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Abstract: The Web access prediction gets significant attention in recent years. Web prefetching and some 
personalization systems use prediction algorithms. Most current applications that predict the next web page 
have an offline part that does the data preparation task and an online part that provides personalized content 
to the users based on their current navigational activities. We use PPM for modelling user navigation 
history. In standard PPM, many states of the model are rarely useful for prediction and can be eliminated 
without affecting the performance of the model. In this paper we propose two pruning methods. Using these 
methods we present an online prediction model that fits in the memory with good prediction accuracy. A 
performance evaluation is presented using real web logs. This evaluation shows that our methods effectively 
decrease the memory complexity. 

1  INTRODUCTION 

Web mining has become an important research area 
in recent years. It can be used for different purposes 
such as: improving the web cache performance 
(Padmanabhan and Mogul, 1996; Palpanas, 2000), 
detecting the user interest and recommending related 
pages or goods for e-commerce web sites (Sarwar 
and Karypis, 2000), improving search engines 
results (Zhang and Dong, 2002), and personalizing 
web content as the users like  (Anand , Kearney and 
Shapcott, 2007). Understanding the user navigation 
pattern and then predicting the next pages is the 
main problem. 

Prediction by Partial Match, PPM, (Palpanas 
2000; Deshpande and Karypis 2004) is a commonly 
used technique in prediction. Improvements on the 
efficiency of PPM were examined in  (Deshpande 
and Karypis 2004) where three pruning criteria were 
proposed: a) support-pruning, b) confidence-pruning 
and c) error-pruning. With these pruning methods 
states of the Markov model are pruned in case they 
do not appear very frequently. In  (Ban, Gu and Jin, 
2007) the authors proposed an online PPM model. 
They compute each node’s outgoing entropy and 
then normalize it. Their algorithm always chooses 
the nodes with low normalized entropy. In their 
model, prediction accuracy rate and longest match 
rule are also applied.  

The content of many web sites are dynamic and 
new pages can be added to the site dynamically. So 
we need an online model to consider the changes of 
the web site and the user behaviour. The memory 
efficiency is an important factor for an online 
algorithm. Most models proposed for web page 
prediction are not online (Pitkow and Pirolli, 1999; 
Chen and Zhang, 2003) and online models such as 
 (Ban, Gu and Jin, 2007) may soon become too big to 
fit in memory. 

In this paper we use PPM algorithm to model 
user navigation behaviour and present two 
techniques for pruning the model. We do not build 
per-user predictive model. Individual models require 
more space and may be less accurate, because they 
see less data than a global model (Deshpande and 
Karypis, 2004). The execution time required for 
adding a new page to the model and predicting the 
next user action are significantly affected by the size 
of the related Markov model, so by pruning the 
model we enhance the model efficiency. The 
structure of the paper is as follows. In Section 2, we 
present some related works. The online PPM model 
creation and prediction are proposed in Section 3. 
Pruning methods are explained in Section 4. In 
Section 5 we present experimental results, and 
section 6 is conclusion. 



 

2  RELATED WORKS 

Various models have been proposed for modelling 
the user navigation behaviour and predicting the 
next requests of users. According to   (Pierrakos, 
Paliouras, Papatheodorou and Spyropoulos, 2003), 
association rules, sequential pattern discovery, 
clustering, and classification are most popular 
methods for web usage mining. Association rules 
 (Agrawal, Mannila, Srikant, Toivonen and Verkamo, 
1996) were proposed to capture the co-occurrences 
of buying different items in a supermarket shopping. 
Association rules indicate groups that are related 
together. Methods that use association rules can be 
found in (Yang, Li and Wang, 2004) too. 

The prediction scheme described in 
(Padmanabhan and Mogul, 1996) used a dependency 
graph, DG, to model user navigation behaviour. The 
DG prediction algorithm constructs a dependency 
graph that describes the pattern of user page 
requests. Every page visited by user is represented 
by a node in the dependency graph. There is an arc 
from node A to B if and only if at some point in time 
a client accessed to B within w accesses after A, 
where w is the lookahead window size. The weight 
of the arc is the ratio of the number of accesses to B 
within a window after A to the number of accesses 
to A itself. A DG is effectively a first-order Markov 
model. In this method the consecutiveness of 
requests are not applied. 

Markov models contain precise information 
about users’ navigation behaviour. They are most 
widely used in sequential pattern discovery for link 
prediction. Lower order Markov models are not very 
accurate in predicting the user’s browsing behaviour, 
since these models do not look far into the past to 
correctly discriminate the different observed 
patterns. Higher order Markov models give better 
predictive precision with reduced hit rate. All-kth-
Order Markov model maintains Markov predictors 
of order i, for all 1 ≤ i ≤k. This model improves 
prediction coverage and accuracy but the number of 
states in this model grows exponentially when the 
order of model increases.  Improvements on the 
efficiency of PPM are examined in  (Deshpande and 
Karypis, 2004). Three pruning criteria are proposed: 
a) support-pruning, b) confidence-pruning and c) 
error-pruning. The subject of  (Deshpande and Karypis, 
2004) is mainly the efficiency. The resulting model, 
called selective Markov model has a low state 
complexity. But this model is not online and can not 
be incrementally updated. 

