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Abstract: When repetitive high frequency patterns appear in the view of a charge-coupled device (CCD) camera, 
annoying low frequency Moiré patterns are often observed. This paper demonstrates that such Moiré pattern 
can useful in measuring surface deformation and displacement. What is required, in our case, is that the 
surface in question is textured with appropriately aligned black and white line gratings and this surface is 
imaged using a grey scaled CCD camera. The characteristics of the observed Moiré patterns are described 
along with a spatial domain model-fitting algorithm that is able to extract a dense camera-to-surface 
displacement measures. The experimental results discuss the reconstruction of planar incline and curved 
surfaces using only a coarse 33 lines per inch line grating patterns printed from a 600 dpi printer.  

1 INTRODUCTION 

Moiré patterns are the results of the interference 
fringes produced by superimposing two sets of 
repetitive gratings. These patterns are used in 
metrology for tasks such as strain measurements, 
vibration analysis and the 3D surface reconstruction 
(Kafri, 1990), (Walker, 2004), (Creath, 2007). Moiré 
images are normally obtained using a camera to 
capture the patterns generated by superimposing two 
alternating opaque-transparent Ronchi gratings 
(Khan, 2001) or two projected light patterns.  

In this work, the imaging device itself plays the 
role of one of the grating with its regular 2D 
repetitive arrangement of charged-coupled cell 
arrays. This camera is then used to observe another 
grating. The interaction between the two ‘gratings’ 
results in the formation of Moiré patterns, which can 
be simply captured by the CCD camera itself. This 
imaging device-based approach of using Moiré 
fringes for surface displacement measurement was 
suggested by (Chang, 2003), where they 
demonstrated how wavelet transform (WT) could be 
used to extract the pitch of the Moiré fringes for 
micro-range measurement. A micro-pitch grating of 
300 lines per inch (lpi) was employed as the 
specimen grating so that the pitch dimensions of the 
grating is close to that of the CCD cell spacing. This 
situation produces Moiré fringe patterns (see Fig. 2) 
that do not suffer annoying artufacts, making it 

relatively easy to extract the peak-to-peak fringe 
pitch. Unfortunately, peak-to-peak pitch values are 
only useful in providing distance measurements of 
flat surfaces perpendicular to the imaging plane. 
Their approach cannot be readily used to generate a 
dense varying depth map of the surface.  

We propose using specimen grating with 
relatively larger pitch (≤33 lpi), which can be easily 
printed with a 600 dpi laser printer. Unfortunately, 
such coarse pitch result in Moiré patterns that 
contain high frequency artifacts (see Fig. 3b), which 
embeds the desired Moiré fringe waveform. We 
discuss some property resulting from employing the 
CCD array as a reference grating that allows these 
artifacts to be easily removed. We also present a 
spatial domain model-fitting algorithm for 
measuring the instantaneous pitch width of the 
Moiré fringes, thus allowing the reconstruction of 
dense depth profiles.  

2 THE MOIRÉ PATTERNS  

2.1 Near Similar Pitch Gratings  

Let the pitch width of the reference and specimen 
gratings be pr and ps respectively. In Fig. 1(a), we 
have a situation where the pitch of ps > pr, but only 
slightly. As a result, lower frequency Moiré fringes 
(light) with period pm results due to the repeated and 

51
Tu T. and Goh W. (2009).
MOIRÉ PATTERNS FROM A CCD CAMERA - Are They Annoying Artifacts or Can They be Useful? .
In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, pages 51-58
DOI: 10.5220/0001807700510058
Copyright c© SciTePress



 

regular maximum overlap of the two sets of dark 
lines. Dark fringes are observed in zones of 
minimum overlap. Assuming no relative rotation 
between the two line gratings, the Moiré fringe 
pitch, pm is given by the well known equation [6] 
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Figure 1: Resulting pitch for the Moiré fringes generated 
when the specimen grating pitch is (a) only slightly larger 
than the reference grating pitch and (b) much larger than 
the reference grating pitch. Notice the Moiré fringe pitch 
is made up of k = 3 specimen grating pitches in both cases.  

