled as “uncertain” and with a low 
probability, dark grey pixels correspond to pixels 
labelled as “certainly not belonging to the object” 
but with a high probability (false detections) and the 
rest are black pixels with both a low probability and 
a “certainly not belonging to the object” label. 

Two experiments have been performed on the test 
sequence deim.urv.cat/∼francesc.serratosa/test.avi 
depending on the initialisation of the tracking. In this 
sequence, two blue balls are moving and they 
overlap during some frames. In test 1, the tracking 
was initialised at the right ball and in test 2, the 
tracking was initialised at the left ball. The static 
recognition module (neural net) considers that both 
balls belong to the same class. In both sequences, the 
temporal overlapping is correctly managed by the 
method since the ball is well relocated after exiting 
the occlusion. Our results are attainable at 
deim.urv.cat/∼francesc.serratosa/test_results_1.avi 
and  
deim.urv.cat/∼francesc.serratosa/test_results_2.avi. 

Figure 1 shows one of the first frames of test 1. 
Although the neural net recognises two objects (up 
middle image), the tracking module discards the 
non-target object (up and down right images).  

 

 
Figure 1:  Results for one of the frames in test 1. 

In order to compare the performance of our 
method (referred to as PIORT, for Probabilistic 
Integrated Object Recognition and Tracking) in 
front of other previously reported tracking methods, 
the two experiments were also carried out applying 
the following methods (their code was downloaded 
from the VIVID tracking evaluation web site 
www.vividevaluation.ri.cmu.edu): 

 
1. Template Match by Correlation (TMC), which 

refers to normalized correlation template 
matching (Comaniciu et al., 2003). 

2. Basic Meanshift (BM)   (Comaniciu et al., 2000; 
Comaniciu and Meer, 2002). 

3. Histogram Ratio Shift (HRS) (Collins et al., 
2005). 

4. Variance Ratio Feature Shift (VRFS) (Collins 
and Liu, 2005). 

5. Peak Difference Feature Shift (PDFS) (Collins 
and Liu, 2005). 

6. Graph-Cut Based Tracker (GCBT)  (Bugeau and 
Pérez, 2008).   

 
 From the tracking results of all the tested 

methods, two evaluation metrics were computed for 
each frame: the spatial overlap and the centroid 
distance (Yin et al., 2007). The spatial overlap is 
defined as the overlapping level A(GTk,STk) between 
the ground truth GTk and the system track STk in a 
specific frame k: 

 

( ) ( )
( )kk

kk
kk STGT

STGT, STGTA
   Area
   Area  

∪
∩

=  (4)

and Dist(GTCk, STCk) refers to the Euclidean 
distance between the centroids of the ground truth 
(GTCk) and the system track (STCk) in frame k. 
Naturally, the larger the overlap and the smaller the 
distance, the better the accuracy of the system track. 

Since the centroid distance can only be computed 
if both GTk and STk are non-null, a failure ratio FR 
was defined as the number of frames in which either 
GTk or STk was null (but not both) divided by the 
total number of frames. This third evaluation 
measure is especially sensitive to occlusion cases. 

Tables 1 and 2 present respectively the results 
(mean ± std. deviation) of the two former evaluation 
measures for test 1 (tracking right ball) and test 2 
(tracking left ball). As can be seen, our tracking 
method PIORT outperformed the rest in both tests 
(except in the case of the centroid distance in test 1, 
where it was slightly under the performance of the 
VRFS tracker).  

Table 1: Tracking evaluation results for test 1. 

Test 1 (tracking right ball in test sequence) 
Tracking Method Spatial 

Overlap 
Centroid 
Distance 

TMC 0.56±0.10 5.07±2.07 
BM 0.60±0.06 3.19±1.21 
HRS 0.46±0.11 6.03±2.05 
VRFS 0.66±0.07 1.15±0.47 
PDFS 0.63±0.10 2.01±0.94 
GCBT 0.64±0.18 13.20±52.52 
PIORT 0.84±0.09 1.38±1.39 
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Table 2: Tracking evaluation results for test 2. 

Test 2 (tracking left ball in test sequence) 
Tracking Method Spatial 

Overlap 
Centroid 
Distance 

TMC 0.22±0.27 44.34±52.24 
BM 0.23±0.29 42.51±50.42 
HRS 0.25±0.31 44.93±51.96 
VRFS 0.28±0.35 42.82±52.62 
PDFS 0.50±0.30 36.27±86.95 
GCBT 0.20±0.27 70.69±68.80 
PIORT 0.60±0.23 3.94±4.98 

Regarding the failure ratio, a value of zero was 
obtained for all methods except FR=0.09 for GCBT 
in test 1 and FR=0.28 for PDFS tracker in test 2.  

5 CONCLUSIONS  

A previously proposed method for object tracking, 
which was integrated in a probabilistic framework 
for object recognition and tracking in video 
sequences (Amézquita, 2007; Amézquita, 2008), has 
been extended in this work to deal with same-class 
object crossing and occlusion. The new method is 
able to select and track only the target object after it 
crosses or is occluded by another object which is 
recognised as belonging to the same class. However, 
this has been achieved under the assumption that the 
trajectory of the target object is relatively stable in 
the preceding part of the sequence. The method may 
fail in a large changing motion of this object (either 
caused by its own motion or by a moving camera). 
In that case, a more complex criterion would be 
needed to select the target object after crossing or 
occlusion. This is left for future work. 
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