
TOWARDS AUTOMATED MANAGEMENT
OF COMPILER ASSIGNMENTS

Leena Salmela, Jorma Tarhio and Timo Montonen
Department of Computer Science and Engineering, Helsinki University of Technology, P.O.Box 5400, FI-02015 TKK, Finland

Keywords: Courseware, Computer science, Compiler assignments.

Abstract: We have implemented two software systems for managing compiler assignments in computer science. The first
system is a graphical environment on the Web for doing home assignments related to finite state automata and
parsers. It also includes an automatic assessment system for the assignments. The second system manages
compiler projects. It generates a personalized language for each student and provides a testing tool for the
student’s compiler. We introduce the main features of the systems and review some experiences.

1 INTRODUCTION

We consider the application of information technolo-
gies in teaching a computer science course on com-
piling of programming languages. Such a course be-
longs to the computer science curriculum of many
universities. Recently we reorganized our compiler
course. We used to have one graduate course, which
has now been split into two courses. The first one is
an introductory course for undergraduate students. It
deals mainly with the front-end of a compiler. The
second course is for graduate students. It covers ad-
vanced topics on the back-end beyond the scope of the
original course. The change also created an opportu-
nity to reorganize the assignments of the first course.

We use home assignments in our course. In our
former system, a teaching assistant graded the writ-
ten answers submitted by the students. Several prob-
lems arose with this approach. First of all, with our
resources it was not possible to give individual feed-
back to one hundred students, and the delay of the
feedback was two weeks, which was too long. Pla-
giarism has also been a growing concern in the course
since all students had the same assignments. Some
students also found the previous practice of returning
the home assignments as text files in a specified form
unintuitive.

To attack these problems we automated the home
assignments. Automatic assessment allows immedi-
ate feedback to the students and it is possible to give
individual assignments to students thus alleviating the
problem of plagiarism. Our system is called ACE

which is short for Automated Compiler Exercises.
ACE works on the Web. The preliminary version of
ACE was introduced in the work-in-the-progress pa-
per (Salmela and Tarhio, 2004). Here we deal with the
production version, which has been used four times.
The main features of ACE are explained in Section 2.
In Section 4 we review some experiences of ACE.

Besides home assignments, there is an obliga-
tory project in the course. In our former graduate
course, students worked in pairs and implemented
a small compiler with register allocation mostly by
hand. The assignment was the same for all students.
Because the project of an undergraduate course can-
not be equally demanding, we dropped register allo-
cation and other advanced features and shifted to ex-
tensive use of a compiler writing system. In order to
decrease the workload of the teaching assistant, we
implemented a tool called TKKCC for managing the
projects. TKKCC is short for TKK1 Compiler Con-
struction. Because TKKCC is able to generate a per-
sonalized language for each student, it was natural to
shift to individual assignments to alleviate plagiarism.
TKKCC also provides a testing tool for a student’s
compiler. So far TKKCC has been used only once in
our course. The details of TKKCC are introduced in
Section 3 and experiences are reviewed in Section 4.

1The official abbreviation of Helsinki University of
Technology is TKK, which comes from the Finnish name
Teknillinen korkeakoulu.

243
Salmela L., Tarhio J. and Montonen T. (2009).
TOWARDS AUTOMATED MANAGEMENT OF COMPILER ASSIGNMENTS.
In Proceedings of the First International Conference on Computer Supported Education, pages 243-249
DOI: 10.5220/0001839602430249
Copyright c© SciTePress



2 ACE

2.1 Background

ACE contains a Web-based graphical environment for
studying and completing the assignments. The visual-
izations are mostly adapted from JFLAP (Cavalcante
et al., 2004), which is a visualization tool for formal
languages and automata theory. JFLAP is based on
earlier work of Susan Rodger.