Assume the reference line grating is now 
replaced by a regular-pitched CCD imaging cells. 
Fig. 2a shows the resulting 1-D image intensity 
profile. Notice that the extracted period pm of the 
Moiré fringe pattern can be easily obtained as there 
are no specimen line grating artifacts, as observed 
with the 300 lpi line gratings used in (Chang, 2003). 
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Figure 2: Moiré fringe patterns obtained when using point 
spread integration of the specimen grating intensity falling 
on regularly-spaced CCD cells. The image intensity 
profile obtained when the CCD pitch (reference grating) 
and the specimen line grating pitch are (a) pr = 40,  
ps = 46 and (b) pr = 40,  ps = 48 spatial units respectively. 
As given in eqn. (1), the further pr is from ps, the narrower 
is the Moiré fringe pitch pm.  

2.2 Larger Pitch Gratings 

What happens when the pitch of the specimen 
grating, ps is much larger than that of the reference 
grating, pr, as shown in Fig. 1b? We now derive a 
new expression for the Moiré fringe pitch, pm′ for 
the situation shown in Fig. 1b where 

rrs ppp >−  
since the fringe pitch expression given in eqn. (1) is 
only valid for the situations shown in Fig. 1a, where 

rrs ppp <− . In order to make use of eqn. (1), we 
need to subtract the largest integer multiple of the 
reference pitch pr from the large specimen line 
grating pitch ps′. The remaining pitch value after 
subtraction, given by sp̂ is less than pr and can 
therefore be substituted into eqn. (1) to compute the 
Moiré fringe pitch pm. In Fig. 1b, we illustrate an 
example where this remaining pitch sp̂ is similar to 
the specimen grating pitch ps in Fig. 1a. As shown in 
Fig. 1a, if the width of the Moiré fringe pitch pm is 
made up of k × ps width (example in Fig 1 has k = 
3), then the fringe pitch pm′ of the wide specimen 
grating will also be given by k × ps′. From eqn. (1), 
the number of specimen line grating, ps making up 
the Moiré fringe pitch width, pm is given by  
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If ps′ >>pr, we need to find the maximum number 
of integer multiples of pr within ps′ given by  
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where ⎣ ⎦ is a flooring function. The remaining 
pitch sp)  after removing multiples of pr is given by 

rss mppp −= 'ˆ ],0[ rp∈  (4) 

The number of specimen line grating pitch width 
contained within the Moiré fringe pitch can be 
obtained by substituting (4) into (2), and is given by  
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We can now compute the Moiré fringe pitch, pm′ 
for the large specimen line grating with pitch ps′ 
from eqns. (4) and (5) and this is given by   

')1(
'

ˆ
'''

sr

sr

sr

sr
sm ppm

pp
pp

pppkp
−+

=
−

=×′=  (6) 

From this general expression of the Moiré fringe 
pitch, we can observe that the presence of the (1+m) 
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factor ensures that the absolute value of the 
denominator of both eqns. (1) and (6) will not 
exceed 1. This means the increase in specimen 
grating pitch ps′ will produce a fringe pitch pm′ that 
is equally magnified, as shown in Fig. 3b. 

2.3 Removing Grating Artifacts  
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Figure 3: 1D Moiré fringe patterns obtained with specimen 
line gratings of different pitch widths. In both cases, the 
reference grating pr = 40. Specimen line grating pitch in 
(a) ps = 48 and in (b) ps = 88, (i.e. m = 1). In both cases, 
the remaining pitch widths 8ˆ =sp .  

The resulting Moiré pattern produced when m > 1 
(see Fig. 3b) contains high frequency artifacts from 
the specimen line grating, which, makes automatic 
fringe pitch estimation difficult.  
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Figure 4: Removing line grating artifacts by sub-sampling. 
Notice the pitch width (i.e. 11 pixels) of the Moiré fringe 
remains unchanged after sub-sampling.  

