
GENERIC APPROACH TO
AUTOMATIC INDEX UPDATING IN OODBMS

Tomasz M. Kowalski, Kamil Kuliberda, Jacek Wiślicki and Radosław Adamus
Technical University of Lodz, Stefanowskiego 18/22, 90-924 Lodz, Poland

Keywords: Index maintenance, Automatic index updating, Indexing, Triggers, OODBMS, SBA, SBQL, ODRA.

Abstract: In this paper, we describe a robust approach to the problem of the automatic index updating, i.e. maintaining
cohesion between data and indices. Introducing object-oriented notions (classes, inheritance, polymorphism,
class methods, etc.) in databases allows defining more complex selection predicates; nevertheless, in order
to facilitate selection process through indices, index updating requires substantial revising. Inadequate index
maintenance can lead to serious errors in query processing what has been shown on the example of Oracle
11g ORDBMS. The authors work is based on the Stack-Based Architecture (SBA) and has been
implemented and tested in the ODRA (Object Database for Rapid Applications development) OODBMS
prototype.

1 INTRODUCTION

The general idea of indexing in object-oriented
databases does not differ from indexing in relational
databases (Elmasri, 2004). Indices are data-
structures improving the speed of retrieving database
objects according to a given criteria. Database
indices ought to ensure transparency, i.e. are used
automatically during query evaluation. In this paper
authors focus on the index maintenance.

Indices, like all redundant structures, can lose
cohesion if the data stored in the database are
mutated. Thus, to ensure validity of indices the
update of data has to be combined with rebuilding of
appropriate indices. The rebuild process should be
transparent to relieve a programmer of an
inconvenient and error prone task. Furthermore, the
additional time required for an index update in
response to a data modification should be
minimized. This is critical from the point of view of
the large databases efficiency. To achieve this,
database systems should efficiently find indices
which became outdated due to a performed data
modification. Next, the appropriate index entries
should be corrected so that all index invocations
would provide valid answers. However finding a
general and optimal solution for index updating is
not possible due to the complexity of DBMSs. Such
a task requires analysis of many different real life

situations occurring in the database environment in
order to minimize deterioration of performance.

ODRA OODBMS prototype is based on Stack
Based Architecture (SBA) (Adamus,
2008)(SBA&SBQL, 2008). Proposed
implementation of indexing in ODRA enables
creation, transparent optimisation and automatic
maintenance of indices facilitating processing of
selection predicates based on arbitrary deterministic
expressions.

The rest of the paper is organized as follows. The
next section comprises an overview of indexing
facilities and theirs limitations with emphasis on
capabilities resulting from an approach to the index
maintenance, section 3 presents SBA, section 4
describes the approach to index updating in ODRA,
section 5 presents a summary and concludes.

2 OVERVIEW OF INDEXING IN
RDBMS AND OODBMS

Almost 40 years of research on relational systems
resulted in development of various indexing aspects
(Elmasri, 2004): primary index, clustered index,
secondary access paths, multi-key index,
development of diverse index structures, etc.

In RDBMSs keys defining an index on a table
usually are simply values stored in columns. Such
index requires straightforward mechanisms

255M. Kowalski T., Kuliberda K., Wiślicki J. and Adamus R. (2009).
GENERIC APPROACH TO AUTOMATIC INDEX UPDATING IN OODBMS.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
255-260
DOI: 10.5220/0001834702550260
Copyright c© SciTePress

providing user transparency. Modifications to an
indexed table are easy to detect by the DB engine
Therefore, details of the automatic index updating
for RDBMSs are omitted in technical database
specifications and considered rather as an
implementation issue.

Topics of index organization and optimization in
object-oriented database management systems have
been deeply researched, e.g. (Bertino,
1997)(Henrich, 1997)(Płodzień, 2000). Major
research has been dedicated to cope with improving
the efficiency of processing nested query predicates
(i.e. accessed using path-expression) and considering
inheritance. The most important proposed solutions
are Multi-Index, Inherited Multi-Index, Nested-
Inherited Index, Path Index, Access Support
Relations. In the approach to automatic index
updating presented in (Bertino, 1997) all instances
of classes associated with a path-expression based
index need to be taken into consideration to ensure
index validity after data modifications.

