
MODELING SERVICE SYSTEMS
IN SERVICE-ORIENTED ENVIRONMENTS

Dionisis X. Adamopoulos
Department of Technology Education & Digital Systems, University of Piraeus, Greece

Keywords: Service design, New telecommunications services, Service engineering, Service creation, UML.

Abstract: The advent of deregulation combined with new opportunities opened by advances in telecommunications
technologies has significantly changed the paradigm of telecommunications services, leading to a dramatic
increase in the number and type of services that telecommunication companies can offer. Building new
advanced multimedia telecommunications services in a distributed and heterogeneous environment is very
difficult, unless there is a methodology to support the entire service development process in a structured and
systematic manner, and assist and constrain service designers and developers by setting out goals and
providing specific means to achieve these goals. Therefore, in this paper, after a brief presentation of a
proposed service creation methodology, its service design phase is examined in detail focusing on the
essential activities and artifacts. In this process, the exploitation of important service engineering techniques
and UML modelling principles is especially considered. Finally, alternative and complementary approaches
for service design are highlighted and a validation attempt is briefly outlined.

1 INTRODUCTION

There is a need to support the complex service
creation process in order to ensure that resulting
services actually perform as planned and as required
by customers and service providers. In this paper, in
order to structure and control the service
development process from requirements capture and
analysis to service implementation, to reduce the
inherent complexity, and to ensure the thorough
compatibility among the many involved tasks, a
service creation methodology, conformant to the
open service architectural framework specified by
the Telecommunications Information Networking
Architecture Consortium (TINA-C) (Berndt,
2003)(TINA-C, 2003), is proposed.

2 THE PROPOSED SERVICE
CREATION METHODOLOGY

Telecommunications operators need to master the
complexity of service software, because of the
highly diversified market demands, and
consequently, because of the necessity to quickly
and economically develop and introduce a broad

range of new services. To achieve such an
ambitious, yet strategic to the telecommunications
operator’s goal, a service creation methodology
based on the rich conceptual model of TINA-C is
proposed (Adamopoulos, 2003).

The proposed service development process is
based on an iterative and incremental, use case
driven approach. An iterative service creation life
cycle is adopted, which is based on successive
enlargement and refinement of a telematic service
through multiple service development cycles within
each one the telematic service grows as it is enriched
with new functions. More specifically, after the
requirements capture and analysis phase, service
development proceeds in a service formation phase,
through a series of service development cycles. Each
cycle tackles a relatively small set of service
requirements, proceeding through service analysis,
service design, service implementation and
validation, and service testing. The telematic service
grows incrementally as each cycle is completed.

In the following paragraphs the service design
phase of the proposed methodology is examined
focusing on its essential characteristics and artifacts.

85
X. Adamopoulos D.
MODELING SERVICE SYSTEMS IN SERVICE-ORIENTED ENVIRONMENTS.
DOI: 10.5220/0001821600850088
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

3 THE SERVICE DESIGN PHASE

During this phase the service developer defines the
behaviour of the service concepts (service
Information Objects, IOs) that were identified in the
service analysis phase and structures the telematic
service in terms of interacting service computational
objects (service components or service objects),
which are distributable, multiple interface service
objects. They are the units of encapsulation and
programming. While service IOs mainly explain
how a service is defined, service Computational
Objects (COs) reveal what actions have to be
performed in order to execute the service. Therefore,
the output of this phase is (mainly) the dynamic
view of the internal structure of the telematic
service.

Initially important characteristics of the user
interface of the service are defined by examining the
related prototype (produced during service analysis)
and taking into account the feedback from the users
of the service. The adherence to specific GUI
standards and user interface design principles is also
decided in this activity. The application of the
Model-View separation principle, according to
which the service logic should not be bound to a
particular user interface, is proposed (Constantine,
2005)(Larman, 2006).

After identifying the service COs, by taking into
account the service conceptual model(s) and the
TINA-C service architecture, a (separate) service
interaction diagram is created for each service
operation under development in the current service
development cycle. Service interaction diagrams
illustrate how service objects communicate in order
to fulfil the service requirements. More specifically,
initially the expanded use cases suggested the
service events which were explicitly shown in
service sequence diagrams, then an initial best guess
at the effect of these service events was described in
service operation contracts, and finally the identified
service events represent messages that initiate
service interaction diagrams, which illustrate how
service objects interact via messages to fulfil the
required tasks.

Therefore, service interaction diagrams reveal
choices in assigning responsibilities to service
objects. The responsibility assignment decisions are
reflected in the messages that are sent to different
service objects. Responsibilities are related to the
obligations that a service object has in terms of its
behaviour. In the service implementation phase,
methods will be implemented to fulfil responsibili-
ties or alternatively responsibilities will be

implemented using methods, which either act alone
or collaborate with the methods of other service
objects.

