
MANAGING TRANSACTIONAL COMPOSITIONS OF
WEB SERVICE APPLICATIONS

Juha Puustjärvi
Helsinki University of Technology, Innopoli 2, Tekniikantie 14, Espoo, Finland

Keywords: Web service composition, Transaction coordination protocols, Fault tolerance, Ontologies.

Abstract: The ACID transaction model has evolved over time to incorporate more complex transaction structures and
to selectively relax the atomicity and isolation properties. Such advanced transaction models are more
appropriate for SOA, which is geared toward open environments consisting of autonomous and
heterogeneous systems. However, due to the autonomy and heterogeneity of local systems supporting
transactional compositions of Web service applications is problematic in SOA. In addition, the interfaces of
Web services are not usually designed for transactional compositions. Neither there are mechanisms for
registering Web services’ abilities to participate transactional compositions nor mechanisms for registering
Web services’ coordinators. How these problems can be avoided by introducing a Composition server is the
topic of this paper.

1 INTRODUCTION

The goal of Web services is to achieve universal
interoperability between applications by using web
standards. The full potential of Web services will be
achieved only when applications and business
process interactions are coordinated in a
transactional way.

The Web Services Transactions specifications
(IBM, 2008; Singh and Huhns, 2005) define
mechanisms for transactional interoperability
between Web services domains. Particularly, they
describe an extensible coordination framework (WS-
Coordination) and specific coordination types for
short duration ACID transactions (WS-
AtomicTransaction) and for Longer running
business transactions (WS-BusinessActivity).

WS-Coordination (Papazoglou and Heuvel,
2007) is a general and extensible framework in the
sense that its use is not restricted to WS-
AtomicTransaction and WS-BusinessActivity but it
can be exploited in developing coordinators for any
transaction model suitable for composing Web
service applications.

During the past few years many transaction
models suitable for composing Web services are
proposed. For example, the isolation requirements
have been relaxed in the models presented in (Alrifai
et al., 2006; Puustjärvi, 2004; Choi et al., 2005;

Guabtni et al, 2006). The use of semantic
information in weakening the atomicity criterion is
studied in (Ding et al., 2006; Zhao et al., 2005;
Puustjärvi, 2006), and the use of semantics in
compensating the failed actions are studied e.g., in
(Fauvet et al., 2005; Schmit et al., 2005), and the
atomicity protocols are studied in (Xu et al., 2006;
Younas and Chao, 2006).

Many of these transaction models and
coordination protocols would be usable and
appropriate in Service Oriented Architecture (SOA)
(Singh and Huhns, 2005). However, their
deployment suffers from the absence of appropriate
Web services’ interfaces as each atomicity protocol
and each concurrency control protocol set their own
requirements on the functionality and interfaces of
the participating Web services.

Further, in many cases, such requirements
contradict with the autonomy of the sites providing
Web services. The reason for this is that autonomy
requires that the components in an environment
function solely under their own control but
achieving global consensus is not always possible
under such settings.

This situation is analogous with distributed
database systems, where the atomicity of the
distributed transaction is carried by the 2-phase
commit protocol (2PC) (Gray, 1993) and
concurrency control is carried out by 2-phase

311
PuustjÃd’rvi J.
MANAGING TRANSACTIONAL COMPOSITIONS OF WEB SERVICE APPLICATIONS.
DOI: 10.5220/0001836403110316
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

locking protocol (2PL) (Gray and Reuter, 1993).
Here the problem is that each participant must keep
log record required by the termination protocol of
the 2PC protocol, and locks on data items required
by the 2PL protocol until the coordinator of the
protocol requests to release the locks. The actual
problem here is that local applications are not
allowed to access the locked data items, i.e., local
systems have lost their autonomy. This is a reason
why strict transactional properties are not usually
provided in SOA.

Due to the autonomy of local systems supporting
transactions is more complex in SOA. Some Web
services may not have transactional functionalities
(e.g., keeping log records) at all, some may have the
ability to perform compensating actions, and some
may have the ability to set locks on data items.

Another problem is that the descriptions of Web
services, i.e., their WSDL-descriptions (WSDL,
2001), are based on assumption that a single
requester uses the service, but in transactional
composition requires different dialog where the
coordinator has to communicate with the service,
and hence each Web service should have a specific
interface description (WSDL description) for each
coordination protocol.

