
A STUDY OF NATIVE XML DATABASES
Document Update, Querying, Access Control and Application

Programming Interfaces in Native XML Databases

M. Mercedes Martı́nez-González, Miguel A. Martı́nez-Prieto and Marı́a Muñoz-Nieto
Department of Computer Science, University of Valladolid, Campus ’Miguel Delibes’ s/n, Valladolid, Spain

Keywords: Native XML databases, NXD, Standard APIs, Access control, Document update, Query language.

Abstract: Native XML databases (NXD) are called to play a crucial role in the near future. The experience with rela-
tional databases shows that standard methods for accessing and manipulating databases are necessary if wide
acceptance of these database systems is to be expected in information systems whose applications should ac-
cess databases preferably through standard APIs. In this paper, the current state of APIs that provide standard
access to NXD, standard query languages and standard methods for document update and access control are
analyzed from the perspective acquired with our experience using NXD in information systems. Our conclu-
sions show the weak points which still need to be improved as compared with relational databases.

1 INTRODUCTION

Native XML databases (NXD) promise to play a key
role in the near future as management systems for
XML data (Garofalakis et al., 2004). There are sev-
eral facts that favour these good expectations. XML is
the preferred ’format’ for storing non-structured data
(Bourret, 2007; Bonifati and Cuzzocrea, 2007).

XML and its query language, XQuery (Boag et al.,
2007), is a more flexible and less structured way of
representing and querying a collection of data than
relational databases are. XQuery is a World Wide
Web Consortium (W3C) Recommendation since Jan-
uary 2007, which makes it stable, and it is now imple-
mented (with different levels of conformance) in all
database management systems that handle XML. Be-
sides their inherent suitability for XML and XQuery
features, NXD have the important advantage, over
other database systems, that they free users from hav-
ing to know document schema in advance (prior to
designing the database).

However, these systems have still not won the
’XML market’ as was predicted, and they still com-
pete with XML-Enabled Databases for this market
(Pardede et al., 2008).

An analysis of some of the possible reasons for
this situation, resulting from our experience with
NXD, is offered in this paper. It does not intend to
be an exhautive analysis of NXD, for which a confer-

ence paper could not be enough, but to provide an up-
dated position of the considered issues. Some issues,
whose current situation is studied, are selected: docu-
ment update, querying, access control, and the avail-
ability of Application Programming Interfaces (APIs)
in NXD. Other important issues in databases, such
as security or concurrency, are beyond the scope of
this paper. Our reflection is guided by the compar-
ison with relational databases, as they are nowadays
the referent for database users.

The paper is structured as follows. Section 2
presents the problem we faced, the database issues
treated in this paper, and the databases used in the
experiments. Section 3 briefly introduces NXD and
our findings. Finally, the conclusions are presented in
section 4.

2 MOTIVATION

We work with legislative information systems, in
which legal documents and additional metadata are
represented with XML documents. A large amount
of our data are normative texts and legal documents,
whose nature implies that the resulting XML repre-
sentations are document-centric XML documents1.

1Following (Chaudhri et al., 2003) ’a document-centric XML
document is one that captures unstructured data as in articles,

89
MartÃ nez-GonzÃąlez M., MartÃ nez-Prieto M. and MuÃśoz-Nieto M.
A STUDY OF NATIVE XML DATABASES - Document Update, Querying, Access Control and Application Programming Interfaces in Native XML Databases.
DOI: 10.5220/0001822300890092
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



As NXD are well-suited for this type of XML doc-
ument, and they are considered the best option as op-
posed to (relational) XML-enabled databases (Bour-
ret, 2007; Bonifati and Cuzzocrea, 2007; Kolar and
Loupal, 2006; Jagadish et al., 2002), we used an NXD
to store our XML document collections. Several ap-
plications should work on it.

Some of our applications are learning tools, used
by Law teachers and students in practical works. As
in any other learning tool, a distinction of user roles
needs to be managed (at least the roles of ’teacher’,
’student’ and ’administrator’). Besides, our teachers
should be able to organize documents in repertoires
(collections) according to their own criteria. Finally,
the collections are queried and updated with the in-
troduction or deletion of documents, but also with the
modification of some documents as ,for instance, the
comments that teachers provide to their students.

Moreover, we wanted the freedom to test differ-
ent NXD systems without being obliged to modify
our applications if the NXD system they accessed
changed, or if a different NXD system was used.

