
XML PROCESSING. NO PARSING

Yevgeniy Guseynov
Optimal Solutions & Technologies, 2001 M Street, NW, Suite 3000, Washington, DC 20036, U.S.A.

Keywords: XML, Data Exchange, XML Parser, XML Processing Efficiency, DOM, SAX.

Abstract: The main properties considered lacking from XML for a potentially efficient interchange format are
Compactness and Processing Efficiency, and Parsing being the main deterrent to Processing Efficiency. The
proposed Contiguous Memory Tree (CMT) and its XML API completely resolve Parsing and Processing
Efficiency permitting an efficient interchange format for XML. CMT is based on the presentation of XML
documents as a tree that contiguously resides in memory and is simultaneously a stream that can be directly
copied as a message and an application object that can be directly accessed through the CMT XML API.
CMT XML API does not need to read and evaluate markup or decode information items that takes much
CPU time when processing, thus is significantly more efficient than any existing formatting schemes, SAX
and DOM parsers.

1 INTRODUCTION

Many modern technologies in distributed computing
and Web Services are powered by XML
(Cauddwell, et al., 2001). Extensible Markup
Language, abbreviated XML, was defined in the
XML 1.0 Specification (Bray, et al., 2006) published
by the Worldwide Web Consortium (W3C). XML
documents are made up of a sequence of characters
with the textual encoding UTF-8, UTF-16 or others
for storage and interchange data. Thus in memory an
XML document is usually formatted as a stream of
characters (bytes), some of which form character
data, and some of which form the markup. The
computer must interpret this stream as application
objects in order to access the content of the
document. In some applications like insurance,
banking, and financial businesses, the advantages of
XML usage are tempered by inefficiencies that stem
from the textual encoding (White, et al., 2007,
Matthiaas and Jasmi, 2003). The main properties
that are considered lacking in XML for a potential
efficient interchange format are Compactness and
Processing Efficiency (Schneider, et al., 2007).
These shortcomings have led to the development of
alternative encoding formats for example
(Schneider, et al., 2007, Conner, 2003, Sandoz, et
al., 2004). This paper concentrates on developing the
format for resolving the Processing Efficiency of
XML.

While the main rules for constructing XML
documents are relatively simple a document itself
may have a very complex hierarchical (tree)
structure. In order to read XML documents as a
stream of characters, almost all applications rely on
an XML parser that also provides an API to receive
or request information from the documents. There
are two major models for processing XML
documents: the Simple API for XML (SAX) parser
(Megginson, 2004) and the Document Object Model
(DOM) parser (Le Hégaret, et al., 2005). Parsing -
the step where components of an XML document
are transformed (read) from a stream of text data
into application objects - is the main part of the
Processing Efficiency property. For a SAX parser it
is the creation of events for callbacks; for DOM it is
the creation of a tree in memory that is compatible
with the XML document at the XML Information
Set level (Cowan, et al., 2004). Regardless of the
parser type, SAX or DOM, if an application needs to
maintain an XML document or its part in memory
for extended processing it uses a DOM tree structure
that is based on Composite Pattern (Gamma, et al.,
1994) where each component of an XML document
or node is created as a separate application object
and linked to its parent and sibling nodes. By design
the DOM tree structure is spread in memory so, in
order to store, the application must rewrite it back to
a stream of text data. Inevitability having these two
substantially different instances of an XML
document, a stream of text data for storage and

81
Guseynov Y.
XML PROCESSING. NO PARSING.
DOI: 10.5220/0001819500810084
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

exchange, and application objects in memory in
order to access information, a situation that occurs in
all existing applications, causes inefficiency in
processing XML documents.

The proposed Contiguous Memory Tree (CMT)
and its XML API (Guseynov, 2006) completely
resolve Parsing and Processing Efficiency by
creating an efficient interchange format for XML. It
is based on the presentation of XML documents as a
tree structure that contiguously resides in memory
and is simultaneously a stream that can be directly
copied as a message and an application object that
can be directly accessed through the CMT XML
API. CMT is the universal way to exchange XML
documents and any hierarchical information
regardless of operating systems and languages like
C++ with direct access to memory or Java, Visual
Basic, Perl, others with the ability to contiguously
allocate arrays in memory. CMT and its XML API
has all features of existing formats: the compatibility
with the XML document at the XML Information
Set level, serialization, parsing as DOM and SAX,
XML schema independence and self-description,
support a sequential or fragments processing
(Streamability), indexing of repeated strings,
preservation of the state for documents with the
same schema and vocabulary, platform and language
neutrality, reduced document size, and fast
processing speed. In addition, CMT and its XML
API have significant advantage. CMT XML API
does not need to read and evaluate markup or decode
information items that takes much CPU time when
processing, thus is significantly more efficient than
any known parser by the elapsed time that a parser
needs to parse an input stream before actual
processing.

