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Abstract: Current rain solutions are capable of offering very realistic images. Nevertheless, this realism often involves
extremely high rendering costs. Our proposal is aimed at facilitating the creation and management of rain
scenes. On the one hand, we define the areas in which it is raining and, on the other hand, we perform a
suitable management of the particle systems inside them. The latter step is reached by means of level-of-
detail techniques which are applied directly in the Geometry Shader by modifying the size and the number
of rendered particles. Our results prove that fully-integrating the level-of-detail management in the GPU
considerably increases the final performance.

1 INTRODUCTION

Realistic-looking rain greatly enhances scenes of out-
door reality, with applications including computer
games and motion pictures. Rain rendering has been
addressed by different authors in order to describe
methods which define not only the rainfall (Tatarchuk,
2006; Changbo et al., 2008), but also their interaction
with other surfaces (Wang et al., 2005) or even the
water accumulation (Fearing, 2000).

Traditionally, authors have developed rain simula-
tion frameworks which are based on particle systems.
These systems have been successfully used to simu-
late in real time different kinds of fuzzy phenomena,
like smoke or fire. Nevertheless, they present some
limitations due to the cost of translating and rendering
the high amount of raindrops that must be represented
in order to offer a realistic rain appearance.

A possible solution to overcome these limitations
is the exploitation of the current GPU possibilities,
whose constant evolution can considerably increase
the final performance. Moreover, it is worth consider-
ing the possibilities of applying multiresolution tech-
niques to existing particle systems.

Little work has been carried out in using level-of-
detail approaches within particle systems. It is impor-
tant to comment on the work presented in (O’Brien
et al., 2001) where the authors propose a hierarchy
of particles and consider the use of physical prop-
erties for switching among LODs in order to obtain

a higher resolution when necessary. Regarding rain,
we must also comment on the solution introduced in
(Puig-Centelles et al., 2008) which gives some initial
ideas on improving rain rendering by means of mul-
tiresolution techniques.

From a different perspective, it is interesting to
consider that real-world raining scenarios include
rainy areas and also non-rainy areas. Even when it is
raining in a very wide area, we must assume that we
could always find non-rainy areas nearby. Tradition-
ally, rain simulation has not considered this issue and
their rain systems do not provide smooth transitions
between areas with different rain conditions.

The work presented in this paper is proposed as a
solution for diminishing the management cost of par-

Figure 1: Rain sensation obtained with our solution in a
scene with a building-textured skybox.
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ticle systems. To achieve this objective we propose
a method for automatically generating rain environ-
ments with the definition of rain areas and with an
adequate management of the particles created inside
these areas. Furthermore, we include the LOD con-
cept in the GPU in order to adjust the size and the
number of particles to the conditions of the scene. In
Figure 1 we have an example of a rain scenario ob-
tained with our solution.

This paper is organized as follows. Section 2 con-
siders the state of the art on rain rendering. Section
3 introduces the concept of raining area as well as its
interactions. Section 4 presents the multiresolution
implementation. Section 5 offers the results. Lastly,
Section 6 contains some remarks on our solution.

2 STATE OF THE ART

Rain has been traditionally rendered in two ways, ei-
ther as camera-centered geometry with scrolling tex-
tures or as a particle system.

Scrolling Textures. This approach is based on the
idea of using a texture that covers the whole scene.
Then, the application scrolls it by following the
falling direction of the rain. However, this technique
exhibits certain properties that are stationary in time
(Soatto et al., 2001). In (Wang and Wade, 2004),
the authors present a novel technique for rendering
precipitation in scenes with moving camera positions.
They map textures onto a double cone, and translate
and elongate them using hardware texture transforms.

These methods fail to create a truly convincing
rain impression because of the lack depth and the rain
not reacting accurately to scene illumination. To over-
come this limitation, some authors (Tatarchuk, 2006)
have developed more complex solutions which in-
clude several layers of rain for simulating rainfall at
different distances, although the problem is not com-
pletely solved.

Particle Systems. Traditionally, this has been the
approach chosen for real-time rendering of rain, even
though particle systems tend to be expensive, espe-
cially if we want to render heavy rain. Lately, ren-
dering of rain has become very realistic, although the
management of these systems in real-time applica-
tions still poses severe restrictions.

The work presented in (Kusamoto et al., 2001)
introduced a physical motion model for rain render-
ing with particle systems. Later, the authors of (Feng
et al., 2006) considered the physical properties from

a different point of view. They developed a collision
detection method for raindrops and created a particle
subsystem of raindrops splashing after collision.

Wang et al. presented in (Wang et al., 2006) a
system formed by two parts: off-line image analysis
of rain videos and real-time particle-based synthesis
of rain. This solution is cost-effective and capable of
realistic rendering of rain in real time.