Thus we expected to be able to:

• Query the database using a standard query lan-
guage for XML. We searched a standard which
played a role similar to SQL, which is the stan-
dard query language for RDBMS.

• Gain standard access to NXD database systems.
We expected to be able to use an API which
played a role similar to the one ODBC or JDBC
play with relational databases.

• Create ’repertoires’ of documents, which we
would populate with XML documents. The reper-
toires are equivalent to the ’collection’ concept
used by NXD.

• Update the database, that is, to insert new XML
documents into the repertoires, to delete docu-
ments, or to modify them.

• Support multiple users and user roles. Some of
these users should be able to create their own
repertoires, and to select whether they want to
share their collections with other users or not.

These requirements are similar to the require-
ments we would have if working with relational
databases. In relational databases, the creation, pop-
ulation and updates of the database are supported
through standard query commands (create table, up-
date, insert, delete). Inserting documents in collec-
tions is equivalent to inserting tuples in relations. The

books, or e-mails. This is opposed to data-centric documents,
which capture structured data as that pertaining to a product cat-
alog, an order, or an invoice.’

problem of sharing documents and/or collections with
other users is equivalent to the problem of transfer-
ring permissions on data objects to other users in re-
lational databases (access control). In this last type of
database, permissions can be transferred and revoked
with SQL commands,grantandrevoke.

We have used two NXD systems,eXist (Meier,
2002; Meier, 2003) andSedna(Fomichev et al., 2006)
databases. Other possibilities among the most popu-
lar systems at the moment were Timber and XIndice
(Apache XIndice). We chose eXists as it is a very
popular system, is freeware, and it has better support
for XPath 1.0 than XIndice (Kolar and Loupal, 2006).
This last factor supposes a bigger variety of queries
supported, which is an issue on which we wanted to
have good support. On the other hand, Sedna released
a new version 3.0 very recently, in April 20082, which
is supposed to provide better support of client authen-
tication and database users and privileges. Testing
this new version that enhanced access control seemed
to us an interesting possibility.

3 STANDARDS FOR NATIVE
XML DATABASES

Native XML Databases are systems developed purely
for storing XML documents. Their data models
are flexible, so that documents do not need to be
transformed to equivalent tables and columns, which
means that they support the complexity of XQuery
more efficiently than relational databases can. For
document-centric XML documents, these systems
are preferable to XML-enabled relational databases
(Chaudhri et al., 2003; Bourret, 2007; Bonifati and
Cuzzocrea, 2007; Kolar and Loupal, 2006; Jagadish
et al., 2002).

Standard connectivity with NXD is achieved with
a standard API, XML:DB API, promoted by the XML
DB Initiative 3. This API plays a role similar to JDBC
or ODBC in relational databases. It has methods for
connecting to the database, exploring metadata, exe-
cuting queries, and retrieving results (Chaudhri et al.,
2003). It uses XQuery as its query language and
has been implemented by a number of native XML
databases. This API is built around four core con-
cepts: drivers, collections, resources, and services.
Drivers encapsulate the database access logic. Are-
sourcecan be either an XML resource or a binary
large object. Finally,servicesmay be requested to

2http://www.cs.wisc.edu/dbworld/messages/2008-
04/1207738519.html

3http://xmldb-org.sourceforge.net/xapi/

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

90



perform tasks like querying acollectionwith XPath
or managing collections. The API considers that doc-
uments are stored incollections. This allows col-
lections to be managed (Get Collection), documents
to be inserted (methodssetContentAsDOMfor DOM
documents, and use of a document handler for SAX
documents), and a resource to be deleted (removeRe-
sourcemethod).

XQuery (Boag et al., 2007) is a standard query
language for XML documents, which has been a
stable W3C recommendation since January 2007.
XQuery plays an equivalent role to that played by
SQL in relational databases for querying, providing
the flexibility and power that the XML data model re-
quires. It uses the structure of XML data in its queries.
XQuery embeds XPath (Clark and DeRose, 1999) and
includes ’SQL-like’ capabilities by means of FLOWR
expressions (FOR, LET, WHERE, ORDER BY, RE-
TURN clauses). However, it does not include pos-
sibilities to update the database or to manage access
control.

