
TWO PRUNING METHODS FOR
ONLINE PPM WEB PAGE PREDICTION

Alborz Moghaddam and Ehsanollah Kabir
Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

{a.moghaddam, kabir}@modares.ac.ir

Keywords: Prediction, Memory optimization, Pruning, PPM.

Abstract: The Web access prediction gets significant attention in recent years. Web prefetching and some
personalization systems use prediction algorithms. Most current applications that predict the next web page
have an offline part that does the data preparation task and an online part that provides personalized content
to the users based on their current navigational activities. We use PPM for modelling user navigation
history. In standard PPM, many states of the model are rarely useful for prediction and can be eliminated
without affecting the performance of the model. In this paper we propose two pruning methods. Using these
methods we present an online prediction model that fits in the memory with good prediction accuracy. A
performance evaluation is presented using real web logs. This evaluation shows that our methods effectively
decrease the memory complexity.

1 INTRODUCTION

Web mining has become an important research area
in recent years. It can be used for different purposes
such as: improving the web cache performance
(Padmanabhan and Mogul, 1996; Palpanas, 2000),
detecting the user interest and recommending related
pages or goods for e-commerce web sites (Sarwar
and Karypis, 2000), improving search engines
results (Zhang and Dong, 2002), and personalizing
web content as the users like (Anand , Kearney and
Shapcott, 2007). Understanding the user navigation
pattern and then predicting the next pages is the
main problem.

Prediction by Partial Match, PPM, (Palpanas
2000; Deshpande and Karypis 2004) is a commonly
used technique in prediction. Improvements on the
efficiency of PPM were examined in (Deshpande
and Karypis 2004) where three pruning criteria were
proposed: a) support-pruning, b) confidence-pruning
and c) error-pruning. With these pruning methods
states of the Markov model are pruned in case they
do not appear very frequently. In (Ban, Gu and Jin,
2007) the authors proposed an online PPM model.
They compute each node’s outgoing entropy and
then normalize it. Their algorithm always chooses
the nodes with low normalized entropy. In their
model, prediction accuracy rate and longest match
rule are also applied.

The content of many web sites are dynamic and
new pages can be added to the site dynamically. So
we need an online model to consider the changes of
the web site and the user behaviour. The memory
efficiency is an important factor for an online
algorithm. Most models proposed for web page
prediction are not online (Pitkow and Pirolli, 1999;
Chen and Zhang, 2003) and online models such as
 (Ban, Gu and Jin, 2007) may soon become too big to
fit in memory.

In this paper we use PPM algorithm to model
user navigation behaviour and present two
techniques for pruning the model. We do not build
per-user predictive model. Individual models require
more space and may be less accurate, because they
see less data than a global model (Deshpande and
Karypis, 2004). The execution time required for
adding a new page to the model and predicting the
next user action are significantly affected by the size
of the related Markov model, so by pruning the
model we enhance the model efficiency. The
structure of the paper is as follows. In Section 2, we
present some related works. The online PPM model
creation and prediction are proposed in Section 3.
Pruning methods are explained in Section 4. In
Section 5 we present experimental results, and
section 6 is conclusion.

2 RELATED WORKS

Various models have been proposed for modelling
the user navigation behaviour and predicting the
next requests of users. According to (Pierrakos,
Paliouras, Papatheodorou and Spyropoulos, 2003),
association rules, sequential pattern discovery,
clustering, and classification are most popular
methods for web usage mining. Association rules
 (Agrawal, Mannila, Srikant, Toivonen and Verkamo,
1996) were proposed to capture the co-occurrences
of buying different items in a supermarket shopping.
Association rules indicate groups that are related
together. Methods that use association rules can be
found in (Yang, Li and Wang, 2004) too.

The prediction scheme described in
(Padmanabhan and Mogul, 1996) used a dependency
graph, DG, to model user navigation behaviour. The
DG prediction algorithm constructs a dependency
graph that describes the pattern of user page
requests. Every page visited by user is represented
by a node in the dependency graph. There is an arc
from node A to B if and only if at some point in time
a client accessed to B within w accesses after A,
where w is the lookahead window size. The weight
of the arc is the ratio of the number of accesses to B
within a window after A to the number of accesses
to A itself. A DG is effectively a first-order Markov
model. In this method the consecutiveness of
requests are not applied.