Since the reference grating pitch pr is the pitch of 
the CCD cell and therefore the pixel width, we can 
quickly remove these high frequency artifacts by 
sub-sampling the Moiré pattern waveform as shown 
in Fig. 4. For situations where m = 1, down-sampling 
is done by selecting every other pixel in the original 
N×N sized image to form new image of size 
N/2×N/2. It is unimportant whether the even or the 
odd pixels are removed as this only results in a 
phase shift. When the value of (1 + m) in eqn. (6) is 

3, we can obtain an artifact-free waveform by sub-
sampling every other 3rd pixel. When (1 + m) is 4, we 
sub-sample every other 4th pixel and so on.   

Given that the true pitch of the specimen grating 
is given by S. If we assume a thin lens (pin-hole) 
camera model and the distance of the surface of the 
specimen to the centre of projection given by d is 
relatively larger than the focal length of the camera 
given by f, the specimen grating pitch ps′ can be 
approximated by  

d
fSps ='

 
  (7) 

Putting (7) into (6) and rearranging, we get 
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Given that f, S, and pr are constants, the distance d 
from the camera has an inversely proportional 
relation to the measure Moiré fringe pitch,  pm′. 

2.4 CCD Cell Summation Model  

The observed Moiré pattern is formed from the 
accumulation of individual CCD cell summation of 
the specimen line grating intensities. But how would 
the intensity summation model influence the shape 
of the resulting Moiré waveform? We obtained 
simulation results for three hypothetical summation 
models (see Fig. 5), namely impulse, Gaussian and 
uniform. Fig. 6 shows the resulting 1D Moiré pattern 
waveform for each of the summation models. Notice 
that the shape of the waveform is dependent on the 
CCD integration function but the fundamental 
frequency, which is related to the Moiré fringe pitch 
width, remains unchanged.  
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Figure 5: Three different intensity summation models for 
the hypothetical CCD cell. 

From eqn. (8), the pitch period of the sub-
sampled Moiré waveform provides a reciprocal 
description of the surface displacement d from the 
camera. As such, the instantaneous frequency (i.e. 
reciprocal of pitch) of the fundamental sinusoid of 
the waveforms shown in Fig. 6 will allow us to 
reconstruct a dense surface depth profile along a 
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selected 1D cross-section of the Moiré image. This 
is achieved independently of the assumed CCD cell 
summation model. We next describe an algorithm to 
extract the instantaneous frequency of a 1D sub-
sampled Moiré pattern waveform. 
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Figure 6: The resulting Moiré waveform using (a) 
Gaussian point spread, (b) impulse and (c) uniform CCD 
cell intensity summation model.  

3 EXTRACTING DEPTH  

Fig. 7(c) shows the sub-sampled waveform obtained 
from a 1D cross-section of a Moiré pattern image 
obtained for a curved line grating surface. The 
varying intensity could be due to shadows or uneven 
ambient lighting during imaging.   
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Figure 7: (a) Moiré pattern image of a curved line gating 
surface acquired under uneven lighting condition. (b) The 
full resolution intensity profile along the dotted (red) 
cross-section. (c) The waveform with the line grating 
artifact removed by sub-sampling every other 4th pixel in 
the original 1D cross section of the Moiré pattern image.   

Notice that the sub-sampled waveform s(n) in 
Fig. 7(c) can be viewed as a multi-component time-
varying amplitude and frequency modulated (AM-
FM) signal that is riding on a time-varying bias. In 
order, to extract the varying pitch period of the 
signal, we need to extract the instantaneous 
frequency of the fundamental sinusoid taking into 
account the varying bias and amplitude of the signal. 