The Longest Repeating Subsequence, LRS PPM 
 (Pitkow and Pirolli, 1999) stores a subset of all passes 

that are frequently accessed. It uses longest repeated 
sequence to predict next request. In this model each 
path occurs more than some Threshold T, where T 
typically equals one. In  (Chen and Zhang, 2003), 
popularity-based PPM is proposed. In this model, 
the tree is dynamically updated with a variable 
height in each set of branches where a popular URL 
can lead a set of long branches, and a less popular 
URL leads to a set of short ones.  

The study in  (Ban, Gu and Jin, 2007) presents an 
online method for predicting next user request. In 
this model the entropy of a node is an important 
factor in prediction. But in this model, the memory 
efficiency of algorithm is not considered.  

The techniques that mentioned above, work well 
for web sites that do not have a complex structure 
and do not dynamically generate web pages. 
Complex structure of a web site led to large number 
of states in a Markov model and so it needs much 
runtime requirements such as memory and 
computation power. 

3  ONLINE PPM  
PREDICTION MODEL 

In this paper we apply our pruning methods on a 
prediction tree based on PPM. The PPM model has 
an upper bound for its context length. The context 
length is the sequence length that preceding the 
current symbol. A kth order PPM model keeps the 
contexts of length 0 to k. The predictor is 
represented by a tree. The number on each edge 
records the number of times the request sequence 
occurs in the path from the root node to end node of 
that edge. The PPM prediction tree for sequences 
ABCDE, ABCA, CACD, BCD and ADAB is 
displayed in Figure 1. 

 
Figure 1: The PPM prediction tree for sequences ABCDE, 
ABCA, CACD, BCD and ADAB. 

We create the PPM prediction tree, online. An 
online prediction method needs not rely on time-



 

consuming pre-processing of the available historical 
data in order to build a prediction model. The pre-
processing is done whenever we have a new request. 
The advantage of the PPM model is that it is not 
very complex .But the tree records every accessed 
sequence of URLs, so it needs too much space in the 
server. We apply two pruning methods on PPM 
model and decrease the model size and hence 
decrease the required computational power of our 
model. We apply our pruning methods after a 
specified number of page requests.   

Figure 2 shows the learning process of our 
model. As you can see, when a new page is 
requested then:  

A. Do an online filtering and ignore the 
image, media and script files. 

B. Find the user active session corresponding 
to new request. 

C. Lines 6 to 12 are for clearing our 
evaluation method.  

D. Learn the user request list. Updates are 
performed in prediction tree according to PPM 
algorithm. 

E. Prune the prediction tree after each 10000 
page requests in this code. 

1. PPMTree: Prediction tree 
2. PRT = 10000 ; //Pruning Tree After 
Each 10000 Page Request 
3. requestCount = 0 ; //Count the 
requests 
4. while (there is Request){ 
1. { 
1. Request req = GetNextRequest(); 
2. If IsFileter(req) continue; 
3. requestCount = requestCount + 1; 
4. userSession = 
GetActiveSession(req); 
5. pSet =  NextPrediction(PPMTree, 
userSession); 
6. if(pSet!= null) 
7. { 
8.  if (req in pSet)// we could 
predict the next requests  
9.  {  positive++;} // we have a 
correct prediction 
10.     else 
11.  { negative++;}// we have a wrong 
prediction  
12. }  
13. LearnString(PPMTree,userSession); 
//learn the string in PPM manner.  
14. If ( requestCount == PRT ) 
15. { 
16.      pruneTree(PPMTree); 
17.      requestCount = 0; 
18. } 
19. }//End while 

Figure 2: Learning a new user sequence in prediction tree. 

LearnString Method, update the prediction 
tree according to PPM algorithm. 

4  OUR PRUNING METHODS 

We propose two methods for pruning the prediction 
tree and decreasing the nodes count and memory for 
constructing the prediction model. By these methods 
we remove the low information paths from the 
model, keeping only frequently accessed paths. 
These methods do not noticeably affect prediction 
accuracy, but they significantly reduce the storage 
requirement. 

4.1 Child Count Based Pruning, CCBP 

The CCBP is described below: 
Traverse the tree using Breadth First Search, 

BFS algorithm and for the nodes that having more 
child nodes than a specified threshold Tc, remove the 
child nodes having lower weight until the child 
nodes count equals to threshold Tc.  

Tc must be less than prediction set size. As you 
have seen in Section 4, the prediction tree is pruned 
after a specified number of page requests, PRT. 
When a new request is added to the tree as a child 
node, it has chances to overtake one of its siblings, 
until page requests count does not equal PRT. 
Experimental results show that this method 
decreases the nodes counts of prediction tree more 
that 80 percent with no effective decreasing in 
prediction accuracy. In Figure 3 the prediction tree 
after pruning by CCBP method is displayed. We set 
Tc = 2. If two branches have equal weight then we 
prune one of them randomly like branch `A-D-A' 
that is pruned. 