Markov models contain precise information
about users’ navigation behaviour. They are most
widely used in sequential pattern discovery for link
prediction. Lower order Markov models are not very
accurate in predicting the user’s browsing behaviour,
since these models do not look far into the past to
correctly discriminate the different observed
patterns. Higher order Markov models give better
predictive precision with reduced hit rate. All-kth-
Order Markov model maintains Markov predictors
of order i, for all 1 ≤ i ≤k. This model improves
prediction coverage and accuracy but the number of
states in this model grows exponentially when the
order of model increases. Improvements on the
efficiency of PPM are examined in (Deshpande and
Karypis, 2004). Three pruning criteria are proposed:
a) support-pruning, b) confidence-pruning and c)
error-pruning. The subject of (Deshpande and Karypis,
2004) is mainly the efficiency. The resulting model,
called selective Markov model has a low state
complexity. But this model is not online and can not
be incrementally updated.

The Longest Repeating Subsequence, LRS PPM
 (Pitkow and Pirolli, 1999) stores a subset of all passes

that are frequently accessed. It uses longest repeated
sequence to predict next request. In this model each
path occurs more than some Threshold T, where T
typically equals one. In (Chen and Zhang, 2003),
popularity-based PPM is proposed. In this model,
the tree is dynamically updated with a variable
height in each set of branches where a popular URL
can lead a set of long branches, and a less popular
URL leads to a set of short ones.

The study in (Ban, Gu and Jin, 2007) presents an
online method for predicting next user request. In
this model the entropy of a node is an important
factor in prediction. But in this model, the memory
efficiency of algorithm is not considered.

The techniques that mentioned above, work well
for web sites that do not have a complex structure
and do not dynamically generate web pages.
Complex structure of a web site led to large number
of states in a Markov model and so it needs much
runtime requirements such as memory and
computation power.

3 ONLINE PPM
PREDICTION MODEL

In this paper we apply our pruning methods on a
prediction tree based on PPM. The PPM model has
an upper bound for its context length. The context
length is the sequence length that preceding the
current symbol. A kth order PPM model keeps the
contexts of length 0 to k. The predictor is
represented by a tree. The number on each edge
records the number of times the request sequence
occurs in the path from the root node to end node of
that edge. The PPM prediction tree for sequences
ABCDE, ABCA, CACD, BCD and ADAB is
displayed in Figure 1.

Figure 1: The PPM prediction tree for sequences ABCDE,
ABCA, CACD, BCD and ADAB.

We create the PPM prediction tree, online. An
online prediction method needs not rely on time-

consuming pre-processing of the available historical
data in order to build a prediction model. The pre-
processing is done whenever we have a new request.
The advantage of the PPM model is that it is not
very complex .But the tree records every accessed
sequence of URLs, so it needs too much space in the
server. We apply two pruning methods on PPM
model and decrease the model size and hence
decrease the required computational power of our
model. We apply our pruning methods after a
specified number of page requests.

Figure 2 shows the learning process of our
model. As you can see, when a new page is
requested then:

A. Do an online filtering and ignore the
image, media and script files.

B. Find the user active session corresponding
to new request.

C. Lines 6 to 12 are for clearing our
evaluation method.

D. Learn the user request list. Updates are
performed in prediction tree according to PPM
algorithm.

E. Prune the prediction tree after each 10000
page requests in this code.

1. PPMTree: Prediction tree
2. PRT = 10000 ; //Pruning Tree After
Each 10000 Page Request
3. requestCount = 0 ; //Count the
requests
4. while (there is Request){
1. {
1. Request req = GetNextRequest();
2. If IsFileter(req) continue;
3. requestCount = requestCount + 1;
4. userSession =
GetActiveSession(req);
5. pSet = NextPrediction(PPMTree,
userSession);
6. if(pSet!= null)
7. {
8. if (req in pSet)// we could
predict the next requests
9. { positive++;} // we have a
correct prediction
10. else
11. { negative++;}// we have a wrong
prediction
12. }
13. LearnString(PPMTree,userSession);
//learn the string in PPM manner.
14. If (requestCount == PRT)
15. {
16. pruneTree(PPMTree);
17. requestCount = 0;
18. }
19. }//End while

Figure 2: Learning a new user sequence in prediction tree.

LearnString Method, update the prediction
tree according to PPM algorithm.

4 OUR PRUNING METHODS

We propose two methods for pruning the prediction
tree and decreasing the nodes count and memory for
constructing the prediction model. By these methods
we remove the low information paths from the
model, keeping only frequently accessed paths.
These methods do not noticeably affect prediction
accuracy, but they significantly reduce the storage
requirement.

4.1 Child Count Based Pruning, CCBP

The CCBP is described below:
Traverse the tree using Breadth First Search,

BFS algorithm and for the nodes that having more
child nodes than a specified threshold Tc, remove the
child nodes having lower weight until the child
nodes count equals to threshold Tc.