The distributed object management system H-
PCTE developed in University of Siegen proposed a
different solution to automatic index maintenance
(Henrich, 1997). The solution handles complex
derived attributes defined e.g. employing regular
path expressions and aggregate functions. On the
other hand, its authors outline some limitations of
this approach concerning efficiency and
consideration of user-methods giving general
suggestions how these disadvantages should be
overcame.

Another approach to index maintenance
discussed for function-based indexing developed in
context of Thor, a object-oriented database system
by the Massachusetts Institute of Technology uses
so-called objects registration schema (Hwang,
1994). Despite the theoretical generality of this
approach, it has not been fully implemented.

According to the best of the authors knowledge
very little amount of indexing techniques proposed
in the scientific literature have been incorporated
into commercial OODBMSs products and major
prototypes. Careful inspection of applied indexing
facilities is possible through analysis of major
object-oriented databases.

Transparent indexing in the db4o OODBMSs by
db4objects is provided only for attributes of classes
defining indexed collections (db4objects, Inc.) The
Objectivity/DB by Objectivity additionally supports
concatenated index on more attributes (Objectivity,
2006). The only tested database which supports
transparent indexing employing path-expressions is
GemFire (GemStone, 2008). The ObjectStore
supports adding an index defined using complex

path-expressions as a key but provides only partial
index maintenance transparency. Updating an index
entry after data modification must be explicitly
triggered by a programmer (Progress, 2008).

The above mentioned prototypes and commercial
products provide sufficiently complete overview of
the indexing state of art in OODBMSs.

2.1 Limitations of Function-Based
Index Maintenance in ORDBMS

The authors did not found any object-relational
databases supporting indexing using aggregate
functions or path-expressions.

Function-based index (Oracle by Oracle
Corporation) (Strohm, 2008) and other similar
solutions enabling defining keys using expressions
addressing more than one table column and internal
functions or user-written functions generally do not
introduce conceptual difficulties. Nevertheless, this
aspect of indexing becomes complex when object-
oriented model and language extensions are
considered. The Oracle documentation does not
provide extensive information concerning the
automatic maintenance of such indices.

To identify properties of the Oracle’s approach
the authors performed tests introducing a schema
shown below:

Figure 1: Example object-relational schemata.

The Oracle approach to index updating in case of
method-based indices consists in triggering an index
update routines during modifications done to any
data in a tuple with associated index entries.

The disadvantage mentioned above grows to a
large problem in case when the method used to
define an index key accesses a data outside an
indexed object. For example the method
getDeptSalary of the DeptType has the following
definition:
CREATE TYPE BODY dept_type IS
 MEMBER FUNCTION getdeptsalary RETURN

NUMBER DETERMINISTIC IS
 BEGIN DECLARE aux NUMBER;
 BEGIN

ICEIS 2009 - International Conference on Enterprise Information Systems

256

 SELECT sum(salary) INTO aux FROM emp
e WHERE e.dept.name = self.name;

 RETURN aux;
END; END; END;

It accesses not only the given DeptType tuple
data but also reaches the emp collection. This
method calculates a sum of department employees
salaries and can be used as a selection predicate.
Oracle also enables indexing dept collection
according to getDepSalary method:
CREATE INDEX dept_getdeptsalary_idx ON

dept d (d.getDeptSalary());
Similarly like in case of emp_gettotalincomes_idx, a
command altering dept tuples triggers updating of
the index. However, any modifications done to emp
objects, e.g.
INSERT INTO EMP

SELECT emp_type ('Smith',350,REF(d))
FROM DEPT d WHERE d.name = 'HR';

are not taken into consideration and
dept_getdeptsalary_idx index loses cohesion with
the data. Unfortunately, queries which use this
index, e.g.:
SELECT d.name, d.getDeptSalary() FROM

DEPT d
WHERE d.getDeptSalary() < 24500;

can return incorrect answers, since the selection
processes and final results depend on the index
content. Hence, the applied index updating solution
is not proper to handle indices with keys based on
“too complex” methods. In practice function-based
indices feature in Oracle can lead to erroneous work
of database queries and applications.