XML update is an interesting topic in the XML
community. The XML DB Initiative investigated
the XML update and released a proposal in 2000
(XUpdate Working Group, 2000). The W3C re-
leased the requirements and use cases for XML up-
date as Candidate Recommendations in March 2008
(Robie and Chamberlin, 2008; Robie and Manolescu,
2008). From these, it obtained the updates facilities
for XQuery, whose last version was released in Au-
gust 2008 (Chamberlin et al., 2008). Nevertheless,
updates are not yet treated in a standard way.

Following (Pardede et al., 2008), there are four
main strategies for updates in NXD. There are NXD
products that use their own proprietary language.
Other products use a special language called XUp-
date. A third strategy is to retrieve the XML docu-
ment, update it by using an XML API, and to return
the document to the database after updating. This
is the strategy followed by the XML:DB API, as it
follows from its ’Updating a Text XML Document’
use case4, shown in figure 1. The fourth option is to
embed the update processes into XML language, as
XQuery, within which would fall the XQuery Update
Facility (Chamberlin et al., 2008). In fact, theXQuery
Update Facility 1.0is an extension to XQuery.

TheXQuery Update Facility 1.0is intended to be
used to make persistent changes to instances of the
XQuery 1.0 and XPath 2.0 Data Model. The opera-
tions it supports are: ’insertion of a node, deletion of
a node, modification of a node by changing some of
its properties while preserving its node identity, cre-

4http://xmldb-org.sourceforge.net/xapi/UseCases.html
#N64ab4d

ation of a modified copy of a node with a new node
identity’ (Chamberlin et al., 2008).

String id = "gladiator-2000";
XMLResource resource =

(XMLResource) collection.getResource(id);
String doc = (String) resource.getContent();
// Change document ...
resource.setContent(doc);
collection.storeResource(resource);

Figure 1: Updating an existing Text XML Document stored
in the database. Use case from XML:DB API.

Access control has also been the target of some
investigation. In (Gabillon, 2004) an authorization
model inspired in relational databases is proposed. It
supportsreadandwrite privileges and is intended to
be used with NXD that support the XML DBXUpdate
language. However, this model has not been adopted
by some popular NXD, such as eXist, which provide
access control through proprietary extensions to the
XML:DB API. In fact, the NXD used in our experi-
ments, eXists and Sedna, provided their own propri-
etary methods for access control. That is, a change of
the database system that stores the XML documents,
would suppose changing the programming code part
of any application that manages access control.

4 CONCLUSIONS

The current situation is that there is a standard query
language, XQuery, and a standard API, the XML:DB
API, but no standards for updates and access control.
This situation generates a dependence of software ap-
plications on the NXD used, which is clearly a serious
drawback. It seems quite reasonable that almost any
application needs to update the uderlying database,
and access control is a common need as well. For
example, if we had used some of the Sedna or eXist
database extensions, we would have been forced to
renounce to database system’s independence, one of
our requirements. Our solution was to build amiddle-
ware, which copes with the update management inter-
operability and interacts with each database to offer a
unified set of methods for access control to our ap-
plications. Of course, this supposes a hard overload
on the middleware as compared with an equivalent
situation with relational databases. This is a draw-
back of NXD as compared with relational databases.
We expect that the stabilization of XUpdate as a W3C
Recommendation will suppose its spread and general
acceptance by NXD systems. This would eliminate
the dependence on proprietary solutions for updates.

Access control is an important issue in a database,

A STUDY OF NATIVE XML DATABASES - Document Update, Querying, Access Control  and Application
Programming Interfaces in Native XML Databases

91



for which standard methods are necessary. At the mo-
ment of writing this paper, it seems that a standard so-
lution is farther away than it is for updates. However,
we are confident that current work on this issue will
produce the standard solution needed.

We also found some aspects which could be im-
proved in the future. As with relational databases,
users can create their own tables with the names they
prefer without risking confusion between tables from
two different users (table names avoid ambiguity with
a schema name of the formuser.table), in native XML
databases, users should be able to create collections
whose names could coincide (which would become
something of the styleuser.collection). However, as
we worked with eXist, we discovered that such a thing
was not possible. The management of collections by
users still has to improve to acquire the flexibility it
has in relational databases.