Automatic assessment has been successfully used
in introductory courses at our university (Malmi et
al., 2003). For example, the Ceilidh system (Ben-
ford et al., 1993) and Scheme-Robo (Saikkonen et al.,
2001) have been used in the programming courses,
the TRAKLA2 system (Korhonen et al., 2003), which
has a graphical interface for doing algorithm sim-
ulation exercises, has been used in the Data Struc-
tures and Algorithms course, and the Stratum frame-
work (Janhunen et al., 2004) has been used in several
courses in our university. Automatic assessment has
proved to be effective in these cases and the student
response has also been generally positive.

There are a number of tools visualizing at least
some parts of a compiler (Boroni et al., 2001; Cav-
alcante et al., 2004; Tscherter et al., 2002; Resler
and Deaver, 1998; Khuri and Sugano, 1998; Ker-
ren, 1999; Vegdahl, 2001). Several visualizations
of finite automata and parsers have been developed.
Some of these visualization tools, like JFLAP (Cav-
alcante et al., 2004) and Exorciser (Tscherter et al.,
2002), have taken a step towards automatic assess-
ment. They allow students to try building their own
solutions. When the student is ready, the tool will
assess the solution and tell the student if it is right.
These tools also allow the student to take a look at
the model answer. However, these tools do not fully
cover the assignments we have used and they are in-
tended for self study so that they do not keep track
of students’ points and solutions. Solution building
and verifying the solution are fully separated in ACE.
This makes it possible to embed ACE in a framework
supporting automatic assessment and grading.

2.2 Overview of the Assignments

The assignments of our undergraduate course have
been organized into three rounds. In our former grad-
uate course, they were the first three rounds out of six.
They deal with finite state automata (FSAs), LL pars-
ing, and LR parsing, respectively. The FSA round has
four assignments and the other rounds have five as-
signments.

In the first assignment of the FSA round the stu-
dent is given a regular expression and the task is to
form a nondeterministic finite state automaton (NFA)
using Thompson’s construction. Then in the second
assignment the constructed NFA is simulated with a
given input. In the third assignment the NFA is con-
verted to a deterministic finite state automaton (DFA)
and this DFA is then simulated in the last assignment
of this round.

The second round deals with LL parsing. First
the student should remove left recursion from a given
grammar. In the second assignment this grammar is
left factored. Then in the third assignment the First
and Follow sets needed in the LL parse table con-
struction are calculated. The parse table is filled and
in the last assignment the constructed parser is simu-
lated with a given input.

In the third round an LR parser is constructed. In
the first assignment the student forms the LR(0) item
sets of a given grammar and figures out the transi-
tions between them. Then in the second assignment
the First and Follow sets are calculated. Based on
these sets also the LR parse table is constructed. The
grammar used in this assignment is ambiguous so the
parse table now contains ambiguity. In the fourth as-
signment of this round the ambiguity is removed from
the parse table so that given precedence and associa-
tivity constraints are satisfied. In the last assignment
the constructed parser is simulated with a given input.

Some of these assignments are clearly algorithm
simulation exercises. The simulation of an FSA or
a parser clearly falls into this category. The solution
to this kind of assignment is an ordered list of steps.
Some of the other assignments include simulation of
an algorithm but the algorithm is more loosely de-
fined. For example, the Thompson’s construction al-
gorithm does not define a total order for the construc-
tion of the automaton parts. Thus it only defines a
partial order for the steps that are needed to construct
the whole automaton. Of course a total order may be
enforced in such an algorithm but this would unneces-
sarily complicate the assignment. Some of the assign-
ments are even more loosely defined like the removal
of left recursion from a grammar. In this case some
transformation rules are presented in the study mate-
rial but the use of exactly these rules is not enforced.
These assignments are conceptual in nature. They test
the student’s understanding of the concept rather than
knowledge of a specific algorithm.

We have ten assignment sets for the first round and
nine assignment sets for the last two rounds. Assign-
ments for each student are chosen randomly among
those sets. Moreover we allow permuting and replac-
ing of local strings and names in the assignments in

CSEDU 2009 - International Conference on Computer Supported Education

244



order to artificially increase the number of different
assignments. We are also studying ways to gener-
ate new grammars and regular expressions for assign-
ments.

