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Abstract: We have used jNEP (a JAVA simulator of a natural computing device named Networks of Evolutionary 
Processors) to solve some cases of well-known NP-complete problems. We have followed the most relevant 
papers in the literature. In this paper, we describe the difficulties found in this process and some conclusions 
about the design, the simulation and some useful tools for NEPs. 

1 INTRODUCTION  

1.1 Bio Inspired Computational 
Devices 

The so-called natural computing devices (such as 
multiagent systems, P systems, cellular automata, L 
systems and NEPs) are formal complex systems that 
are able to compute and could, therefore, be used as 
computers. All of them share two main 
characteristics: their inspiration in the way in which 
Nature efficiently solves complex tasks and an 
intrinsic parallelism that makes it possible to 
develop algorithms which improve the temporal 
performance of classic von Neumann architectures. 
This paper is specifically devoted to NEPs. As they 
could be considered as an alternative to the von 
Neumann architecture, a great research effort is 
currently being made to study the necessary tools to 
program them. We tackle this goal in two forms: 
studying the techniques to design NEPs which solve 
given problems, and developing and using a real 
hardware/software platform to run these NEPs. 

1.2 NP-Complete Problems 

In this section we informally introduce this topic. A 
formal description could be found in any manual 
(Garey and Johnson, 1979) on complexity and is out 
of the scope of this paper.  

NP may be informally defined as the set of 
decision problems that can be solved in polynomial 
time on a no deterministic Turing machine.  

An NP problem is also complete if and only if 
every other problem in NP can be easily (in 
polynomial time) transformed into it.  

Polynomial performance on a non-deterministic 
Turing machine frequently corresponds to at least 
exponential performance on a deterministic Turing 
machine. Classical von Neumann computers can be 
considered the closest implementation of 
deterministic Turing machines.  

Even more informally, the reader can consider a 
non-deterministic Turing machine as a set of as 
many Turing machines as needed, searching in 
parallel for a solution of the problem. Such a device 
will stop as soon as the first solution is found. Each 
Turing machine is expected to check its solution in 
polynomial time. In the previous statement, “as 
many Turing machines as needed” usually means 
“an exponential number of machines”.  

The reader can easily understand that if the same 
work has to be done by a single Turing machine, it 
has to check each of the possible solutions (an 
exponential amount of them) in a polynomial time, 
which results in a final exponential performance. 

1.3 NEPs 

NEP (Castellanos, 2001), (Castellanos, 2003) stands 
for Network of Evolutionary Processors. NEPs are 
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an abstract model of distributed/parallel symbolic 
processing inspired by biological cells. They 
distribute a set of simple string processors in the 
nodes of a fixed graph. Processors contain strings of 
symbols, change them in a predefined way and filter 
them to communicate some of these words to the 
other processors of the graph.  

Despite the simplicity of each processor, the 
entire net can efficiently carry out very complex 
tasks. Many different works demonstrate the 
computational completeness of NEPs (Csuhaj-Varju, 
2005), (Manea, 2007) and their ability to solve NP 
problems with linear or polynomial resources 
(Manea, 2006), (Castellanos, 2001). The emergence 
of such a computational power from very simple 
units acting in parallel is one of the main interests of 
NEPs.  

A NEP is built from the following elements:  

a) a set of symbols which constitutes the 
alphabet of the words which are 
manipulated by the processors,  

b) a set of processors,  
c) an underlying graph where each vertex 

represents a processor and the edges 
determine which processors are connected 
so they can exchange words,  

d) an initial configuration defining which 
words are in each processor at the 
beginning of the computation and  

e) one or more stopping rules to halt the NEP.  

An evolutionary processor has three main 
components:  

a) a set of evolutionary rules to modify its 
words,  

b) some input filters that specify which words 
can be received from other processors and  

c) some output filters that delimit which 
words can leave the processor to be sent to 
others.  

The variants of NEPs mainly differ in their 
evolutionary rules and filters. They perform very 
simple operations, like altering the words by 
replacing all the occurrences of a symbol by another, 
or filtering those words whose alphabet is included 
in a given set of words. 