Tc must be less than prediction set size. As you
have seen in Section 4, the prediction tree is pruned
after a specified number of page requests, PRT.
When a new request is added to the tree as a child
node, it has chances to overtake one of its siblings,
until page requests count does not equal PRT.
Experimental results show that this method
decreases the nodes counts of prediction tree more
that 80 percent with no effective decreasing in
prediction accuracy. In Figure 3 the prediction tree
after pruning by CCBP method is displayed. We set
Tc = 2. If two branches have equal weight then we
prune one of them randomly like branch `A-D-A'
that is pruned.

Figure 3: The prediction tree of figure 1, after pruning by
CCBP method.

4.2 Path Probability Based Pruning,
PPBP

Pruning nodes which have lower probability than a
specified Threshold, is a common pruning technique
(Chen and Zhang 2003). The access probability of a
node is the ratio between the number of accesses to
it and the number of accesses to its parent node. We
propose a more comprehensive probability pruning
method which considers probability of overall path
from the root node to a specified node. A path Si of
length n is represented by S[0..n]={x0,x2,….,xn},
where xi is a node, n is length of S and x0 is root
node. We define p(xi) as the probability of node xi.
Path probability, pp, of node xi is the multiplication
of probabilities of all nodes in the path from root
node to xi. For example the path probability of path,
ABC in Figure 1, is (6/22) * (3/6)*(2/3) = 1/11. pp
of root node is one. We show how pp(xi) is
calculated below.

w(xi) = weight of node xi that is same
as weight of its descendent edge.
p(xi) = w(xi)/ w(parentOf(xi))

⎪⎩

⎪
⎨
⎧

∏
= =

>
=

01

0
1

)(
)(i

i
n

i

xip
xipp

Figure 4: Calculating the path probability.

The nodes that have pp lower than a specified
threshold Tp, are pruned. It can be easily done using
Depth First Search, DFS to traverse the tree. As in
the CCBP method, the pruned nodes count depended
on the Tp that can be set regarding to server
computational power and available memory. Below
we show prediction tree of Figure 1, after pruning by
PPBP method, with Tp = 0.9.

Figure 5: The prediction tree of Figure 1 after pruning by
PPBP method.

5 EXPERIMENTAL RESULT

The web log we tested was NASA log from the
NASA Kennedy Space Centre server in Florida
available from the site http://ita.ee.lbl.gov/html
/traces.html. It contains 1,569,898 requests and
72,198 IPs aggregated as 51,132 sessions involving
4,737 pages. For this log, if a user is idle for more
than 30 minutes, we assume that the next request
from the user starts a new session. The longest
matching rule is used in all of tested models.

We tested the CCBP, PPBP, LRS and 5-Order
PPM. For all algorithms we used a global model for
prediction and proposed 10 pages as a prediction set.
If the next request of the user is member of this set,
our prediction is considered as a correct prediction.
For pruning the trees we set the Tc to 15 and Tp to
0.00005. We used two performance metrics, hit-rate
and precision to evaluate our methods. They are
defined as follows.

Precision. The ratio of correct prediction divided
by the number of requests that the model has
prediction for them.

Hit Rate. The ratio of correct predictions
divided by total number of requests.

All Experiments are performed on a Pentium 4,
Core 2 Duo 2.33 GHz with a 1G main memory
running Microsoft Windows XP 2002.

Figure 6 shows that CCBP and PPBP consume
much less memory than PPM and LRS models. This
Figure shows the prediction tree nodes count versus
the number of page requests that are processed. The
prediction tree nodes count can be controlled with Tp
and Tc.

Figure 6: Prediction tree nodes count vs page request
count

PPM-5 is more time consuming than other
models, because PPM-5 model is larger than others.

Figure 7 shows the time spent for processing 100000
page requests. The time that spent for processing
user request is dependent on model size. CCBP
spends less time to process page requests because of
its tiny model and simple nature. As you can see,
using pruning methods led to a faster user modelling
system.

Figure 7: Time spent to create prediction tree after
processing 100000 page requests.

Figure 8 compares the precision of four models.
The precision of the PPM model is slightly higher
than precision of other models. But as you can see in
Figure 8, there is no considerable difference between
these models.

Figure 8: Prediction precision vs page requests count.

Figure 9 compares the hit rate of four models.
The hit rate of PPM model is higher than the others.
Because in PPM all sequences that their length are
less than specified context length are maintained.
But in other methods some user sequences are
eliminated. The difference is not high and this is a
trade off between the memory consumption and hit
rate. If the memory and speed are critical, Pruning
methods can be used. In such systems the decrease

in required memory is more important than lower hit
rate.