 How to cope with these problems is the topic of
this paper. The cornerstone of our solution is a
Composition server, which specifies how and which
Web services can be composed in a transactional
way. Technically the Composition server is a Web
service supporting an update and querying
interfaces.

The rest of the paper is organized as follows. In
Section 2, we first give a short overview of the
transaction models that are proposed for composing
Web services in a transactional way. Then, we
present the structure of our used Composition
ontology, and the functionality of the Composition
server. In Section 3, we first describe how WS-
Coordination specifications can be used in
developing coordinators for various coordination
types (transaction models). Then, we give an
example how UDDI registry and Composition server
are exploited in Web services composition. In
particular, we describe the message exchange
between coordinators and Web service applications
in a fault tolerant atomicity communication protocol.
Finally Section 4 concludes the paper by discussing
the advantages and disadvantages of our developed
solutions.

2 MANAGING WEB SERVICES’
TRANSACTIONAL
PROPERTIES

2.1 Transaction Models

The traditional notion of a database transaction is so
called ACID-transaction (Gray and Reuter, 1993),
which has the following properties: Atomicity means
that either all of a transaction is executed or none of
it is. Consistency means that the state of a database
satisfies the consistency constraints of the database.
Isolation means that concurrently executed
transactions do not interfere with each others.
Durability means that if a transaction has completed
its work, then its effect should not get lost even if
the system fails.

Supporting ACID-transactions in a distributed
environment requires specific concurrency control
mechanism and an atomic commitment protocol,
e.g., 2PC- protocol.

An alternative optimistic model has been
proposed in database research (originally called
Sagas), where actions have explicit compensatory
actions which negate the effect of the action. In the
real world of actions, the existence of compensatory
actions is quite common for some actions. For
example, for a debit a credit card 100, the
compensatory action is to credit the credit card $100.
On the other hand, some actions may be difficult to
compensate. For example, rolling back a business
transaction (e.g., reservations on a flight) is not
always free of charge.

XLang (Xlang, 2002) is actually a workflow
model but it is based on Sagas and therefore we can
also regard it as transaction model, which do not
support any of the ACID- properties but rather
semantic atomicity. Thus XLang is actually a
notation for expressing the compensatory actions for
any atomic transaction that needs to be undone.
Hence XLang is appropriate transaction model for
the actions having common compensatory actions.

BTP Atomic Transactions (BTP, 2002), are
similar to transactions in tightly coupled systems
(i.e., to ACID-transactions), but the isolation
property is relaxed. Thus, BTP has improved the
notion of traditional distributed ACID transaction to
loosely coupled environments with the required
weakening of the I-property (Isolation-property).
However, providing BTP-transaction models
requires the implementation of the 2PC-protocol.

In order to avoid the problems related to
compensatory actions, a transaction model, called

<rdf:RDF

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

312

Composed Web Service Transaction model, or
CWS-transaction model (Puustjärvi, 2006) for short
is also proposed. It deviates from other advanced
transaction models in that it is not based on
compensating transactions, but rather it divides the
traditional business transaction into two successive
transactions, called request transaction and decision
transaction. The commitment of the request
transaction ensures that the decision transaction will
not fail, and so the atomicity of the CWS-transaction
can be ensured. For example, with hotel reservation
case, the successfully executed request transaction
makes only a preliminary reservation (not an actual
reservation), which is then confirmed to real
reservation or rejected by the decision transaction.

2.2 Composition Ontology

The term ontology originates from philosophy where
it is used as the name of the study of the nature of
existence (Gruber, 1993). In the context of computer
science, the commonly used definition is “An
ontology is an explicit and formal specification of a
conceptualization” (Davies et al., 2002). It consists
of a finite set of concepts and the relationship
between the concepts. Essentially the used ontology
must be shared and consensual terminology as it is
used for information sharing and exchange.

The purpose of our used Composition ontology
is to specify transaction models, Web services,
transaction coordinators, and their relationships.
This ontology is described by OWL (Web Ontology
Language) (OWL, 2005), and for illustrative
purposes it is graphically presented in Figure 1,
where ellipses represent classes and boxes represent
properties.

transaction
model

Web
service

coordinator

coordinatessupports

uses

Figure 1: Composition ontology.

The instances of the ontology are defined by
RDF-statements. The RDF (Resource Description
Framework) model (RDFS, 2005) is called a triple
because it has three parts: subject, predicate and
object. Each triple is an RDF-statement. For
example the statement “Hotel Lord’s Web service
supports BTP transaction model” is an RDF
statement, where “Hotel Lord’s Web Service” is the

subject, ”supports” is the predicate, and “BTP-
transaction model” is the object.