NEP's computation alternates evolutionary and 
communication steps: an evolutionary step is always 
followed by a communication step and vice versa.  

Computation follows the scheme below: when 
the computation starts, every processor has a set of 
initial words. 

At first, an evolutionary step is performed: the 
rules in each processor modify the words in the same 
processor. Next, a communication step forces some 
words to leave their processors and also forces the 
processors to receive words from the net.  

The communication step depends on the 
constraints imposed by the connections and the 
output and input filters.  

The model assumes that an arbitrary number of 
copies of each word exists in the processors, 
therefore all the rules applicable to a word are 
actually applied, resulting in a new word for each 
rule.  

The NEP stops when one of the stopping 
conditions is met, for example, when the set of 
words in a specific processor (the ouput node of the 
net) is not empty. A detailed formal description of 
NEPs can be found in (Castellanos, 2003), (Csuhaj-
Varju, 2005) or (Manea, 2007). 

1.4 Clusters of Computers running 
Java 

Java is currently one of the most popular object 
oriented programming languages. Java may be 
slower than other programming languages for 
computation-intensive problems. Nevertheless it is 
possible to run Java programs on a cluster of 
computers by means of a special Distributed Java 
Virtual Machine (DJVM), which supports parallel 
execution of Java threads. In this way, a 
multithreaded Java application runs on a cluster just 
as if it were running on a single machine, but with 
the same performance as a big multi-processor 
machine.  

DJVMs are not included in the Sun's standard 
Java distributions. There are several different kinds 
of DJVM, for example: Java-Enabled Single-
System-Image Computing Architecture 2 
(JESSICA2), the cluster virtual machine for Java 
developed by IBM (IBM cJVM), Proactive PDC 
(Proactive), DO! (Launay 97), JavaParty 
(JavaParty), Jcluster (Jcluster), MPJ Express (MPJ), 
and Terracota (Terracota, 2008). 

The simulator used in this paper has been 
developed with both, standard JVM and JavaParty. 

2 JNEP  

In a previous work (Rosal, 2008) we have explained 
the reasons to develop a NEP simulator to be run in 
a cluster of computers. 
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Figure 1: Simplified class diagram for jNEP. 

jNEP offers an implementation of NEPs as 
general, flexible and rigorous as possible. This is not 
an obvious goal, because we have observed that 
different authors understand the model definition in 
slightly different ways. These subtle differences 
imply, nevertheless, hard to overcome problems in 
the development of a computer application that 
implements all of them. 

As shown in figure 1, the design of the NEP 
class mimics the NEP model definition. In jNEP, a 
NEP is composed of evolutionary processors and an 
underlying graph (attribute edges) to define the net 
topology and the allowed inter processor 
interactions. The NEP class coordinates the main 
dynamic of the computation and rules the processors 
(instances of the EvolutionaryProcessor class), 
forcing them to perform alternate evolutionary and 
communication steps. It also stops the computation 
when needed.  

The core of the model includes these two classes, 
together with the Word class, which handles the 
manipulation of words and their symbols. 

jNEP is kept as general and rigorous as possible 
by means of the following mechanisms: Java 
interfaces and the development of different versions 
to widely exploit the parallelism available in the 
hardware platform. Further details can be found in 
(Rosal, 2008) and at (http://jnep.e-delrosal.net). 

jNEP currently has two lists of choices 
(concurrency approach and platform) to select the 
parallel/distributed platform on which it runs (jNEP 
versions for any possible combination of them are 
available in http://jnep.e-delrosal.net). 

Concurrency is implemented with two different 
Java approaches: Threads and Processes.  

The supported platforms are standard JVM and 
clusters of computers (by means of JavaParty). 

jNEP reads the definition of the NEP that is 
being simulated from a configuration file that 

follows XML conventions. Roughly speaking the 
configuration file contains special tags for any 
relevant component in the NEP (alphabet, stopping 
conditions, the complete graph, each edge, each 
evolutionary processor with its rules, filters and 
initial contents).  