UML defines two kinds of interaction diagrams,
either of which can be used to express similar or
even identical message interactions; namely collabo-
ration diagrams, which illustrate object interactions
in a graph or network format, and sequence
diagrams, which illustrate interactions in a kind of
fence format (Evits, 2006). The use of collaboration
diagrams for the expression of service interaction
diagrams is preferred over the use of sequence
diagrams, because collaboration diagrams are
characterised by expressiveness, an ability to convey
more contextual information (such as the kind of
visibility between service objects), and a relative
spatial economy.

Nevertheless, either notation can express similar
constructs. What is really important is that service
interaction diagrams is one of the most significant
artifacts created during both service analysis and
service design, because the skilful assignment of
responsibilities to service objects and the design of
collaborations between them are two of the most
critical (for the satisfaction of the service require-
ments and thus for the successful realisation of a
service) and unavoidable tasks (which also require
the application of design skill) that have to be
performed during service creation (Larman, 2006).

This activity of the service design phase consists
mainly from the following steps:
Step 1: Identify the service COs.

During this step, the service IOs depicted in the
service conceptual models (main and ancillary) that
were created in the service analysis phase are
considered as potential candidates for service COs.
In many cases, service IOs are mapped to one
corresponding service CO encapsulating the
information defined by the service IO and providing
an operational interface to access that information.
However, the mapping between service IOs and
service COs is not necessarily one to one.
Furthermore, the existence of a relationship between
service IOs, either provides a good rationale for
encapsulating them together in the same service CO
or indicates the need for a binding between
interfaces of their corresponding service COs
(Declan, 2000)(Demestichas, 2004). This mapping
process is significantly simplified by adopting the
use of the generic (access session, service session,
and communication session related) service COs,
proposed by the TINA-C service architecture
(TINA-C, 2003), in terms of their identified

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

86

functionality and not in terms of specific interfaces /
feature sets.
Step 2: Consider the generic TINA-C service scenar-

ios and select the most appropriate.
After identifying the service COs and before

proceeding to the construction of the service
interaction diagrams, the computational views of a
number of generic TINA-C service scenarios,
deduced by the computational modelling guidelines
of TINA-C (TINA-C, 2003), should be considered.
These are useful for improving structure and general
comprehension throughout the service design phase,
and for offering to the service developer(s) a generic
pattern of thought, compatible with fundamental
TINA-C concepts, that he / she could use / consider
when designing the service interaction diagrams.
Step 3: Form the service interaction diagrams.

A telematic service is composed of a set of
service COs interacting with each other via
messages with the objective to complete the required
service operations. The service operation contracts
present an initial best guess at responsibilities and
post conditions for the service operations. Service
interaction diagrams illustrate the proposed design
solution (in terms of service COs) that satisfies
theses responsibilities and post conditions, and
therefore the corresponding service operations.

A service interaction diagram in the form of a
UML collaboration diagram is created for each one
of the service operations that were identified in the
service analysis phase. The objective is to fulfil the
responsibilities and the post-conditions of the corre-
sponding service operation contracts, recognising
however that their accuracy should be questioned.

As was explained in step 1 of this activity the
service COs that participate in the service interaction
diagrams are drawn from the service conceptual
model(s). Therefore, the links between them are ac-
tually instances of the associations present in the ser-
vice conceptual model(s), represent connection paths
between service object instances, and indicate that
some form of navigation between the instances is
possible. More specifically, in order for a service
object to send a message to another service object it
must have visibility to it. Thus, it is important to en-
sure that the necessary (attribute, parameter, locally
declared or global) visibility is present in order to
support the required message interaction (Jacobson,
2006)(Larman, 2006).

Finally, all telematic services have a “Start Up”
use case and some initial service operation related to
the starting up of the telematic service. Therefore,
there should also be a “Start Up” service interaction
diagram, which is proposed to be created last.

Although the “Start Up” service operation is the
earliest one to execute, the development of its
service interaction diagram should be delayed until
after all other service operations have been
considered. This ensures that significant information
has been discovered concerning what initialisation
activities are required to support the “Start-Up”
service operation interaction diagram. The way that
a telematic service starts and initialises is affected by
related concepts / guidelines in the TINA-C service
architecture (e.g. it is assumed that the IA must be
present at the provider domain), and is dependent
upon the DPE, the programming language, and the
operating system that is being used.

Another important artifact created during service
design is the service design class diagram, which
illustrates the specifications for the software classes
of a telematic service using a strict and very infor-
mative notation. More specifically, from the service
interaction diagrams the service designer identifies
the software classes (service classes) that participate
in the software realisation of the telematic service
under examination, together with their methods, and
from the service conceptual model(s) the service
designer adds detail to the service class definitions.

A service design class diagram typically includes
/ illustrates service classes, their attributes and
methods, attribute type information, navigability,
and associations and dependencies between service
classes. In practice, service design class diagrams
and service interaction diagrams are usually created
in parallel. Furthermore, in contrast with a service
conceptual model, a service design class diagram
shows definitions of software entities (service
components), rather than real-world concepts.