2.3 Implementation

Architecture. Given the various types of assign-
ments that the system needs to support, we decided
to build a client for the students to do the assignments
in a computer-aided manner and verifiers for check-
ing them. These components can then be embedded
into a framework which takes care of submissions and
the needed book keeping. We call the client with the
verifiers ACE.

Overviews of the client and the verifiers are given
below. We have embedded the client and the veri-
fiers in the Stratum framework (Janhunen et al., 2004)
which follows the client/server architecture. Records
on assignments, submissions, and results are kept on
the server.

Stratum provides a personal Web page for each
student. The ACE client is embedded as an applet
to this Web page. This applet is the graphical envi-
ronment for doing the assignments and the student
also submits the solutions with the applet. The per-
sonal Web page of the student also shows personal
assignments of the student and the submission status
of each subtask. The verifiers module is embedded in
the server.

ACE Client. The central part of the ACE client is
the visualization of the data structures needed in the
assignments. Most of these features are present in
JFLAP (Cavalcante et al., 2004). Thus the ACE client
was built reusing the code from JFLAP. However,
some changes also needed to be done. JFLAP does
not support showing precedence and associativity in-
formation of operators, and so visualization for this
was built. The simulation of FSAs and parsers in
JFLAP are merely animations, and thus we needed
to add some interaction so that the students can show
how an FSA or parser works. For example, when sim-
ulating an LL parser the student has two choices in
each step: to advance in the input or to apply a rule
from the parse table.

Another major change was adding the notion of
assignment rounds and assignments. Now ACE can
lead the student through an assignment round one as-
signment at a time. Other changes included the design
of a new file format which contains the information
about assignments and assignment rounds. Because
of the new file format it is also not so easy for the stu-
dents to use JFLAP to generate the correct answers.

The generation of correct answers was of course dis-
abled from the user interface.

Fig. 1 shows a screenshot of the ACE client. Here
a NFA is being converted to a DFA. The student has
already defined the initial state of the DFA and the
state which the DFA enters after reading the symbol
’x’ in the initial state. The labels of the DFA states
show their corresponding NFA state sets.

Verifiers. We were also able to reuse some parts of
JFLAP when building the verifiers. Some of the as-
signments like removing left recursion from a gram-
mar are not supported by JFLAP so we needed to im-
plement new verifiers for these. The simulation of
FSAs and parsers in JFLAP are only animations with-
out the possibility of error so we needed to implement
new verifiers for these too.

The verifiers have the following general structure.
First they check if the input the student used was the
one given in the assignment. Then they check if the
student’s solution is correct and generate feedback to
the student. Most of the verifiers check the student’s
solution by generating a model answer and compar-
ing that to the student’s solution. However, in some
cases this process does not provide a way to generate
good feedback to the student and thus the solution is
checked in a different manner.

For example, the first assignment of the FSA
round is checked by reversing Thompson’s construc-
tion and comparing the regular expressions. This way
we are better able to tell the student which part of the
automaton is correct and which part could not have
been generated by Thompson’s construction or is gen-
erated for a wrong regular expression.

Also the assignments, where left recursion is re-
moved from a grammar or a grammar is left fac-
tored, are checked somewhat differently. First the ver-
ifier checks that the undesirable elements have been
removed from the grammar and then it checks that
the new grammar produces the same language as the
original one. Note that it is intractable to check if
two context free grammars produce the same lan-
guage but in our case the problem is decidable if we
assure that both of the grammars are LL(k) gram-
mars (Rosenkrantz and Stearns, 1970; Olshansky and
Pnueli, 1977).

3 TKKCC

Our compiler course has a mandatory project. Each
student is given a small language, and the goal of the
project is to implement a compiler for it. The student
builds a compiler with the Java version of the Coco/R

TOWARDS AUTOMATED MANAGEMENT OF COMPILER ASSIGNMENTS

245



Figure 1: A screenshot from the ACE client. Here the user is converting a NFA to a DFA.

compiler generator (Mössenböck et al., 2008). The
compiler should generate code for a virtual stack ma-
chine so that the code could be executed with a given
interpreter. The student’s task is to write an attribute
grammar with a few Java classes for the language.
The attribute grammar includes code generation.