Although some fragments of these files will be 
shown in these pages, all the configuration files 
mentioned in this paper can be found at 
(http://jnep.e-delrosal.net). Despite the complexity 
of these XML files, the interested reader can see that 
these tags and their attributes have self-explaining 
names and values.  

3 SOLVING NP-COMPLETE 
PROBLEMS WITH JNEP  

In our previous work (Rosal, 2008) we showed, as 
an example, how to solve the propositional logic 
SAT problem for three variables by means of a NEP 
with a kind of special rules (splicing) taken from 
(Manea, 2007). 

In this work we show how jNEP has been used to 
solve some instances of other two well-known NP-
complete problems: the Hamiltonian path problem 
and the 3-coloring problem. 

3.1 Hamiltonian Path Problem 

This well-known NP-complete problem searches an 
undirected graph for a Hamiltonian path, that is, one 
that visits each vertex exactly once. 

In his work (Adleman, 1994) Adleman proposed 
a way to solve this problem with polynomial 
resources by means of DNA manipulations in the 
laboratory. Figure 2 shows the graph used by 
Adleman. The solution is in this case obvious (path 
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0-1-2-3-4-5-6) Despite its simplicity, Adleman 
described a general algorithm applicable to almost 
ny graph with the same performance.  

 
a

 
Figure 2: Graph studied by Adleman. 

an’s algorithm can be summarized as 
o

hose paths that begin and end in the 
p

paths that contain exactly the 
l

ose paths that contain some node

remaining paths are solutions for the 
pro

definition of the stopping 

 the initial content of 

 the string received from the 

ble 

ng filters by

x regular expression or a greater 

l). Some of their sections are explained 
bel  

 example defines the 

tent of node 0 in the 

 are defined as follows 

 of the alphabet 
and no string is forb e  

_3_4_5_6" 

_3_4_5_6"  
ingContext="" />  

/FILTERS> 

n empty node 

 to this string 

ext steps only nodes 1, 

e respectively i_0_1, i_0_3 and 

Adlem
foll ws: 

1. Generating randomly all the possible paths. 
2. Selecting t
pro er nodes.  
3. Selecting only the 
tota  number of nodes. 
4. Removing th  

      s

more than once.  
5. The 

blem. 

The present work follows a similar approach.  

• The NEP graph is very similar to the one 
studied above: an extra node is added to 
ease the 
condition.  

• The set {i,0,1,2,3,4,5,6} is used as the 
alphabet. Symbol i is
the initial vertex (v0) 

• Each node (except the final one) adds its 
number to
network.  

• Input and output filters are defined to allow 
the communication of all the possi
words without any special constraint.  

• The input filter of the final node excludes 
any string which is not a solution. It is easy 
to imaging a regular expression for the set 
of solutions (those words with the proper 
length, the proper initial and final node and 
where each node appears only once). The 
NEP basic model allows defini  3 
means of regular expressions.  

• It is also easy to devise a set of additional 
nodes that performs the previous filter 
following Adleman’s checks (proper 

beginning and end, proper length, and 
number of occurrences of each node). For 
the shake of simplicity we have used 
explicitly the solution word 
(i_0_1_2_3_4_5_6) instead of a more 
comple
NEP.  

The reader will find at http://jnep.e-delrosal.net 
the complete XML file for this problem 
(Adleman.xm

ow:
 
• The XML file for this

alphabet with this tag 
<ALPHABET symbols="i_0_1_2_3_4_5_6" /> 

• the initial con
following way 

<NODE initCond="i"> 
• The rules for adding the number of the 

node to its string
(here for node 2) 

<RULE ruleType = "insertion"  
      actionType = "RIGHT"  

ymbol = "2" newSymbol="" /> 
• There are several ways of defining filters 

for the desired behavior (to allow the 
communication of all the possible words 
without any special constraint). We have 
used only the permitted input and output 
filters. A string can enter a node if it 
contains any of the symbols

idd n.
 