In order that RDF-statements can be represented
and transmitted it needs syntax. The syntax has been
given in XML. So an RDF-statement can be
represented as an XML-element. Further, an RDF-
document is comprised of one ore more RDF-
descriptions, and each RDF-description is comprised
of one or more RDF-statement.

In Figure 2, an RDF description, which is
comprised of the three RDF-statements, is presented.

<rdf:RDF

xmlns : rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns : xsd=”http://www.w3.org/2001/XMLSchema#”
xmlns : co=“http://www.lut.fi/ontologies/composition-ontology#”
<rdf:Description rdf:about=”Lord’s_hotel_web_service”>

<rdf:type rdf:resource=“&co;web-service”/>
<co : supprts>BTP-transaction</co : supports>
<co : coordinates>Coordinator-123Y</co : coordinates>

</rdf : Description>
</rdf:RDF

Figure 2: An RDF – descriptu in RDF/ XML serialization
format.

Note that, in the above RDF-description XML
namespace “xmlns:co” refers to the used
composition–ontology. The first RDF-statement in
the description states that “Lords-hotel-web-service”
is an instance of the class web-service, which is a
class in the Composition ontology.

2.3 Composition Server

Composition Server is a Web service, which
function is to provide querying and update interface
for the Composition ontology. It is used in
constructing contexts for Web services’
compositions. Each context includes context
identifier, the services to be coordinated, the
coordinators as well as the coordination type
(transaction model).

Composition server has a publishing interface
and an inquiry interface. Using the publishing
interface new instances to the ontology can be
inserted. Using the inquiry interface an application
(or a human) can make for example the following
queries:

• What are the transaction models that Hotel
Lord’s Web service supports?

• Give the information of the coordinator that
is used by the Hotel Lord’s Web service.

• What are the transaction models that are
coordinated by the Coordinator C1.

MANAGING TRANSACTIONAL COMPOSITIONS OF WEB SERVICE APPLICATIONS

313

3 COORDINATING WEB
SERVICES

3.1 WS-Coordination

A way to coordinate the activities of Web services is
to provide a web service which function is to do the
coordination. In order to alleviate the development
of such coordinators WS-Coordination provides a
specification that can be utilized in developing the
coordinator. As we use this specification in
developing the coordinator, we first consider this
specification and then illustrate the functionality of
the fault tolerant atomicity coordinator by an
example.

According to the WS-Coordination a coordinator
is an aggregation of the following services (Singh
and Huhns, 2005). As illustrated in Figure 3, the
Activation service defines the operation that allows
the required context to be created. In particular, a
context identifier is created and passed to the Web
services that participate to the same coordination.
The Registration service defines the operation that
allows a Web service to register its participation in a
coordination protocol. A coordination protocol
service coordinates a supported coordination type
(transaction model).

Protocol
for transaction
model A

Activation
service

Registration
service

Create Coordination
Context

Protocol
messages

Register

Protocol
for transaction
model B

Protocol
for transaction
model C

Protocol
messages

Protocol
messages

Figure 3: Coordinator for transaction models A, B and C.

The architecture (following the specification of
WS-Coordination) of the coordinator that supports
transaction models A, B and C is presented in Figure
3.

After an application has created a coordination
context, it can send it to another application. The
context contains the information required for the
receiving application to register into the
coordination. In principle, an application can choose
either the registration service of the original
application or use some other (own) coordinator. In
the latter case the application forwards the context to
the chosen coordinator.

3.2 Message Exchange in Fault
Tolerant Coordination

In our used architecture we assume that each
participating application use its own coordinator
which have the role of participant in the
coordination. The message exchange between the
coordinator, participant and the applications (in the
case of no failures) is illustrated in Figure 4. The
figure illustrates the case where a travel agent tries
to make reservation on a flight and a room
reservation on a hotel. The used coordination type
follows the 2PC-protocol. The protocol is fault
tolerant in the sense that a termination protocol is
invoked when a participant in the coordination has
been waiting a predetermined time for a message.
The functionality of the termination protocol is
shortly presented in Section 3.3.

Travel
agent’s
WS

Travel
agent’s
coordinator

Hotel’s
WS

Airliner’s
WS

Hotel’s
coordinator

Airliner’s
coordinator

4 4

5 5

6

3

7
10
11

8 98912
6
7
10
11

12

Log Log Log

Log Log

UDDI registryContext Server

12

Figure 4: Communication structure.