We modelled the fundamental AM-FM sinusoid by 
modifying the least-squares truncated power series 
approximation (L-STPSA) model approach of (Goh 
2007) with an additional time-varying bias. Firstly, 
the sub-sampled waveform s(n) is converted to a 
positive-negative going zero-mean signal x(n) using  
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3.1 The L-STPSA AM-FM Model 

An AM-FM sinusoidal signal ~( )x n  with a varying 
bias given by v(n) can be represented by 

)()](cos[)()(~ nvnnwnAnx c ++= θ  (10) 

where wc is a fixed carrier frequency with 
varying amplitude A(n). The instantaneous 
frequency f(n) is the derivative of the varying phase 
θ (n)  and is given by 

π
θ
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The signal x(n) can be expanded to its in-phase 
and quadrature sinusoidal components given by 

( ) ( )[ ] ( ) ( )[ ] )(sincos)(~ nvnnwnbnnwnanx cc ++++= θθ  (12) 

where a(n) and b(n) are given by    

))(cos()()( nnAna θ=  and ))(sin()()( nnAnb θ−=  (13) 

If we assume the functions that describe the 
varying amplitude A(n) and phase θ (n) are analytic, 
then such functions can be approximated by a power 
series. As an example, cos x is given by the series 

...!6!4!21cos 642 −+−+−= xxxx   (14) 

We can now model the components of ~( )x n  and 
the varying bias v(n) as general truncated power 
series of orders P and R respectively, given by 
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The modelling process starts by assuming there 
are no phase variations (i.e. θ (n) = 0). Then, given a 
signal x(n) of sample length N, the modelled signal 
~( )x n in eqn. (10) can be estimated by minimising the 
mean squared-error ε in (16) with respect to the 
(P+1) pairs of amplitude coefficients, the (R+1) bias 
coefficients and predetermined carrier frequency wc.  
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Here, the coefficients estimation in (Goh, 1998) 
is extended with a further (R+1) equations to solve 
for the varying bias v(n). Since the varying phase is 
estimated iteratively, it is not important what the 
predetermine carrier frequency wc is as long as it is a 
frequency component present in the waveform. We 
chose wc by picking the frequency corresponding to 
the highest peak frequency in the power spectrum of 
the waveform x(n). (Goh, 2007) showed that the 
current estimate of the varying phase is given 
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From eqn. (15), both a(n) and b(n) can be 
estimated from the (P+1) ak and bk coefficients 
using the L-STPSA model of order P. With initial 
values of θ (n) = 0, we make an initial estimate of the 
varying phase ( )$θ n using eqn. (17). The phase is 
then unwrapped by tracking the 2π jumps in its 
values and then parameterised using another L-
STPSA model of order Q given by 

( ) ∑
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The smooth L-STPSA reconstructed phase 
function θ (n) in (18) is then substituted back into the 
AM-FM signal model in (12) to obtain another new 
estimate of a(n) and b(n), which in turn is 
substituted, along with θ (n), into (17) to compute a 
new estimate of the varying phase ( )$θ n . This 
iterative parameter-substitution process is repeated 
until the waveform model in the M th iteration 
deviates little from that estimated in the (M+1)th 
iteration. Fig. 8 shows the progressive sinusoidal 
signal estimation.  For the waveform shown in Fig. 
7(c), reasonable convergence occurred after the 6th 
iteration, with P = 12, Q = 5, R = 3 and wc = 0.393.  
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Figure 8: (a) The estimated L-STPSA AM-FM sinusoid of 
the fundamental frequency at (a) iteration #1 and (b) at 
stable full signal reconstruction at iteration #6. The 
original waveform and estimated varying bias is shown in 
dotted (red) and dashed lines (black) respectively. 

Once a stable AM-FM sinusoid has been 
iteratively estimated, the varying phase θ (n) from 
(18) can yield an instantaneous frequency as given 
in (11). Since we are interested in the varying pitch 
period of the Moiré pattern, we can relate the 
varying phase θ (n) in (18) to the reciprocal of the 
Moiré pattern pitch width pm′ in (8) using the 
instantaneous frequency given in (11) 
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The derivative of the varying phase in (11) is 
approximated using backward difference. Fig. 9 
shows a 1D depth profile of the line grating surface 
shown in Fig. 7(a), obtained from the plot of 1/pm′(n) 
in (19) using the fundamental sinusoid’s estimated 
phase changes shown in Fig. 8(b). 
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Figure 9: The cross-sectional profile of the distance 
between surface and camera computed from the 
instantaneous frequency estimate of the recovered L-
STPSA sinusoidal signal in Fig. 8(b).  