<FILTERS> 
  <INPUT type="2" 
    permittingContext="i_0_1_2
    forbiddingContext="" />  
  <OUTPUT type="2"   
    permit ingContext="i_0_1_2t
    forbidd
<
 
The behavior of the NEP is sketched as follows: 

1. In the initial step the only no
is 0 and contains the string i 

2. After the first step, 0 is added
and thus, node 0 contains i_0 

3. This string is moved to the nodes connected 
with node 0. In the n

and 6 contain i_0. 
4. These nodes add their number to the 

received string. In the next step their 
contents ar
i_0_6 
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5. This process is repeated as many times as 
needed to produce a string that meets the 
conditions of the solution. In this final step

NEP model poses 
som

 a set of strings. This mechanism contains 
obv

eneral agreement 
of the researchers to ease and simplify the 

 have 
to 

ws one of the examples studied 
in this paper. It is ease to prove that there is no 
solution to this map. 

 
the solution string (i_0_1_2_3_4_5_6 is 
sent to node 7 and the NEP stops. 

The definition of filters in 
e difficulties to the design of NEPs and, thus, to 

the development of a simulator.  
These filters are defined (Castellanos, 2001) and 

(Castellanos, 2003) by means of two couples of 
filters (forbidden and allowed) to each operation 
(input and output). There exist, in addition, different 
ways of combining and apply the filters to translate 
them into

ious redundancies that make it difficult to design 
NEPs.  

It could be advisable a more g

development of NEPs simulators.  

3.2 Coloring Problems 

This problem introduces a map whose regions
be colored with only three colors, and with a 

different one for each pair of adjacent regions. 
We have used the NEP defined in (Castellanos, 

2003). The map is translated into an undirected 
graph whose nodes stand for the regions and whose 
edges represent the adjacency relationship between 
regions. Figure 3 sho

 
Figure 3: Example of a map and its adjacency graph. In
this case, there is no solution for the 3-colorability 
pro

aph. These nodes perform the tasks 
utlined below. Next paragraphs describe them with 

the map are grouped in three couples (one 

cate with the set of 

 performs this task in the 

associated with the pair of 

 first 

ode of the 

e are red-blue 
and red-green. 

 
he complete NEP could be 

. In this way, the process 

e to see that these strings are 

w to 
escribe the above behavior with more detail: 

abet of the NEP is defined as 
follows: 

r4_g4_b5_r5_g5_B1_R1_G1_B2_R2_G2_B3_R3_

 co

blem. 

The NEP has a complete graph with two special 
nodes (for the initial and final steps) and a set of 
seven nodes associated to each edge of the 
adjacency gr
o
more detail: 
 

• The initial (final) node is responsible of 
starting (stopping) the computation. 

• The seven nodes associated with an edge of 

for each color). There is, in addition, a 
special node to communi
nodes of the next edge.  

• Each couple is responsible of the main 
operation in the NEP: to check that a 
coloring constraint is not violated for the 
current edge. It
following way: 

o Let us suppose that the color red is 
the one 
nodes. 

o The first node in the NEP 
associates the color red to the
node of the edge in the map. 

o The second node in the NEP 
simultaneously keeps all the 
allowed coloring (two, in this 
case) for the second n
edge: (blue and green) 

o It is clear that the only acceptable 
colorings for this edg

The behavior of t
sketched as follows: 

1. The initial node generates all the possible 
assignment of colors to all the regions in 
the map and adds a symbol to identify the 
first edge to be checked. These strings are 
communicated to all the nodes of the graph. 

2. The set of nodes associated to each edge 
accepts only the strings marked with the 
symbol of the edge. These nodes remove all 
the strings that violate the coloring 
constraint for the regions of the edge. One 
special node in the set replaces the edge 
mark with that which corresponds to the 
next edge

ntinues. 
3. The final node of the NEP collects the 

strings that satisfy the constraints of all the 
edges. It is eas
the solutions. 

Some fragments of the XML file for this 
example (3Coloring.xml) are shown belo
d
 

• The alph

 
    <ALPHABET 
symbols="b1_r1_g1_b2_r2_g2_b3_r3_g3_b4_
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G3_B4_R4_G4_B5_R5_G5_a1_a2_a3_a4_a5_X1_
X2_X3_X4_X5_X6_X8_X9"/>  
 

• This alphabet contains the following 
subsets of symbols: 

o {a1,…,a5} represents the initial 
situation of the regions 
(uncolored).  

o {b1, r1, g1,…, b5, r5, g5} 
represents the assignment of the 
colors to the regions.  

o {B1, R1, G1,… B5, R5, G5} is a 
copy of the previous set to be used 
while checking the constraint 
associated with a couple of 
adjacent regions. 