In the service design phase, Specification and
Description Language (SDL) can be used to describe
the behaviour of a telematic service exploiting the
finite state machine concept. Then, the SDL specifi-
cation will serve also as a basis for validation, simu-
lation and test case generation (Combes, 2005). In
general, for making formal models of telematic
services and being able to reason about these
models, SDL is undoubtedly the notation of choice,
as the tool support for SDL is perhaps the most
advanced of all the formal notations existing today.
However, adopting an SDL-based approach cannot
guarantee that the developed services will be error
free and the value of SDL for service creation
purposes is questioned, as it may introduce
unnecessary complexity in the service design phase.
Furthermore, the application of SDL can be difficult
(or even problematic) in the case of relatively
complex telematic services with many service

MODELING SERVICE SYSTEMS IN SERVICE-ORIENTED ENVIRONMENTS

87

objects interacting in non-trivial ways, due to the
problem of state space explosion.

In the service design phase, service COs have a
dominant role. Their interfaces are the result of the
examination of the service IOs and the correspond-
ing information models that they participate in,
which reveal the way that service IOs are related to
each other. This aggregation of interfaces into a ser-
vice CO ensures the semantic understanding that op-
erations at one interface may affect the behaviour of
other interfaces because they may be linked by a
common, underlying information model captured by
the service CO. Therefore, such information models
influence considerably the parameters and the se-
mantics of the operations found on the interfaces of
the service COs.

In order to aid the service development process
TINA-C, proposes and prescribes a set of generic
interfaces for the generic TINA-C service COs.
These interfaces correspond to the interactions that
take place between business administrative domains,
support a particular session role, and are defined by
the appropriate reference point specifications.
TINA-C assembles the proposed interfaces into
feature sets (TINA-C, 2003).

4 CONCLUDING REMARKS

Real use cases are members of the service design use
case model, and service interaction diagrams are
members of the service object behaviour model,
because they describe the behaviour of service COs,
and service design class diagrams compose the
service class model. Furthermore, for reasons of
completeness, the service design model includes
service state diagrams for service COs / classes as
members of the service design state model. Such
diagrams may be useful to summarise the results of a
service design (at the end of the service design
phase) or when the service code is to be produced
with a code generator that will be driven by the state
diagrams.

Finally, it has to be stressed that the proposed
service creation methodology (and thus its service
design phase) was validated and its true practical
value and applicability was ensured as it was applied
to the design and development of a real complex
representative telematic service (a MultiMedia
Conferencing Service for Education and Training,
MMCS-ET). More specifically, a variety of
scenarios were considered involving the support of
session management requirements (session estab-
lishment, modification, suspension, resumption, and

shutdown), interaction requirements (audio / video,
text, and file communication), and collaboration
support requirements (chat facility, file exchange
facility, and voting). Considering all the artifacts
produced in the service design phase, the MMCS-ET
was implemented using Microsoft’s Visual C++ to-
gether with Microsoft’s Distributed Component
Object Model (DCOM) (Adamopoulos, 2002)
(appropriately extended with a high-level API in
order to support continuous media interactions) as a
distributed object-oriented environment.

REFERENCES

Adamopoulos, D.X., Pavlou, G., Papandreou, C.A., 2003.
Advanced Service Creation Using Distributed Object
Technology. In IEEE Communications Magazine, Vol.
40, No. 3, pp. 146-154.

Adamopoulos, D.X., Pavlou, G., Papandreou, C.A., 2002.
Continuous Media Support in the Distributed
Component Object Model. In Computer Communica-
tions, Vol. 25, No. 2, 2002, pp. 169-182.

Berndt, H., Hamada, T., Graubmann, P., 2003. TINA: Its
Achievements and its Future Directions. In IEEE
Communications Surveys & Tutorials, Vol. 3, No. 1.

Combes, P., Renard, B., 2005. Service Validation. In
Computer Networks, Vol. 31, No. 17, pp. 1817-34.

Constantine, L.L., Lockwood, L.A.D., 2005. Software for
Use: A Practical Guide to the Models and Methods of
Usage-Centered Design, Addison-Wesley.

Declan, M., 2000. Adopting Object Oriented Analysis for
Telecommunications Systems Development. In Pro-
ceedings of IS&N ’00, LNCS, Vol. 1238, Springer-
Verlag, pp. 117-125.

Demestichas, P.P., et al, 2004. Issues in Service Creation
for Open Distributed Processing Environments. In
Proceedings of ICC ’04, Vol. 1, pp. 273-279.

Evits, P., 2006. A UML Pattern Language. Macmillan
Technology Series.

Jacobson, I., Booch, J., Rumbaugh, J., 2005. Unified Soft-
ware Development Process. Addison-Wesley.

Larman, C., 2006. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design
and the Unified Process. Prentice Hall.

TINA-C, 2003. Service Architecture. Version 5.0.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

88