2 CONTIGUOUS MEMORY TREE

We may define CMT based on pointers for
languages like C++ with direct access and explicit
allocation of memory and like Java based on the
ability to contiguously allocate arrays in memory.
The approach based on arrays is universal because
almost all programming languages have the ability
to contiguously allocate memory arrays of the basic
types, integer and character.

To build CMT for an XML document or any
hierarchical information we need three arrays: the
array of integers, Hierarchy[], to hold the
hierarchical (tree) structure of the document; the
array of characters, SchemaComponents[], to hold
tag names, attribute names, and other components

for all documents with the same XML schema; the
array of characters, DocumentValues[], for each
document to hold elements and attributes values for
the whole document.

The Hierarchy[] array is built with blocks of six
integers:

SchemaNode
{ int parent;
 int firstChild;

int nextSibling;
 int tagName;
 int offset;
 int numOfAttributes;
}
The first four integers allow CMT to be built

from any hierarchical information. For each element
E1 from the hierarchy of an XML document, the
parent, firstChild, and nextSibling members of
SchemaNode are positions in the Hierarchy[] array
that are start positions, respectively for parent, first
child, and next sibling elements for E1. The member
tagName is the start position in the
SchemaComponents[] array for the element name.
The last two integers in the struct SchemaNode
pertains to XML documents. The member offset is
the start position in DocumentValues[] for the
content or value that is the text between two tags in
an XML element. numOfAttributes represents the
number of attributes in an XML element.

Each CMT element in memory consists of a
SchemaNode followed by numOfAttributes pair of
integers: the first element of a pair is the start
position of the attribute name in the
SchemaComponents[] array and the second is the
start position of the attribute value in the
DocumentValues[] array. Next three tables present
an example of CMT for an XML document

<Product bottles="12" size="9oz" >
 <ItemName>Chartreuse verte</ItemName>
 <ItemPrice>$18.00</ItemPrice>
</ Product >

To define CMT we need to build each element in the
XML document one by one into Hierarchy[],
SchemaComponents[], and DocumentValues[]
arrays. They will remain unchanged if we copy them
to any location and we may also directly store these
arrays contiguously on the disk or any other medium
as a stream of bytes to exchange the XML document
with other applications. After copying these three
arrays back into memory an application can access
without parsing all the information that the XML
document has, starting from any position in the
Hierarchy[] array.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

82

Table 1: Memory layout for CMT array Hierarchy[23].

0 NULL 1 Parent 2 firstChild 3 NextSibling 4 tagName 5 offset 6 numOfAttrib
utes

0 0 11 0 1 0 2

7 Attribute
Name

8 Attribute
Value

9 Attribute
Name

10 Attribute
Value

11 Parent 12 firstChild 13 nextSib
ling

9 1 17 4 1 0 17

14 tagNa
me

15 Offset 16 numOfAttributes 17 Parent 18 firstChild 19 nextSibling

22 8 0 1 0 0
20 TagName 21 offset 22 numOfAttributes

31 25 0

Table 2: Memory layout for CMT array SchemaComponents[41].

 1 9 17
\0 P r o d u c t \0 b o t T l e s \0 s i z e

 22 31

\0 I t e m N a m e \0 I t e m P r i c e \0

Table 3: Memory layout for CMT array DocumentValues[32]].

 1 4 8

\0 1 2 \0 9 o z \0 C h a r T r e u s e V

 25

e \0 $ 1 8 . 0 0 \0

There are two more important features of CMT:
direct access to the XML schema hierarchical
information without navigating the tree and the
ability to search for an item in CMT based on its
starting position (integer) in the array. After CMT or
Hierarchy[], SchemaComponents[], and
DocumentValues[] arrays are built they remain
unchanged and we may write out starting positions
for their elements as constants and make them
available for applications for direct access or fast
search. Applications may use these constants even
when CMT is stored or exchanged for direct access
to all information in an XML document without
navigating its CMT structure.

Defined by three arrays, CMT is compatible with
XML at the XML Information Set level (Cowan, et
al., 2004) but not as readable for human eyes, as the
original XML format is, to satisfy the XML design
goal: “XML documents should be human-legible
and reasonably clear” (Bray, et al., 2006).
Meanwhile, the integer and character arrays that
define the CMT are human readable and self
descriptive. In addition, when reading a CMT,

humans do not need to read and evaluate markup or
decode information items that all known formatting
schemes have.