 
• The string contained in the initial node at 

the beginning represents the complete map 
uncolored and the number of the first edge 
to be tackled (X1) 

 
<NODE initCond="a1_a2_a3_a4_a5_X1"> 
 
• The rules of the initial node assign all the 

possible colors to all the regions. The 
following rules refer to the second region: 

 
<RULE ruleType = "substitution" 
      actionType = "ANY"  
      symbol="a2" newSymbol="b2"/> 
<RULE ruleType="substitution" 
      actionType="ANY"  
      symbol="a2" newSymbol="r2"/> 
<RULE ruleType="substitution" 
      actionType="ANY"  
      symbol="a2" newSymbol="g2"/> 
 
• The node in the NEP that assigns a color 

(red, in this case) to the first region (1 in the 
example) of an edge in the map uses the 
following rule: 

 
<RULE ruleType="substitution" 
      actionType="ANY" symbol="r1"  

  newSymbol="R1"/> 
 
• The other node ensures that the adjacent 

region (2 in this case) has a different color 
by means of these rules: 

 
<RULE ruleType="substitution" 
      actionType="ANY"  
      symbol="b2"  
      newSymbol="B2"/> 

    <RULE ruleType="substitution"  

      actionType="ANY" symbol="g2"  
      newSymbol="G2"/> 
 
• The node used for starting the process in 

the next edge removes any special 
(capitalized) color symbol and sets the edge 
marking to the next one. The following 
rules correspond to the first edge 

 
<RULE ruleType="substitution"  
      actionType="ANY" symbol="R1"       
      newSymbol="r1"/> 

   <RULE ruleType="substitution"  
         actionType="ANY" symbol="B1"  
         newSymbol="b1"/> 

<RULE ruleType="substitution"  
      actionType="ANY" symbol="G1"  
      newSymbol="g1"/> 
<RULE ruleType="substitution"    
      actionType="ANY" symbol="R2"  
      newSymbol="r2"/> 
<RULE ruleType="substitution"  
      actionType="ANY" symbol="B2"  
      newSymbol="b2"/> 
<RULE ruleType="substitution"  
      actionType="ANY" symbol="G2"  
      newSymbol="g2"/> 
<RULE ruleType="substitution"  
      actionType="ANY" symbol="X1"  
      newSymbol="X2"/> 
 
• We have found difficulties when applying 

the input and output filters as they are in 
(Castellanos 2003). We have previously 
explained our opinion on the advisability of 
a greater standardization to minimize this 
situations. 

• Notice that the nodes associated with the 
last edge (in this case with the number 8) 
mark its strings with the following number 
that does not correspond with any edge in 
the graph (9 in our example). This is 
important for the design of the final node. 

• A special node of the NEP checks the 
stopping condition (Non Empty Node 
Stopping Condition). This final node only 
accepts strings with the corresponding mark 
(one that does not correspond to any edge 
in the adjacency graph). 

 
Figure 4 shows other map that could be colored 

with 3 colors. Splitting region 3 and 4 in figure 3 
generates this map. Figure 4 also summarizes the 
sequence of steps for one of the possible solutions. It 
is worth noticing that all the solutions are 
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simultaneously kept in the configurations of the 
NEP.  

The behavior of the NEP for this map could be 
summarized as follows: 
 

• The initial content of the initial node is 
a1_a2_a3_a4_a5_X1. 