4 EXPERIMENTAL RESULTS 

4.1 Experimental System Setup 

The experimental setup used is shown in Fig. 10. It 
consists of a CCD camera mounted on a crank- 
based height-adjustable stand, a personal computer 
(PC) and A4-sized white paper with uniform black-
white line gratings printed from a 600dpi laser 
printer. The camera is the Dragon Fly Express 
monochrome model (PointGrey, 2008) from Point 
Grey Research Inc., with a C-mount lens of focal 
length 25mm. The resolution of the captured image 
is 640 × 480 pixels.  
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Figure 10: The basic experimental setup. 
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The distance, d from the camera imaging plane to 
the line grating surface is proportional to the inverse 
of Moiré fringe pitch width, 1/pm′ and this width is 
related to the instantaneous frequency of the Moiré 
waveform as shown in (19). In other words, the 1D 
distance profile along the cross section shown in Fig. 
10 can be generalized to  

bnkfb
np

knd
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+=+×= )(
)('
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where k and b are unknown system constants. 
The instantaneous frequency f(n) given in (19) is 
computed from the extracted L-STPSA fundamental 
sinusoid of the 1D Moiré pattern waveform. 

The first experiment verifies that the distance 
from the camera, d is proportional to the extracted 
instantaneous frequencies, f of the fundamental 
sinusoid of the 1D Moiré pattern waveform. The L-
STPSA model parameter values of P = 5, R = 3 and 
Q = 2, as given in eqns. (15) and (18) was used. By 
setting Q = 2, we are adopting a constant phase 
model as we do not expect the frequency of the 
Moiré pattern to change over the 1D cross section 
since the distance, d to the surface is much larger 
that the focal length, f of the camera lens.  

Fig. 11 shows the results obtained for the d 
distances from 70.0cm to 75.0cm, in steps of 0.5cm. 
At this distance and with the printed line grating 
pitch used, the value of m in (3) is 3 and artifact-free 
1D Moiré waveform is obtained by sampling every 
other 4th pixel of the original resolution waveform. 
Notice that the results obtained in Fig. 11 confirm 
the proportional relationship given in (20).  
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Figure 11: A plot to show the relationship between the 
distance, d between the line grating surface and the CCD 
camera and the estimated instantaneous frequency, f of the 
Moiré pattern waveform.  

4.2 1D Incline Planar Surfaces 

This experiment demonstrates the use of the AM-
FM modelling property of the L-STPSA technique 

to estimate the changing instantaneous frequency of 
the Moiré pattern waveform across the 1D cross 
section. By using an incline line grating surface, the 
distance to the camera would vary linearly from one 
end of the 1D cross section (see Fig. 12) to the other.  
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Figure 12: (a) Experimental setup for the incline planar 
surface analysis. (b) The acquired image with the dashed 
line (blue) indicating the 1D profile used in the analysis. 

Fig. 13(a) shows the Moiré pattern waveform 
obtained for a planar incline of about 10 degrees. 
Fig. 13(b) shows the corresponding frequency-
varying fundamental sinusoid estimated using the L-
STPSA model parameters of P = 5, R = 3 and Q = 5. 
The linearly changing chirp-like instantaneous 
frequency fundamental sinusoid can be seen in the 
Moiré waveform shown in Fig. 13(b). 
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Figure 13: (a) The Moiré pattern waveform obtained from 
an incline line grating. Also shown is the estimated 
amplitude envelope for the fundamental sinusoid and the 
varying bias. (b) The extracted fundamental sinusoid of 
the Moiré waveform using the L-STPSA modelling 
technique. Shown in dotted line (red) is the error residue 
between the estimated sinusoid and the original signal in.  