The communication in the figure proceeds as
follows:

1. Travel agent’s Web service queries from
the UDDI registry which airlines have flights, say
from Amsterdam to London, and which Hotels are in
centre of London. From the returned choices the
travel agent’s Web service decides to choose, say
Lufthansa and Hotel Lord.

2. Travel agents Web service queries from
the Context server which transaction models
Lufthansa’s and Hotel Lord’s Web services support.
Both Web services support fault tolerant atomic
commitment protocol (FTACP), and so travel
agent’s Web service chooses the protocol.

3. Travel agent’s Web service asks its
coordinator to create a coordination context for
FTACP-type coordination, and then the coordinator
returns the context, which includes information
where its registration service can be found.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

314

4. Travel agent’s Web service sends
reservation messages to hotel’s and airliner’s Web
services. Both messages include the context
information.

5. Hotel’s Web service and Airliner’s Web
service send the context information to their own
coordinators.

6. Hotel’s coordinator and airliner’s
coordinator register to travel agent’s coordinator.

7. Travel agent’s coordinator sends the
request message to hotel’s and airliner’s coordinator
and writes start-record in its log.

8. Hotel’s coordinator and airliner’s
coordinator request whether their Web services are
able to execute the reservation.

9. Hotel’s Web service and airliner’s Web
service write their votes (Prepared or Aborted) into
their logs and inform their coordinators about their
votes.

10. Hotel’s coordinator and airliner’s
coordinator write the vote in their logs, and then
inform travel agent’s coordinator about their vote.

11. If there were no Abort-message (i.e.,
airliner’s and hotels Web services’ votes were
Prepared), then travel agent’s coordinator sends the
Commit-message to hotel’s and airliner’s
coordinator; and otherwise it sends the Abort-
message.

12. Hotel’s coordinator writes the decision
(commit-record or abort-record) in its log and
informs hotels’ Web service whether the transaction
is committed or aborted, and respectively airliner’s
coordinator writes commit-record in its log and
informs airliner’s Web service.

A salient feature of the above protocol is that
each Web service can unilatery decide Abort at any
time, if it has not voted Prepared: After voting
Prepared a Web service cannot take unilateral
action. The period between the moment a Web
service votes Prepared and the moment it has
received sufficient information to know what the
decision will be is called the uncertainty period for
that Web service. A Web service is called uncertain
while it is in its uncertainly period.

During this period (during the steps 8-12 in the
previous example) the Web service does not know
whether it will eventually decide Commit or Abort,
nor can it unilaterally decide Abort. So, for example,
during the uncertain period the Hotel is not allowed
to reserve the room for any other customer. How

these kinds of constraints are enforced is application
or system dependent, e.g., by setting a write-lock on
reservation data, or by using semantic information in
the reservation application.

3.3 Managing System and
Communication Failures

In the case of system or communication failure a
service must await the repair of failures before
proceeding, and so the service is blocked. Blocking
is undesirable, since it can cause services to wait for
an arbitrarily long period of time.

In order that a blocked service can proceed it
must communicate with the coordinator (travel
agent’s coordinator in the case of previous example).
This kind of communication is carried out in a
termination protocol, which is activated by the
participant (hotels or airliner’s coordinator in the
case of previous example) when it has been waiting
a predetermined time for a message.

Our used termination protocol of the atomic
commitment protocol goes as follows:

1. Hotel’s coordinator (or airliner’s
coordinator) sends decision-request-message to
travel agents coordinator.

2. Travel agent’s coordinator sends the
response-message to hotel’s Coordinator (travel
agent’s coordinator).

Hotels coordinator (travel agent’s coordinator)
repeats the request,, if it has not receive the response
in a predetermined time period. Note that travel
agent’s coordinator is always able to response to the
request as it has no uncertainty period.

4 CONCLUSIONS

The full potential of Web services will be achieved
only when applications and business process
interactions are coordinated in a transactional way.
The issue of Web services coordination is widely
studied, and many transaction models suitable for
composing Web services are proposed. However,
the deployment of the transaction models is not
straightforward as Web services’ interfaces are not
usually designed for compositions. This is
regrettable, since it is obvious that by supporting one
or more coordination types, a Web service can
increase its usability, and more advanced composed
Web services can be designed.