Following a similar approach, N. Tatarchuk
(Tatarchuk, 2006) developed a hybrid system of an
image-space approach for the rainfall and particle-
based effects for dripping raindrops and splashes. It
presents a detailed rainy environment and provides
a high degree of artistic control. The main issue is
that it requires 300 unique shaders dedicated to rain
alone. Moreover, the simulation requires the camera
to maintains a fixed viewing direction.

Rousseau et al. (Rousseau et al., ) propose a rain
rendering method that simulates the refraction of the
scene inside a raindrop. The scene is captured to a tex-
ture which is distorted according to the optical prop-
erties of raindrops and mapped onto each raindrop by
means of a vertex shader.

In paper (Tariq, 2007), Tariq proposes a realistic
rain application that works entirely on the GPU. Rain
particles are animated over time and in each frame
they are expanded into billboards to be rendered us-
ing the Geometry Shader. The rendering of the rain
particles uses a library of textures, which encodes the
appearance of the raindrops under different viewpoint
and lighting directions (Garg and Nayar, 2006).

More recently, the work presented in (Changbo
et al., 2008) introduces a new framework which thor-
oughly address physical properties of rain, visual ap-
pearance, foggy effects, light interactions and scatter-
ing. The main drawback of this approach is that, de-
spite offering very realistic simulations, their method
cannot render a scene with a sufficient framerate to
offer interactive walkthroughs.

Lastly, it is worth mentioning the study made in
(Puig-Centelles et al., 2008), where the authors give
some initial ideas and results about the application
of level-of-detail techniques when rendering realistic
rain. They propose the adaptation of the size of the
particles in the GPU, although the number of particles
and their distribution are initially fixed in the CPU.
Moreover, their exploitation of the Geometry Shader
is quite limited.

3 RAIN MANAGEMENT

One of the main objectives of our model is to be able
to generate rainy environments automatically by cre-
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ating raining areas where thousands of drops are sim-
ulated in real time. Within each rain area, we will sim-
ulate rain with a particle system in which we include
a new level-of-detail framework in order to improve
performance.

The rain framework we are introducing tries to es-
tablish with reasonable precision where it is raining
and where it is not raining inside a given scenario.
Furthermore, we also want to handle transitions in or-
der to create a visually realistic raining effect. An
important aspect of this realism is the possibility of
looking at a far rain area from a non-rainy place.

We have considered that a rain area is simulated
as an ellipse with two initially given radii.

3.1 Rain Container

It is necessary to create and manage a rain container,
which encloses the whole set of raindrops included in
our particle system. It will follow the camera move-
ments continuously so that the user does not lose the
rain perception.

In the literature, it is possible to find meth-
ods which use a box-shaped container (Rousseau
et al., ), a cylindrical container (Tariq, 2007) and a
semi-cilyndrical rain container (Puig-Centelles et al.,
2008). Under our circumstances, we consider that a
semi-cilyndrical container with an ellipsoidal base is
more adequate for our purposes. It is more ergonom-
ically adjusted to the user’s field-of-view than a box,
it is more efficient than a whole cilynder and, in ad-
dition, it allows the user to perform small turns to
the right or to the left without requiring to reposition
the whole rain container. More precisely, if the user
makes changes in its orientation of less than 45◦ in
any direction then it will not be necessary to reori-
ent the container as the rain perception is maintained.
This feature is possible due to the selected shape of
the container and improves previous solutions.

It is also important to take into account the size
of the container. The previously mentioned solutions
had difficulties in rendering scenes with heavy rain
and a continuously moving user. This happened due
to the fact that the management cost of their parti-
cle systems makes it impossible to manage these huge
number of particles.

In order to overcome this limitation and use a big-
ger container, our solution incorporates LOD tech-
niques to efficiently modify the particle size and lo-
cation while preserving the realistic appearance of
rain. Thus, by combining these techniques with the
selected shape of the container, our method offers an
appropriate solution for reacting efficiently to changes
in the position and direction of the frustum of the user.

Figure 2: User point of view of the rain area, showing the
two possibilities.

3.2 Simulating Rain Areas

The user could interact with a rain area in two differ-
ent ways. On one hand, the user can be inside the rain
area, completely surrounded by raindrops. We have
named this situation Close Rain. On the other hand,
the user can be outside the rain area, while looking at
it from a distant place or moving away from the area.
In these cases we use the Far Rain model.

These two possibilities are shown in Figure 2. It
is important to note that the rain container has differ-
ent behaviors depending on whether we are using the
close rain or the far rain approach. So, the image on
the left refers to close rain while the other one shows a
possible circumstance in which we must use far rain.

