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Abstract. In this work, the task of classifying mammograms according to breast
density is studied using a local-histogram-based feature extraction method and
a non-parametric classification scheme. Breast density estimation is important
due to its association with a higher risk of cancer and an increased difficulty of
diagnosis. 322 images from the Mammographic Image Analysis Society (MIAS)
Database have been analyzed, and the density prediction accuracy of the method
has been assessed. The obtained results show an agreerfie68 between
automatic and expert radiologist manual classification.

1 Introduction

Breast cancer is a leading cause of cancer-related mortality in women. Some studies
have estimated that approximatéB.6% of women will develop breast cancer during
their lifetime [1]. Early detection of cancer is extremely important as only an early
treatment will cure the disease in a significant number of cases.

Mammographic screening programs are currently an effective method to detect
breast cancer at an early stage, because they allow the identification of tumors before
being palpable. Nevertheless, it is not trivial for a radiologist to interpret correctly a
mammogram due to the extremely wide variation in the mammographic appearance
of normal and abnormal tissue of the breast. In fact, dislyo 35% of women with
radiographically-suspicious non-palpable lesions who are subject to a biopsy, show ma-
lignancy after histological analysis [2,3]. On the other hand, some incipient tumors
can remain undetected after a radiography has been examined, which makes difficult
a successful treatment. Retrospective studies have shown that, in current breast cancer
screening]0% to 25% of the tumors are missed by the radiologist [4, 5].

In case of dense breasts, the diagnosis is even more difficult, because dense tissue
has similar X-ray attenuation than some type of tumors. Therefore, dense breast tissue
can obscure a lesion. In addition to the difficulty involved in the detection of certain
types of tumors in dense breasts, some studies have demonstrated a correlation between
dense tissue and the risk of developing cancer [6-8]. The risk of breast cancer asso-
ciated with mammographic density is larger than almost all other risk factors for the
disease. Women with dense breasts are at four-to-six-fold higher risk than those with
primarily fatty breasts [9, 10, 8].
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Since the discovery of this relationship, several metricshfeast density classifi-
cation have been proposed: Wolfe’s four parenchymal pettg, 7], Tabar’s five pat-
terns [11], Boyd’s six class categories [8] and BI-RADS [12]

Regardless of the method employed to classify and estirhatenammographic
density, this measure is of major importance as it could @mfte the choice of alter-
native screening paradigms, such keeping short the intebeaween mammograms,
using other modalities such as magnetic resonance imadifj)( or to signal the
need for more careful interpretation of the mammogram, abléereading. However,
all these methods based on the radiologists’ assessmesinpie major drawback: the
subjectiveness in the categorization.

Computer-assisted measurement of breast density has tuekedsin the last few
years in an attempt to obtain more objective risk assesanBayd et al. [8] proposed
a semiautomatic method based on interactive thresholdichveomputes the percent-
age of the segmented dense tissue over the segmented lvezadzanal et al. [13] de-
scribed a similar technique and compared the semi-automsdessment of breast den-
sity with Tabar patterns. Karssemeijer [14] developed @oraated method where fea-
tures are calculated from gray level histograms computeliffi@rent regions in which
distance to the skin line is approximately equal, and thassified using thé-nearest
neighbor £-NN) rule. Saha et al. [15] described a method using a scaded fuzzy
connectivity approach. Klifa [16] et al. developed a segtaton technique based in
fuzzy clustering to quantify breast density from MRI datdivér et al. [17] suggested
an approach based on gross segmentation and the extrafdotLwe features of pixels
with similar tissue appearance. This work was extendeddhvhere a Fuzzy C-Means
clustering approach was used for gross segmentation. Muoainet al. [19] used a fea-
ture extraction scheme based on a multiresolution histogra

Segmentation of non-fatty tissue in mammograms appeairs medve difficult than
one might think, due to large differences in appearancedmtwdifferent parenchymal
types [14]. In this sense, global thresholding techniqueslgnited results as mammo-
grams differing in their density can present similar glofiatograms and vice versa.

Our approach is based on local gray-level histograms andwn-atage classifica-
tion scheme.

2 Dataset

In this work, the Mammographic Image Analysis Society (M)AZatabase [20] has
been used both to train and to evaluate the proposed metoddang to a leave-one-
out scheme.

The MIAS database contai&2 mammograms corresponding to the left and right
breasts ofi61 patients. Each image has a resolutior2@fm per pixel and a size of
1024 x 1024 pixels. Mammograms have been subjectively classified bydml@gist
asfatty (F), glandular (G) anddense (D), according to its parenchymal tissue. This
classification is what we consider the ground-truth. From322 mammograms that
contains the dataset)6 correspond to clask, 104 to G and112 to D. Figure 1 shows
a mammogram of each class.
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Fig. 1. Three mammograms of different types in the MIAS datasetFély, (b) Glandular, (c)
Dense. The images have been cropped to show the region mshte

It must be mentioned that this classification approachdifiem that of Wolfe [6],
Tabar [11], Boyd [8] and BI-RADS [12] presented at sectionHichk all used four or
more classes.

Fatty and dense tissue areas have not been segmented in @achagram during
the labeling process. Instead, a single global label igyassi to the whole mammo-
gram.