3 SBA AND SBQL

SBA (Stack Based Architecture) (SBA&SBQL,
2008)(Subieta, 2008) a theoretical and
methodological framework for the designed solution
presented in this paper. SBA reconstructs query
languages’ concepts from the point of view of
programming languages (PLs). In SBA a query
language (called SBQL – Stack Based Query
Language) is considered a special kind of a
programming language.

The inherent property of languages based on
SBA is the naming-scoping-binding principle. Each
name occurring in a query is bound to the
appropriate run-time entity (an object, an attribute, a
method a parameter, etc.) according to the scope of
its name. The principle is supported by means of the
environment stack (ENVS) containing binders. This
mechanism is well known from popular
programming languages implementations.

The use of the ENVS can also be extended
beyond the query execution to other aspects like
runtime support for index updating. This expansion
will be presented, as a part of a whole proposed
index updating mechanism, in the following section.

4 SOLUTION TO INDEX
UPDATING

4.1 Example Database

The schema in Figure 2 is introduced to exemplify
indexing description in ODRA OODBMS

Figure 2: Example object-oriented schema.

The example schema illustrates personnel
records of the company. Persistent instances of the
depicted classes can be accessed using theirs
instance names Person, Student, Emp and finally
EmpStudent. Using Person name in SBQL query
results in returning all instances of PersonClass
class and its subclasses.

Classes can contain methods taking advantage of
the polymorphism; hence, are overridden in derived
subclasses. E.g. getTotalIncomes() method of
EmpClass returns the value of a salary attribute, but
for instances of the EmpStudentClass it returns sum
of salary and scholarship attributes.

Referring to the data schema in Figure 2 above
we introduce the example store shown in Figure 3
presenting classes and objects, their values,
identifiers and the most important relations between
them.

GENERIC APPROACH TO AUTOMATIC INDEX UPDATING IN OODBMS

257

Figure 3: Sample store comprising of classes and objects.

4.2 Indexing in ODRA OODBMS

The theoretical idea for query optimization using
indices was developed and presented in (Płodzień,
2000).

The schema in Figure 2 gives the opportunity to
present wide variety of indices supported by the
ODRA OODBMS indexing engine. The authors
approach index updating will be explained using the
following example indices:
• idxAddrStreet – this is the index which returns

address subobjects of Person objects according
to a street attribute. Nonkey objects are defined
by a path expression, i.e. Person.address.

Nevertheless, even more complex indices can
facilitate query processing, e.g.:
• idxEmpTotalIncomes – the index which uses an

Emp class method getTotalIncomes() as a key
for selecting Emp objects. This method is
overridden for the EmpStudent class instances.

• idxDeptYearCost – the index for Dept objects
based on the sum(employs.Emp.salary)*12
expression returning an approximate total cost
of a given department for the year period.

4.3 Index Update Triggers

Each modification performed on objects (creation,
update and deletion) is done by the ODRA object
store CRUD (Create, Retrieve, Update, Delete)
interface. The proposed approach to index updating
concentrates on this element of the system as it is the
easiest and certain way to trace data modifications.
Possible modifications that can be performed on an
object are the following:
• updating a value of an integer, double, string,

Boolean, date or object reference,
• deleting,
• adding a child object,
• other database implementation dependent

modifications.

The implementation introduces a group of
special auxiliary structures called Index Update
Triggers (IUT) together with Triggers Definitions
(TD). These elements are essential to perform index
updating:
• each IUT associates one database object with

an appropriate index through a TD. Existing
IUTs automatically initialize the index
updating mechanism when a modification
concerning the given object is about to occur.
More than one IUT can be connected with a
single object.

• TDs provide means to find objects which
should be equipped with IUTs. TD specifies
the type of an IUT.

An object is associated with IUTs when it
participates in accessing nonkey objects or
calculating key values for indices. Therefore,
modification to objects not linked with any index
does not trigger unnecessary index updating.
Altering objects equipped with IUTs is likely to
influence topicality of the indices and IUTs.

Our implementation introduces four basic types
of IUTs (each IUT refers to different TD type):
• Root Index Update Trigger (R-IUT) – is by

default associated with the root database entry
which is a superparent for all indexed database
objects. When a new object is created in the
databases root the trigger can cause generation
of an NonkeyPath- or Nonkey- Update Trigger
(described below) for the new child object.
This trigger is also used to initialize and
terminate all triggers associated with an index.