The ability of NXD to store schema-less XML
documents and their privileged position for imple-
menting complex XQuery queries efficiently (Boni-
fati and Cuzzocrea, 2007) are important advantages.
Standard APIs and query languages are already avail-
able. These are positive aspects of NXD, in contrast
of access control and document updates, which are
the weak aspects of NXD concerning standardization.
The situation with updates promises to be standard-
ized soon with the stabilization of the W3C XQuery
proposal as a Recommendation. Implementation will
probably appear soon after it. As for access control,
more work needs to be done. As access control is a
basic facility of databases, the effort is necessary if
NXD are to play the role they should.

ACKNOWLEDGEMENTS

This work was partially supported by theConsejera
de Educacin de la JCyLresearch projects VA010B06,
VA012B08, and the project TIN2006-15071-C03-02
from MCyT, Spain (second author). The work of the
second author is supported by a fellowship granted by
the JCyL and the ESF.

REFERENCES

Boag, S., Chamberlin, D., Fernndez, M. F., Flo-
rescu, D., Robie, J., and Simon, J. (2007).
XQuery 1.0: An XML Query Language. Techni-
cal report, http://www.w3.org/TR/2007/REC-xquery-
20070123/.

Bonifati, A. and Cuzzocrea, A. (2007). Synopsis data struc-
tures for xml databases: Models, issues, and research

perspectives. InDEXA Workshops, DEXA 2007, pages
20–24.

Bourret, R. (2007). XML Database Products.
http://www.rpbourret.com/xml/XMLAndDatabase-
Products.htm. Last upated March 2007. Visited the
2008/10/20.

Chamberlin, D., Florescu, D., Melton, J., Robie, J.,
and Simon, J. (2008). XQuery Update Fa-
cility 1.0. W3C Candidate Recommendation,
http://www.w3.org/TR/xquery-update-10-20080801/.

Chaudhri, A. B., Rashid, A., and Zicari, R., editors (2003).
XML Data Management: Native XML and XML-
Enabled Database Systems. Addison-Wesley.

Clark, J. and DeRose, S. (1999). XML Path Language
(XPath) version 1.0. W3C Recommendation 16
November 1999, http://www.w3.org/TR/1999/xpath.

Fomichev, A., Grinev, M., and Kuznetsov, S. D. (2006).
Sedna: A Native XML DBMS. In32nd Conference
on Current Trends in Theory and Practice of Com-
puter Science, SOFSEM 2006, pages 272–281.

Gabillon, A. (2004). An authorization model for XML
databases. In1st ACM Workshop On Secure Web Ser-
vices, SWS 2004, pages 16–28.

Garofalakis, M. N., Manolescu, I., Mesiti, M., Mihaila,
G. A., Schenkel, R., Thuraisingham, B. M., and Vas-
salos, V. (2004). What’s next in xml and databases? In
Current Trends in Database Technology - EDBT 2004
Workshops, pages 318–324.

Jagadish, H. V., Al-Khalifa, S., Chapman, A., Lakshmanan,
L. V. S., Nierman, A., Paparizos, S., Patel, J. M., Sri-
vastava, D., Wiwatwattana, N., Wu, Y., and Yu, C.
(2002). TIMBER: A native XML database.VLDB J.,
11(4):274–291.

Kolar, P. and Loupal, P. (2006). Comparison of Native XML
Databases and Experimenting with INEX. InAnnual
International Workshop on DAtabases, TExts, Specifi-
cations and Objects, DATESO6.

Meier, W. (2002). eXist: An Open Source Native XML
Database. InWeb, Web-Services, and Database Sys-
tems, pages 169–183.

Meier, W. (2003). XML Data Management: Native XML
and XML-Enabled Database Systems, chapter eXist
native XML database, pages 43–68. Addison-Wesley.

Pardede, E., Rahayu, J. W., and Taniar, D. (2008). Xml
data update management in xml-enabled database.J.
Comput. Syst. Sci., 74(2):170–195.

Robie, J. and Chamberlin, D. (2008). XQuery Update
Facility 1.0 Requirements. W3C Candidate Recom-
mendation, http://www.w3.org/TR/xquery-update-
10-requirements-20080314/.

Robie, J. and Manolescu, I. (2008). XQuery Update Fa-
cility 1.0 Use Cases. W3C Candidate Recommen-
dation, http://www.w3.org/TR/xquery-update-10-use-
cases-20080314/.

XUpdate Working Group (2000). XUpdate - XML Update
Language. http://xmldb-org.sourceforge.net/xupdate/.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

92