3.3 Close Rain

This case occurs when the observer is inside the rain
area. The rain container is initially centered on the ob-
server. Nevertheless, the location of this container is
updated in order to follow the user’s movements. So,
if the user moves then the container moves with him;
if the user changes the view direction then the con-
tainer will be reoriented too. As we have mentioned
above, we establish different thresholds that must be
overcome before re-locating the rain container in or-
der to avoid updating its location continuously.

3.4 Far Rain

Far rain refers to a scenario where the observer is lo-
cated far away from the rain area. This situation hap-
pens when the camera is placed inside an area where
it is not raining and the camera can look at the area
where it is actually raining.

In order to check whether the user can see the rain
area, we do a simple test against the frustum. If the
test is passed, the first step consists in centering the
rain container within the perimeter of the ellipsoidal
rain area, at the closest point to the observer. Then,
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we should modify the size of the rain container in or-
der to cover the whole part of the rain area that the
observer can see. To do so, we consider again the
frustum to determine which is its relation with the el-
lipse that defines the rain area. Once we have tested
the intersections between the frustum and the ellipse,
we will know whether the observer can see the whole
rain area or just a part of it. If the observer can only
see a part of the container, the same test will tell us the
size of this part in order to adjust the size of the con-
tainer correctly. Figure 2 shows a possible adaptation
of the far rain container with regard to the features of
the observer view. Moreover, we must perform sim-
ilar tests to control the height of the rain container,
expanding it as necessary in order to assure that the
user perceives that the raindrops fall from the sky.

3.5 Transitions between Rain Cases

Within the proposed solution for simulating rain par-
ticles, it is essential to control properly the transitions
that an observer can experiment when changing from
close rain to far rain and vice versa. We must con-
trol whether it is necessary to perform the changes in
order to preserve the realism of our rain system.

The transition from close rain to far rain occurs
when the user leaves the rain area. Our system detects
that change when the user is positioned on the perime-
ter of the ellipse that defines the rain area. In that
case, the rain container remains static at that point.
The amount of raindrops will decrease progressively
while the user moves away from the rain container
which is no longer following the user’s movements.

Regarding the transition from far rain to close rain,
we again use the perimeter of the rain area. As we
have commented before, we calculate the size of the
rain area that the user can see, in order to adapt the
shape of the rain container. As the observer gets
closer to the rain area, the size of the user’s perceived
area becomes smaller and the container reacts accord-
ingly, decreasing its size. This decrease in size assures
that once the user reaches the perimeter of the rain
area the container will have the original size of the
container. Consequently, we can assure that changing
from far to close rain is almost imperceptible for the
user.

4 MULTIRESOLUTION
IMPLEMENTATION

In our work we decided to follow the particle distribu-
tion presented in (Puig-Centelles et al., 2008). These

authors described a level-of-detail distribution of par-
ticles which assured that there were more rain parti-
cles and smaller in those areas close to the viewer and
less particles but bigger in the areas far from the user.
Therefore, in the farther zones we will render less par-
ticles but with a bigger size so that the global view of
the system resembles the same intensity of rain.

The solution we are presenting proposes adapt-
ing the level-of-detail directly in the GPU. The previ-
ous multiresolution rain model (Puig-Centelles et al.,
2008) obliged the system to initially define the posi-
tion of each particles and their quantity. As a conse-
quence, the spatial distribution of the raindrops was
fixed and initially defined in the CPU. Our objective
consists in deciding to render more or less particles
directly in the GPU.

In order to accomplish this objective, our system
needs two rendering passes. The first one is in charge
of updating the position of each particle, while the
second one applies the multiresolution techniques and
also renders the final particle system. During the de-
velopment of this framework we tried to perform all
these tasks in only one single pass. The difficulties
appeared when working in the pipeline at the same
time with points and quads. The first pipeline is in
charge of translating vertically each raindrop to simu-
late the rainfall. In this pass we use points as the ren-
dering primitive. Following that, the second pipeline
pass will initially receive points but will output quads
for the rain rendering. By updating directly the quads
we would be obliged to translate, re-locate and output
four vertices instead of one for each raindrop, which
our tests have proven to be much more costly.

4.1 Patterns for Creating Raindrops

The main idea of our solution is to use the GPU to
dynamically create more particles in those areas that
are closer to the user. The Geometry Shader facili-
tates this task by enabling to use each particle as a
seed to create many more replics (quads). As we have
mentioned before, the distance is the criterion used to
decide the most suitable size for a particle. This cri-
terion is also used to decide how many particles we
should render from each seed particle.