• Key Index Update Trigger (K-IUT) –
associated with objects used to evaluate a key
value for the specific nonkey object (identifier
passed together with TD as an additional
parameter). Each modification to such objects
can potentially modify the process of
evaluating a key and its value. Therefore, an K-
IUT is responsible for updating an appropriate
index entry and maintaining appropriate K-
IUTs associated with the given nonkey object.

• NonkeyPath Index Update Trigger (NP-IUT) –
a trigger similar to R-IUT. It is generated when
an index nonkey object is defined by a path
expression (e.g. idxAddrStreet index).

• NonKey Index Update Trigger (NK-IUT) – a
trigger that is assigned to indexed (nonkey)
objects. It is generated by parent objects update
triggers (R-IUT or NP-IUT). The process of
creating NK-IUT consists of the following
steps:
o first a NK-IUT is assigned to the given

nonkey object

ICEIS 2009 - International Conference on Enterprise Information Systems

258

o the key value is calculated,
o the corresponding index entry is created

(if a valid key value is found),
o K-IUTs are generated and parameterised

with the nonkey object identifier.
Basing on the sample store depicted in Figure 3

example IUTs for index idxAttrStreet shown in
Figure 4 would be generated. Let us assume that i0 is
the identifier of the databases root. Nonkey objects
associated with K-IUTs are stated in parentheses.

Figure 4: Example of index update triggers.

4.4 The Approach to the Index Update
Process

The architectural view of the proposed index update
process is presented in Figure 5.

Figure 5: Index Updating Engine architecture.

When the administrator adds an index, TDs are
created before IUTs (this step is shown using the
green coloured arrows numbered 1a and 1b):
1. Index Manager initializes a new index and

issues Triggers Manager a message to build
TDs,

2. next, the Triggers Manager activates the Index
Updating Mechanism which basing on the
knowledge about indices and TDs proceeds to
add IUTs.

Removing an index causes removal of IUTs
(together with NK-IUTs corresponding index entries
are deleted) and TDs. The mediator managing the

addition and removal of IUTs is a special extension
of the CRUD interface.
The second case when the Index Updating
Mechanism is activated is when the store CRUD
interface receives a message to modify the object
which is marked with one or more IUTs (shown in
Figure 5 using the blue coloured arrow with number
2). CRUD notifies the Index Updating Mechanism
about forthcoming modifications and all necessary
preparation before database alternation are
performed. This step is particularly important in case
of changes which can affect a key value for the
given nonkey object. It consists of:
1. locating the index entry which corresponds to

the nonkey object (key value is necessary),
2. identifying objects that are accessed in order to

calculate the key value (they are equipped with
an identical K-IUT).

After gathering required information CRUD
performs requested modifications and following
operations are executed by the Index Updating
Mechanism:
1. update of index entries for the given nonkey

object by,
2. update of existing IUTs by generating new or

removing outdated ones.

4.5 SBQL Interpreter and Binding
Extension

A significant element used by the Index Updating
Mechanism is the SBQL interpreter (also shown in
Figure 4) extended with the ability to:
• Log database objects during evaluation of an

index key expression. This process occurs
during binding object names on ENVS (other
database entities like procedures, views, etc.
and literals are discarded) – this feature is used
to locate all objects which are or should be
equipped with K-IUTs.

• Limit the first performed binding only to one
specified object – this feature significantly
accelerates and facilitates verification whether
a new child sub-object added to an object with
R-IUT or NP-IUT should be equipped with
NP-IUT or NK-IUT, i.e. to check whether a
new child is a nonkey object or potential
superparent of a nonkey object.

The basic functions of the interpreter used by the
Index Updating Mechanism are:
• traversing from the databases root or objects

equipped with NP-IUTs to nonkey objects,
• generating a key value for nonkey objects.

GENERIC APPROACH TO AUTOMATIC INDEX UPDATING IN OODBMS

259

5 CONCLUSIONS

The ODRA OODBMS is a proof of concept
prototype as well as the implemented Index
Updating Mechanism. The fair comparison can be
conducted considering general properties to the
index maintenance and its influence on capabilities
of a database indexing.