 
Figure 3: The prediction tree of figure 1, after pruning by 
CCBP method. 



 

4.2 Path Probability Based Pruning, 
PPBP 

Pruning nodes which have lower probability than a 
specified Threshold, is a common pruning technique 
(Chen and Zhang 2003). The access probability of a 
node is the ratio between the number of accesses to 
it and the number of accesses to its parent node. We 
propose a more comprehensive probability pruning 
method which considers probability of overall path 
from the root node to a specified node. A path Si of 
length n is represented by S[0..n]={x0,x2,….,xn}, 
where xi is a node, n is length of S and x0 is root 
node. We define p(xi) as the probability of node xi. 
Path probability, pp, of node xi is the multiplication 
of probabilities of all nodes in the path from root 
node to xi. For example the path probability of path, 
ABC in Figure 1, is (6/22) * (3/6)*(2/3) = 1/11. pp 
of root node is one. We show how pp(xi) is 
calculated below. 

 
w(xi) = weight of node xi that is same 
as weight of its descendent edge. 
p(xi) = w(xi)/ w(parentOf(xi))  
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Figure 4: Calculating the path probability. 

The nodes that have pp lower than a specified 
threshold Tp, are pruned. It can be easily done using 
Depth First Search, DFS to traverse the tree. As in 
the CCBP method, the pruned nodes count depended 
on the Tp that can be set regarding to server 
computational power and available memory. Below 
we show prediction tree of Figure 1, after pruning by 
PPBP method, with Tp = 0.9.  

 
Figure 5: The prediction tree of Figure 1 after pruning by 
PPBP method. 

5  EXPERIMENTAL RESULT  

The web log we tested was NASA log from the 
NASA Kennedy Space Centre server in Florida 
available from the site http://ita.ee.lbl.gov/html 
/traces.html. It contains 1,569,898 requests and 
72,198 IPs aggregated as 51,132 sessions involving 
4,737 pages. For this log, if a user is idle for more 
than 30 minutes, we assume that the next request 
from the user starts a new session. The longest 
matching rule is used in all of tested models. 

We tested the CCBP, PPBP, LRS and 5-Order 
PPM. For all algorithms we used a global model for 
prediction and proposed 10 pages as a prediction set. 
If the next request of the user is member of this set, 
our prediction is considered as a correct prediction. 
For pruning the trees we set the Tc to 15 and Tp to 
0.00005.  We used two performance metrics, hit-rate 
and precision to evaluate our methods. They are 
defined as follows. 

Precision. The ratio of correct prediction divided 
by the number of requests that the model has 
prediction for them.  

Hit Rate. The ratio of correct predictions 
divided by total number of requests. 

All Experiments are performed on a Pentium 4, 
Core 2 Duo 2.33 GHz with a 1G main memory 
running Microsoft Windows XP 2002. 

Figure 6 shows that CCBP and PPBP consume 
much less memory than PPM and LRS models. This 
Figure shows the prediction tree nodes count versus 
the number of page requests that are processed. The 
prediction tree nodes count can be controlled with Tp 
and Tc.  

 

Figure 6: Prediction tree nodes count vs page request 
count 

PPM-5 is more time consuming than other 
models, because PPM-5 model is larger than others. 



 

Figure 7 shows the time spent for processing 100000 
page requests. The time that spent for processing 
user request is dependent on model size. CCBP 
spends less time to process page requests because of 
its tiny model and simple nature. As you can see, 
using pruning methods led to a faster user modelling 
system. 

 
Figure 7: Time spent to create prediction tree after 
processing 100000 page requests. 

Figure 8 compares the precision of four models. 
The precision of the PPM model is slightly higher 
than precision of other models. But as you can see in 
Figure 8, there is no considerable difference between 
these models.  

 
Figure 8: Prediction precision vs page requests count. 

Figure 9 compares the hit rate of four models. 
The hit rate of PPM model is higher than the others. 
Because in PPM all sequences that their length are 
less than specified context length are maintained. 
But in other methods some user sequences are 
eliminated. The difference is not high and this is a 
trade off between the memory consumption and hit 
rate. If the memory and speed are critical, Pruning 
methods can be used. In such systems the decrease 

in required memory is more important than lower hit 
rate. 

 
Figure 9: Prediction hit rate vs page requests count. 

6  CONCLUSIONS AND FURTHER 
WORKS 

Modelling and predicting user surfing paths involves 
a tradeoffs between model complexity and 
predictive accuracy. In this paper we proposed two 
pruning techniques that attempt to reduce model 
complexity while retaining predictive accuracy. In 
CCBP, the child nodes of nodes that their child 
nodes count are more than specified threshold are 
pruned. In PPBP the overall path probability of a 
node calculated and the nodes that have low path 
probability are pruned. We have tested our methods 
and the experimental results and show that our 
methods consume much less memory than others. 
Our models need no training or pre-processing of the 
historical data. Our tree pruning methods are 
suitable for dynamic web sites and can be 
considered for future research for temporal 
modelling of user session. We like to discuss how 
the best values of Tc and Tp can be found according 
to desired precision and prediction tree nodes count.  
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