Figure 9: Prediction hit rate vs page requests count.

6 CONCLUSIONS AND FURTHER
WORKS

Modelling and predicting user surfing paths involves
a tradeoffs between model complexity and
predictive accuracy. In this paper we proposed two
pruning techniques that attempt to reduce model
complexity while retaining predictive accuracy. In
CCBP, the child nodes of nodes that their child
nodes count are more than specified threshold are
pruned. In PPBP the overall path probability of a
node calculated and the nodes that have low path
probability are pruned. We have tested our methods
and the experimental results and show that our
methods consume much less memory than others.
Our models need no training or pre-processing of the
historical data. Our tree pruning methods are
suitable for dynamic web sites and can be
considered for future research for temporal
modelling of user session. We like to discuss how
the best values of Tc and Tp can be found according
to desired precision and prediction tree nodes count.

ACKNOWLEDGEMENTS

This work was supported in part by the Iran
Telecommunication Research Centre, ITRC, under
Contract T-500-20593, TMU-87-01-08.

REFERENCES

Agrawal, R., H. Mannila, et al. (1996). Fast discovery of
association rules, American Association for Artificial
Intelligence Menlo Park, CA, USA: 307-328.

Anand, S. S., P. Kearney, et al. (2007). Generating
semantically enriched user profiles for Web
personalization, ACM Press New York, NY, USA.

Ban, Z., Z. Gu, et al. (2007). An online PPM prediction
model for web prefetching, ACM New York, NY,
USA: 89-96.

Begleiter, R., R. El-Yaniv, et al. (2004). On Prediction
Using Variable Order Markov Models. 22: 249-250.

Borges, J. and M. Levene (1999). Data Mining of User
Navigation Patterns, Springer-Verlag London, UK:
92-111.

Borges, J. and M. Levene (2005). Generating dynamic
higher-order Markov models in web usage mining,
Springer. 3721: 34-45.

Chen, X. and X. Zhang (2003). A Popularity-Based
Prediction Model for Web Prefetching, IEEE
Computer Society.

Chim, H. and X. Deng (2007). A new suffix tree similarity
measure for document clustering, ACM Press New
York, NY, USA: 121-130.

Curewitz, K. M., P. Krishnan, et al. (1993). Practical
prefetching via data compression, ACM Press New
York, NY, USA. 22: 257-266.

Davison, B. D. (2004). Learning Web Request Patterns,
Springer.

Deshpande, M. and G. Karypis (2004). Selective Markov
models for predicting Web page accesses, ACM Press
New York, NY, USA. 4: 163-184.

Hipp, J., U. Güntzer, et al. (2000). Algorithms for
association rule mining—a general survey and
comparison, ACM Press New York, NY, USA. 2: 58-
64.

Katsaros, D. and Y. Manolopoulos (2005). A Suffix Tree
Based Prediction Scheme for Pervasive Computing
Environments, Springer: 267-277.

Nanopoulos, A., D. Katsaros, et al. (2002). Exploiting
Web Log Mining for Web Cache Enhancement,
Springer.

Padmanabhan, V. N. and J. C. Mogul (1996). Using
predictive prefetching to improve World Wide Web
latency. 26: 22-36.

Palpanas, T. (2000). Web Prefetching Using Partial Match
Prediction, National Library of Canada= Bibliothèque
nationale du Canada.

Pierrakos, D., G. Paliouras, et al. (2003). Web Usage
Mining as a Tool for Personalization: A Survey,
Springer. 13: 311-372.

Pitkow, J. and P. Pirolli (1999). Mining longest repeating
subsequences to predict world wide web surfing,
USENIX Association Berkeley, CA, USA: 13-13.

Sarwar, B., G. Karypis, et al. (2000). Analysis of
recommendation algorithms for e-commerce, ACM
Press New York, NY, USA: 158-167.

Yang, Q., T. Li, et al. (2004). Building Association-Rule
Based Sequential Classifiers for Web-Document
Prediction, Springer. 8: 253-273.

Zamir, O. and O. Etzioni (1998). Web document
clustering: a feasibility demonstration, ACM Press
New York, NY, USA: 46-54.

Zhang, D. and Y. Dong (2002). A novel Web usage
mining approach for search engines, Elsevier. 39: 303-
310.

ZhangYang, W. (2005). Mining sequential association-
rule for improving Web document prediction: 146-
151.