3 PERFORMANCE

CMT eliminates the parsing step in XML processing
and it is evident that the usage of the CMT XML
API is more efficient than any existing XML parser:
both of them need to read documents from the file
(stream); after reading, the CMT object is ready for
use but the XML document in the textual encoding
still needs to be parsed before it will be available for
access by an application. The bigger the XML
documents are the more efficient the CMT XML
API is against any Parser. Direct access to all
information in CMT also greatly increases
Processing Efficiency.
To evaluate CMT performance we use a simple
XML Document Customer-Sales.xml similar to
(Conner, 2003) to build different XML documents

XML PROCESSING. NO PARSING

83

with sizes between 1 kilobyte and 1 megabyte.
Xerces C++ SAX and DOM Parsers version 2.8.0
(Xerces, 2007) were chosen for the base
measurement. For comparison the CMT Document
Customer-Sales.cmt was built from Customer-
Sales.xml and processed by the CMT Parser. All
timing runs are for 300, 600, 1200 iterations after a
warm up of 500 iterations on a Pentium(R) 4 CPU
2.66GHz, 512 MB of RAM.

The SAX Parser test is based on the MemParse
project from the Xerces-C++ package. It reports all
SAX events and outputs the number of elements and
attributes from Customer-Sales.xml. The same
functionality SAX CMT Parser processes the
Customer-Sales.cmt document that is compatible
with the initial XML document at the XML
Information Set level. The DOM Parser test is based
on the DOMCount project from the Xerces-C++
package that builds DOM for Customer-Sales.xml.
The DOM CMT Parser processes the Customer-
Sales.cmt document. The table below presents the
results for 3 kilobytes XML documents. For other
sizes the comparison is similar.

Table 4: Simple Performance Test.

Iterations
SAX
CMT
(ms)

SAX
Xerces
(ms)

DOM
CMT
(ms)

DOM
Xerces
(ms)

1200 40 2070 40 5340
600 20 1030 20 2740
300 10 510 10 1400

These results show a significant advantage when

using the CMT XML API against the Xerces SAX
and DOM Parsers. They also demonstrate that CMT
SAX and CMT DOM parsers are equivalently fast
which is expectable based on the definition of CMT.
Similar comparison in Efficient XML (Schneider, et
al., 2007, White, et al., 2007), Fast Infoset (Sandoz,
et al., 2004), and CBXML (Conner, 2003) against
Xerces parser show 2 to 3 times improvement.

The Demo and Sample Project CMT XML API
are available from the author upon request via email.
The Sample Project shows how to use the CMT
XML API to manipulate XML documents: build
CMT objects, store and retrieve CMT from a file,
navigate CMT as a tree, update CMT - set values for
attributes and elements, and delete and add nodes.
You may try it on your own XML data and a
favoured parser to compare with the provided
experiments.

REFERENCES

Bray, T. et al. Extensible Markup Language (XML) 1.0
(Fourth Edition). http://www.w3.org/TR/xml/,
September 2006.

Cauddwell, P. et al. Professional XML Web Services.
Wrox Press Ltd., 2001.

Conner, M. CBXML: Experience with Binary XML, IBM
Corporation, http://www.w3.org/2003/08/binary-
interchange-workshop/19-IBM-CBXML-W3C-
Submission-updated.zip, 2003

Cowan, J. et al. XML Information Set (Second Edition),
W3C Recommendation, http://www.w3.org/TR/xml-
infoset/, February 2004.

Gamma, E. et al. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional, 1994

Guseynov, Y. U.S. Patent Application (pending) No.
11/603,299 for Contiguous Memory Tree, Filing Date:
November 21, 2006.

Le Hégaret, P. et al. Document Object Model (DOM),
http://www.w3.org/DOM/, January 2005.

Matthiaas, N., Jasmi, J. XML Parsing: A Threat to
Database Performance. CIKM’03 November 3 – 8,
2003, New Orleans, Louisiana, USA. http://
lists.w3.org/Archives/Public/www-ws/2004Oct/att-
0032/MNicola_CIKM_2003_1_.pdf.

Megginson, D. Simple API for XML (SAX),
http://www.saxproject.org/, April 2004.

Sandoz, P. et al. Fast Infoset,
http://java.sun.com/developer/technicalArticles/xml/fa
stinfoset/, 2004.

Schneider, J. et al. Efficient XML Interchange (EXI)
Format 1.0, W3C Working Draft, http://www.w3.org/
TR/exi/, July 2007.

White, G. et al. Efficient XML Interchange Measurements
Note, W3C Working Draft, http://www.w3.org/
TR/exi-measurements, July 2007.

Xerces-C++ Parser. http://xerces.apache.org/xerces-c/,
2007.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

84