In Figure 3 we present three sample patterns that
are used to generate more particles from an initial one.
The seed particle is depicted in blue and the new gen-
erated ones in green. It is relevant to note that we have
decided to create a maximum number of 6 raindrops
per seed particles. Our tests have proven that with
that number it is enough to get a proper rain impres-
sion without increasing too much the rendering cost.
Moreover, we have applied those three patterns in our
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Figure 3: Sample patterns for rain generation.

test as they are sufficient to avoid the user to perceive
repeated patterns. Nevertheless, both the number of
generated particles and the patterns followed can be
easily modified in our framework.

4.2 GPU Implementation

In order to avoid all the raindrops following similar
falling paths, we initially give each particle a slightly
different falling speed and direction. Each particle is
given a falling vector, which indicates the displace-
ment direction and amount that have to be added ev-
ery time we update the position of the particles. The
speed is calculated by following the information given
in (Ross, 2000), trying to simulate the way that real
rain behaves.

Similarly, creating the particles strictly following
the presented patterns would entail noticeable repeat-
ing images. To avoid these visual artifacts, we have
included in the information of each particle a differ-
ent random value. This value will be used to modify
the final positions of the particles created using the
patterns.

For each particle, the Geometry Shader of the sec-
ond pass will be in charge of applying the level-of-
detail. Thus, for each particle we calculate the appro-
priate size according to the distance. Then, we gen-
erate the 4 vertices of the quad using the information
of the original size and the new size adjusted to the
distance. We must also consider the position and ori-
entation of the user. Finally, if the particle is close
enough, we calculate the number of replicas we want
to create. For each of these new quads, we should
calculate the position of the new vertices using the
original ones and the random value.

4.3 Far Rain Implementation

In the previous paragraphs of this section we have pre-
sented the different characteristics of our multiresolu-
tion model for rendering rain in real time. Neverthe-

less, these features are only useful for the close rain
approach. The far rain needs further considerations.
On one hand, the rain container has to be expanded in
order to cover all the extension of the rain area that the
user can see. This size is calculated in the CPU and its
value is uploaded into the GPU, where all the particles
will be displaced horizontally and vertically in order
to cover the new rain container. On the other hand,
the rain particles should be much bigger to cover the
whole area of the expanded rain container.

5 RESULTS

In order to examine our presented rain framework, we
have conducted several tests to analyze both the visual
appearance and the obtained performance. These set
of tests were done with a Pentium D 2.8 GHz. with 2
GB. RAM and an nVidia GeForce 8800 GT graphics
card. The implementation of this solution is coded in
HSLS and C++ by using the possibilities of the recent
DirectX10.

One of the main objectives of our work is to in-
crease the performance of the rain simulation. We
present in Table 1 the frame rate obtained for the dif-
ferent rain intensities proposed above. In order to
compare the performance of the different rain frame-
works we render the amount of particles indicated,
which are necessary to simulate a similar rain inten-
sity in the different frameworks compared. It can be
seen how our approach can render the rain scenes with
a frame-rate increased in a 55%.

We have also considered interesting to test the dif-
ference in performance that can be obtained when cre-
ating the raindrops in the GPU. In Figure 4 we depict
in blue the frame rate obtained when rendering dif-
ferent amounts of raindrops without creating multiple
quads on the GPU. In the same Figure, we show in
red the fps obtained when applying our new method.
We translate 20,000 particles but in the GPU we repli-
cate them by 2, 3 and so on in order to obtain as many
raindrops as desired. We can see how the replication
method outperforms drastically the previous method.
In this study we have considered that the seed rain-
drop only replicates into 6 more raindrops, rendering
at most 140,000 particles. The reason for selecting
this number of replicas is because it fits more properly
with the objectives of our multiresolution proposal.

6 CONCLUSIONS

In this paper we have introduced a new framework
for optimizing the management and rendering of rain.
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Table 1: Performance comparison for an intense rain scenario.

Model Our Model (Rousseau et al., ) (Tariq, 2007) (Puig-Centelles et al., 2008)
Number of Particles 25,000 95,000 167,000 100,000
Frame rate 140 74 66 86

Figure 4: Comparison of the performance obtained with
and without replicating particles on the GPU.

The solution presented here provides different ap-
proaches, depending on the relation between the user
location and the rain area location. In addition, we
have included multiresolution techniques which are
applied directly and uniquely in the GPU.

Our presented solution is capable of offering sim-
ilar rain intensity sensations with much less particles.
This reduction in particles directly involves an in-
crease of the obtained performance. Moreover, the
use of level-of-detail techniques that are fully inte-
grated into the Geometry Shader strongly decreases
the temporal cost of the rain system.

For future work we are currently considering the
interactions between the rain and the environment. In
this sense, we consider interesting the extension of
our model to include collisions, light interaction and
material modifications.
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