MANAGING TRANSACTIONAL COMPOSITIONS OF WEB SERVICE APPLICATIONS

315

In order to simplify the composition of Web
services we have introduced the Composition server,
which can be used in publishing and querying Web
services’ abilities to participate on various
coordination types.

In the future work we will also analyze the
replacement of the Composition server by extending
the UDDI registry by the information included in the
Composition server. However, it is obvious that a
drawback in this approach will be that the querying
features of UDDI registry are restricted to keywords,
and so we would loose the expression power that can
be achieved by the ontology based Composition
server.

REFERENCES

Alrifai, M., Dolog, P., Nejdl, W., 2006. Transactions
concurrency control in web service environment.
Proceedings of the 4th European Conference on Web
Services, pages. 109-118.

BTP, 2002. BTP- Business Transaction Protocol,
http://www.oasis-open.org/committees/business-
transactions/documents/primer/

Choi, S., Jang, H., Kim, H., Kim, J., Kim, S., Song, J.,
Lee, Y., 2005. Maintaining consistency under isolation
relaxation of web services transactions. Proceedings of
6th International Conference on Web Information
Systems Engineering, In Lecture Notes in Computer
Science, 245-257.

Davies, J., Fensel, D., Harmelen, F., 2002. Towards the
semantic web: ontology driven knowledge
management. West Sussex: John Wiley & Sons.

Ding, X.,Wei, J., Huang, T., 2006. User-defined atomicity
constraint: A more flexible transaction model for
reliable service composition. Proceedings of 8th
International Conference on Formal Engineering
Methods, In Lecture Notes in Computer Sciences,
pages 168-184.

Fauvet, M., Duarte, H., Dumas, M., Benatallah, B., 2005.
Handling transactional properties in web service
composition. Proceedings of 6th International
Conference on Web Information Systems Engineering,
In Lecture Notes in Computer Sciences, pages 273-
289.

Gray, J., Reuter A., 1993. Transaction Processing:
Concepts and Techniques. Morgan Kaufman.

Gruber, T., 1993.Toward principles for the design of
ontologies used for knowledge sharing. Padua
workshop on Formal Ontology.

Guabtni, A., Charoy, F., Godart, C., 2006. Concurrency
management in transactional web services
coordination. 17th International Conference, DEXA.
In Lecture Notes in Computer Science, pages. 592-
601.

IBM, Web Services Transactions specifications, 2008.
http://www.ibm.com/developerworks/library/specificat
ion/ws-tx/

OWL–WEB Ontology Language, 2005.
http://www.w3.org/TR/owl-ref/

Papazoglou, M., van den Heuvel, W., 2007. Service
oriented architectures: approaches, technologies and
research issues.The International Journal on Very
Large Data Bases, 16, 3.

Puustjärvi, J., 2004. Concurrency control of Internet-based
workflows. In Proc of the Sixth International
Conference on Information Integration and Web-
based Applications & Services (iiWAS2004), pages
647-654.

Puustjärvi, J., 2006. CWS-transactions: An approach for
composing web services. Second International
Conference on Web Information Systems and
Technologies (WEBIST), pages, 69-74.

RDFS. 2005. http://www.w3.org/TR/2000/CR-rdf-
schema-20000327/.

Schmit, B. ja Dustdar, S., 2005. Towards transactional
web services. Proceedings of the 7th IEEE
International Conference on E-Commerce Technology
Workshops (CECW'05), pages 12-20.

Singh, M., Huhns, M., 2005. Service Oriented Computing:
Semantics, Processes, Agents. John Wiley &Sons, Ltd.

WSDL, 2001. WSDL- Web Services Description
Language.http://www.w3.org/TR/2001/NOTE-wsdl-
20010315.

XLang–Web Services for Business Process Design.
2002.http://www.gotdotnet.com/team/xml_wsspecs/xl
ang-c/default.htm

Xu, W., Cheng, W., Liu, W., 2006. A transaction-aware
coordination protocol for web services composition.
Proceedings of 7th International Conference on Web
Information Systems Engineering, In Lecture notes in
Computer Science. Springer, pages126-131.

Younas, M., Chao, K., 2006. A tentative commit protocol
for composite web services. Journal of Computer and
System Sciences.

Zhao, W., Moser, L., Melliar-Smith, P., 2005. A
reservation-based coordination protocol for web
services”. Proceedings of the IEEE International
Conference on Web Services (ICWS'05), pages, 49-56.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

316