Fig. 14 shows the plot of the instantaneous 
frequency of the fundamental sinusoid in Fig. 13(b). 
Observe that the extracted instantaneous frequency 
varies closely to that of an incline, as we would 
expect from the proportional relationship between 
distance, d and instantaneous frequency, f in (20). 
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Figure 14: The incline observed in the instantaneous 
frequency, f is plotted against a best fit incline.  

4.3 2D Incline Planar Surfaces 

Next, we imaged a line grating surface that is 
inclined in both the x and y directions (see Fig. 15). 
We reconstructed a dense surface depth map by 
stitching together the all perpendicular 1D cross 
sections across the image. Fig. 16 shows the 
resulting dense 2D depth map reconstructed by 
analysing a series of 1D cross sections. 
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Figure 15: The 2D incline surface experimental setup. The 
heights h1 =64.5 mm, h2 =37mm, and h3 =33mm. 

 
Figure 16: Reconstructed 2D surface of the incline plane. 

4.4 Impact of Uneven Lighting 
Conditions 

We studied the effects of ambient lighting variations 
on the accuracy of the extracted depth using the 
proposed CCD Moiré waveform analysis technique. 
Fig. 17 shows the setup used in which a curved A4-
sized paper with evenly spaced vertical line gratings 
was imaged twice. Firstly, under normal lighting 

conditions and secondly, with portions of the line 
grating surface covered by shadows.  
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Figure 17: Experimental setup for testing effects of 
lighting variations. (a) Normal light source and (b) 
Shadows cast on surface due to partially occluded light 
source.  

Fig. 18 shows the two waveforms obtained after 
sub-sampling the intensity value of every other 4th 
pixel of a 1D cross section. The fundamental 
sinusoidal waveforms along with their respective 
instantaneous frequencies were extracted for both 
waveforms using P = 10, Q = 5 and R = 3. The 
carrier frequencies used in Fig. 18(a) and 18(b) were 
wc = 0.668 and wc = 0.628 respectively. 

The resulting 1D depth profiles of the surface 
cross section under different lighting conditions 
were plotted together as shown in Fig. 19. Hardly 
any noticeable variations in depth profiles were 
observed. This shows that the proposed technique 
for measuring the depth profile of a line grating 
surface is robust to lighting variations. The ability of 
the L-STPSA technique to simultaneously extract 
the varying instantaneous frequency and amplitude 
modulation envelopes in a waveform allows us to 
handle changes in the Moiré pattern intensity, which 
does not fundamentally change the pitch of the 
Moiré fringes. 
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Figure 18: The 1D intensity profiles of the sub-sampled 
zero-mean Moiré pattern waveforms obtained under (a) 
normal lighting condition and (b) with shadows. Notice 
the shadows resulted in uneven intensity attenuation. The 
estimated amplitude modulation envelopes of the 
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fundamental sinusoids are shown dotted (red) and the 
varying biases are shown in dashed lines (black).  
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Figure 19: The plot of the two estimated 1D depth profiles 
of Moire pattern waveforms in Figure 19(a) and 19(b). 
The two overlapping profiles are almost identical despite 
the significant variation in the intensity profile.  

5 CONCLUSIONS  

We introduced a method of measuring dense 2D 
surface depth maps using the Moiré patterns 
captured from a CCD camera. This uniform CCD 
cell array is exploited in the generation of the Moiré 
patterns, making this approach simpler and less 
expensive than the use of Ronchi gratings. A novel 
sub-sampling technique was introduced to remove 
artifacts that resulted from adopting a more 
convenient and inexpensive setup in which larger 
specimen line grating pitch width were be employed.  

A spatial domain parametric technique was 
proposed for extracting the instantaneous frequency 
of the Moiré pattern waveform and we showed that 
this frequency parameter is proportional to the 
surface-camera distance and can therefore be used to 
analyse the relative depth variation of the line 
grating surface. We also showed that the depth 
profiles estimated from the observed Moiré pattern 
are independent of the intensity variations over the 
line grating pattern, which makes such measurement 
techniques easy to deploy under conditions that 
consistent and uniform lighting cannot be assured.  
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