3 Methodology

As mentioned before, only a single class label (F, G or D) ec#jgd for each mam-
mogram. This means that ground-truth at pixel level (orllémeel) is not available and
therefore it is not possible to use a supervised method baséatal features to train
the classifier. On the other hand, methods based only on Iglestares tend to fail
due to high intraclass variability. In our approach, an yesuised method for training
with local features, which assigns local labels to eachore@f the mammogram is
used. Then a supervised method where each mammogram idlglapaesented by a
histogram of local labels is applied. This process is shawFigure 2.

In a first process, the breast is manually segmented from dbkgbound of the
mammogram. In this process, the breast is separated froen olfiects present in the
mammography: black background, labels and the pectoratlmusithough this can be
automatically performed [14], in this work we have reliedaomanual segmentation to
avoid any contribution of segmentation errors to the result

In the training phase, local features are first extracteshf'each image in the train-
ing set. For this purpose, a local window 4240 pixels is shifted along the breast
region and the gray level histogram is computed at eachiposif the window, pro-
ducing alocal feature vector for each local window. To make these features invariant
to acquisition parameters, breast thickness or otherracion-related with parenchy-
mal type, histograms are stretched over the rdfige31]. With this operation we give
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Fig. 2. Training and testing approaches proposed. In the first sthgaining, local features are
extracted, and an unsupervised approach is used, wherd¢las second stage global features
are extracted and a supervised method is applied. In tHaggstase, a two-stage classification
scheme is used, firstly, to switch from local to global featuand then to obtain a hypothesis.

more relevance to the contrast between different texturélsed local window, rather
than the average gray level. In addition, histograms argerdantly reduced fror256
to 32 — dimensional feature vectors to limit the contribution of noise and thednlass
variance.

Then, the set of all local feature vectors is partitioned imtclusters using the k-
means algorithm. This yields what we call floeal model. Finally, the number of local
feature vectors belonging to each cluster is computed fdr smmogram. This yields
ann-dimensional vector per mammogram, representing the narala:-clusters his-
togram. This is what we call thglobal features vector of the mammogram and the set
of all these vectors gives rise to thgkobal model.

In the test phase, local feature vectors are computed irathe svay as in the train-
ing phase. Then, local vectors are classified against ttaé hocdel using thé-nearest
neighbors k-nn) rule, which assigns a cluster label to each vector. Nduster labels
are counted to generate the normalizedusters histogram (global feature vector). Fi-
nally, this vector is classified against the global modahgs$hek-nn rule again, which
gives an F-G-D hypothesis.

4 Experiments and Results

For the evaluation of the performance of our approach, thelevbet of322 mammo-
grams in the MIAS database was used. A leaving-one-patientechnique has been
employed, guaranteeing that when a mammogram is beingdfedssll the prototypes
belonging to the same patient are left out from the trainetg s

Experiments were carried out for different number of clust€he best results were
obtained with6 clusters. According to the classification in one of the trawemen-
tioned classes determined by a radiologist, a successfraweds % was obtained. The
“Major classification error rate” (confusion between cksB and D) was only1.24%.
Amongmajor errors, 75% (3 out of4) are due to misclassifying a dense mammogram
in class F, while25% (1 out of4) are due to misclassifying a fatty mammogram in class
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D. It must be said that, in a practical task consisting of ctiatg specifically the images
of dense breasts, misclassifying a dense mammogram inFelassld be more serious
than misclassifying a fatty mammogram in class D.

Table 1 shows the confusion matrix obtained. Rows reprebeniypothesis and
columns the ground truth.

Table 1. Confusion matrix for automatic classification and MIAS gndtruth.

Fatty Glandular Dense
Fatty 94 8 3
Glandular 11 67 19
Dense 1 29 90

Our approach has been compared with other published rassitg the MIAS
database. Table 2 summarizes these results. Muhimmah[&éBhlised a multireso-
lution histogram technique and a Directed Acyclic Graph piSurt Vector Machine
(DAG-SVM) classifier. Oliver et al. [17] used a method basedyooss segmentation
and the extraction of texture features of pixels with similssue appearance. A Deci-
sion Tree was employed for classification. Masek et al. [3€paverage histograms of
each density class as features and a Euclidean distancemmeas

Table 2. Comparison with published results using the MIAS database.

Author Agreement%) Major errors £o)
Our approach 77.96 1.24
Muhimmah et al. 77.57 3.43
Oliver et al. 70.0 4.44
Masek et al. 62.42 —

Our method outperforms the existing techniques tested thithMIAS database,
and more importantly, major errors have been drasticatlyced, which suggests that
most of the minor errors could be attributed to mammogranosellensity are actually
in the frontier between two classes.

Also radiologists are reported to disagree on classifinatiGome studies have
found an inter-observer agreement6sfto 80% [14,18] in a 4-class test. Therefore,
a significantly higher agreement using automatic classifinas probably not to be
expected.

5 Conclusions

Experiments of classification of mammographic densitygikioal gray-level histograms
and a two-stage classification scheme are presented. Uathignaiges from the Mam-
mographic Image Analysis Society (MIAS) Database in a 3slaaving-one-out test,
the results of77.96% of agreement and.24% of major errors show an improvement
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over other existing techniques. These results are prolzfihe same level that could
be expected for expert manual classification.
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