An undoubtful advantage of the index updating
approach in majority of relational and object-
relational databases is an economic usage of the data
store. In the implemented solution for the ODRA
OODBMS index update triggers are in many cases
written together with complex objects and objects
containing single values. This situation is acceptable
considering that nowadays databases administer a
very large amount of memory (or disk) space.

Improving performance among other depends on
the diversity of used index structures and flexibility
in defining an index. The properties of the SBQL
language, i.e. orthogonality and compositionality,
enable easy formulating of complex selection
predicates (including usage of complex expressions
with polymorphic methods and aggregate operators).
The proposed organization of indexing in ODRA
OODBMS provides all necessary mechanisms for
creating indices with keys based on such predicates.
As it was shown, the most popular DBMSs do not
provide similar indexing capabilities and flexibility.
Furthermore, attempts to extend the power of
indexing facilities (Oracle function-based indices)
lead to mistakes in obtaining queries results and
erroneous work of database applications.

In contrast to all implemented solutions to the
automatic index updating issue presented in research
literature or incorporated in commercial products,
the authors approach based on Index Update
Triggers implemented in ODRA OODBMS provides
transparent, complete and generic support for variety
of index definitions. Moreover, the additional data
modification costs associated with the index
maintenance concerns exclusively objects used to
access the indexed objects or to determine a key
value. One can argue about increased storage cost
caused by IUTs. Nevertheless, as it is shown in
(Bertino, 1997) the maintenance of indices defined
using complex expressions require introducing a lot
of additional information in the index structure.
Other advantage of the authors IUTs set on objects
used to determine a key value is that they include
direct reference to an indexed object, whereas other
solutions are often forced to identify it indirectly
(e.g. by reverse navigation methods) (Bertino,
1997)(Henrich, 1997).

The presented solution to index updating in
OODBMS is generic and versatile; however, it
requires optimizations to avoid unnecessary
performance deterioration particularly in simple
updating cases. Such optimizations have been
developed and partially implemented. Discussion
concerning this subject is omitted due to the paper
size restrictions.

ACKNOWLEDGEMENTS

This research work is funded from the science
finances in years 2008/2009 as a research project nr
N516 383334.
R. Adamus and J. Wislicki are scholarship holders
of project entitled "Innovative education..."
supported by European Social Fund.

REFERENCES

Adamus R., Kowalski T.M., Subieta K., et al., 2008.
Overview of the Project ODRA. Proceedings of the
First International Conference on Object Databases,
ICOODB 2008, Berlin, ISBN 078-7399-412-9, pp.
179-197.

Bertino E. et al., 1997. Indexing Techniques for Advanced
Database Systems. Kluwer Academic Publishers,
Boston Dordrecht London.

db4objects Inc., 2008. db4o Tutorial for Java. Production
Release V6.3.

Elmasri R. and Navathe S. B., 2004. Fundamentals of
Database Systems 4th ed. Pearson Education, Inc.,
ISBN: 83-7361-716-7

GemStone, 2008. GemFire Enterprise Developer’s Guide,
Version 5.7.

Henrich A., 1997. The Update of Index Structures in
Object-Oriented DBMS. Proceedings of the Sixth
International Conference on Information and
Knowledge Management (CIKM'97), Las Vegas,
ACM 1997, ISBN 0-89791-970-X: pp. 136-143.

Hwang D. J., 1994. Function-based indexing for object-
oriented databases. PhD thesis, Massachusetts
Institute of Technology.

Objectivity, 2006. Objectivity/SQL++. Part Number: 93-
SQLPP-0, Release 9.3.

Płodzień J., 2000. Optimization Methods In Object Query
Languages. PhD Thesis. IPIPAN, Warszawa.

Progress Software Corporation, 2008. ObjectStore Java
API User Guide. ObjectStore, Release 7.1 for all
platforms.

SBA & SBQL Web pages: http://www.sbql.pl/
Strohm R., et al., 2008. Oracle® Database Concepts. 11g

Release 1 (11.1), Part Number B28318-05.

ICEIS 2009 - International Conference on Enterprise Information Systems

260