• This node produces all the possible 
coloring combinations. In the second step 
of the computation, for example, it contains 
the following strings: 

b1_a2_a3_a4_a5_X1 r1_a2_a3_a4_a5_X1 
g1_a2_a3_a4_a5_X1 a1_b2_a3_a4_a5_X1 
a1_r2_a3_a4_a5_X1 a1_g2_a3_a4_a5_X1 
a1_a2_b3_a4_a5_X1 a1_a2_r3_a4_a5_X1 
a1_a2_g3_a4_a5_X1 a1_a2_a3_b4_a5_X1 
a1_a2_a3_r4_a5_X1 a1_a2_a3_g4_a5_X1 
a1_a2_a3_a4_b5_X1 a1_a2_a3_a4_r5_X1 
a1_a2_a3_a4_g5_X1 

 
Figure 4: Sequence of steps in the solution of a 3-coloring 
problem by jNEP. 

• The NEP still needs a few more steps to get 
all the combinations. 

• After that, the coloring constraints are 
applied simultaneously to all the possible 
solutions and those assignments that violate 
some constraint are removed. We describe 
below a sequence of strings generated by 

the NEP that corresponds to the solution 
graphically shown in figure 4: 

o r1_g2_b3_b4_r5_X1 is generated 
in the initial steps. 

o After checking the 1st edge 
(regions 1 and 2) the NEP contains 
these two strings 

R1_g2_b3_b4_r5_X1  and R1_G2_b3_b4_r5_X1 
o After checking the 2nd edge 

(regions 1 and 3)             
R1_g2_B3_b4_r5_X2 

o And after checking the edges 3, 4, 
5, 6 and 8 (remember that edge 7 
was removed to make the map 
colorable) associated respectively 
with the pairs of regions 1-4, 2-3, 
2-4, 2-5 and 4-5, the following 
strings are in the NEP:  

R1_g2_b3_B4_r5_X3             r1_G2_B3_b4_r5_X4 
r1_G2_b3_B4_r5_X5             r1_G2_b3_b4_R5_X6 
r1_g2_b3_B4_R5_X8 

o Finally, the complete solution is 
found 

r1_g2_b3_B4_R5_X9 and r1_g2_b3_b4_r5_X9 
 

• This NEP processes all the solutions at the 
same time. It removes all the coloring 
combinations that violate any constraint. 
The final node contains in the last step all 
the solutions found. 

(Castellanos, 2003) describes one of the kinds of 
NEPs (simple NEPs) that is simulated by jNEPs. As 
we have briefly mentioned before, we have observed 
that the authors have used slightly different filters 
for the 3-coloring problem. We could not use these 
filters and we had to change some of them (most of 
the output filters) in order to get a proper behavior of 
the NEP. The complete XML file is available at 
http://jnep.e-delrosal.net. 

4 CONCLUSIONS AND 
FURTHER RESEARCH LINES  

We have tackled the solution of several NP-
complete problems found in the literature by means 
of jNEP. We have observed that there exist different 
ways of implementing the same formal model, 
mainly with respect to input and output filters. These 
open aspects have to be defined when the model is 
implemented to solve given problems. We conclude 
that simulation needs both: a formal definition and 
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also some standardization in the way in which 
different authors particularize these open aspects in 
the implementation of their own NEPs. These 
differences make it very difficult to fully understand 
the behavior of the proposed NEPs as well as their 
simulation. Although we have not found any 
significant mistake in the simulation of the formal 
model, we had to modify and improve jNEP in 
several subtle details in order to ease the handling of 
the NEPs described in the literature. 

We have also identified some common 
techniques to these different NP problems. They 
suggest us some tools that could be added to jNEP to 
increase the comfort of the NEPs designer. In the 
future we plan to develop a more abstract input 
format. For example, most of the NEPs defined to 
solve NP problems uses complete graphs. The 
current XML configuration file explicitly defines 
each edge, which implies a big amount of tedious 
and mechanical work. It will be very useful some 
automatic mechanism to do this task.  

It could be also very useful adding some 
diagnose tool to check the correctness of the NEPs. 

It is worth noticing that jNEP is just a block that 
will be used to build more complex applications. 
One of them is a full graphic simulation 
environment for NEPs that ease their design to solve 
given problems. Our research group is also 
interested in some evolutionary techniques to 
automatic design NEPs. jNEP will be used as a part 
of the fitness function that this kind of algorithms 
needs. 
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