We implemented a support system called TKKCC
for managing projects of our course. TKKCC has
three parts:

• Language generatorcreates automatically a per-
sonalized language for each student. We designed
a base language called Consensus. In generation,
a set of its features is selected to the student’s lan-
guage.

• Test generator prepares tests for the student’s
language. We have a large collection of hand-
made test programs for Consensus, and the test
generator translates these programs to the stu-
dent’s language. Expected output is associated
with each test program.

• Test driver uses the student’s compiler to com-
pile test programs and then executes the generated
code. The test driver then shows the real output
and the expected one. Because the test driver ex-
ecutes code written by students, we have used the
Java security manager to restrict access to the sys-
tem.

As in the case of ACE, we use the Stratum frame-

work (Janhunen et al., 2004) to manage the submis-
sions and keep track of the different assignments of
students. The Stratum framework calls the language
generator and test generator when the project assign-
ment is created for the students. The students can then
access their assignment and related test files and sub-
mit the project on the Web. When the student submits
a project, Stratum then calls the test drivers to auto-
matically run the tests. The teaching assistant can
then use the tools provided by Stratum to check on
the progress of the students.

The Consensus language has integer and Boolean
data types and integer arrays. Control structures in-
clude the if statement and the loop structure. Con-
sensus has functions with parameters. The student’s
language is a subset of Consensus with syntactic vari-
ation. Each element of Consensus has several syn-
tactic alternatives. For example, Consensus has four
forms of the loop structure:

• do Statementwhile (Expression)

• repeatStatementuntil (Expression)

• while (Expression)do Statement

• for (Statement; Expression; Statement) Statement

In a way, the interpreter of the target code is a part
of TKKCC, because it has been integrated with the
test driver. However, the interpreter naturally depends
on the target code used.

CSEDU 2009 - International Conference on Computer Supported Education

246



The language generator was implemented with
templates of the FreeMarker library (FreeMarker,
2008). The language is given to the student as a
context-free grammar. The test driver was imple-
mented with Groovy (Groovy, 2008), which is a flex-
ible script language.

Related Systems. There are a few earlier sys-
tems that are related to the principles of TKKCC.
VCOCO (Resler and Deaver, 1998) is another in-
structional tool developed for Coco/R but its objec-
tive is different from TKKCC. VCOCO visualizes
LL(1) parsers generated by the C version of Coco/R.
VCOCO shows corresponding parts in the grammar,
generated code, and input. Unfortunately, VCOCO
does not work with the Java version of Coco/R and
thus could not be used in our course. Otherwise it
would have been useful for our students.

ART (Aycock, 2003) is a tool which helps to cre-
ate more complex test programs for compilers writ-
ten as course projects. In this kind of projects the
compiled language is often a simple toy language
which lacks more complex structures like arrays. This
makes it difficult to construct complex programs suit-
able for stress testing students’ compilers. ART gen-
erates such complex input programs by translating
arrays of fixed size to single variables and replac-
ing array references by references to the variable cor-
responding to that item. ART could be used with
TKKCC to create more complex test programs. How-
ever, because the Consensus language of TKKCC has
arrays, it is not so tedious to create complex test pro-
grams.

Cool (Aiken, 1996) is a support system for com-
piler projects. Cool provides a portable compiler
project, a class library, which contains common rou-
tines of a compiler, a reference compiler and a lan-
guage reference manual for the input language of the
compiler project. Cool has modular assignments that
have been designed to be independent and thus a stu-
dent is able to continue the project even if an earlier
phase has failed.

4 EXPERIENCES

4.1 ACE

The main advantage of ACE is the significant de-
crease in the workload of the teaching assistant, be-
cause ACE delivers and assesses the assignments as
well as gives feedback to the students. The time
needed for yearly maintaining is short.

There are three assignment rounds (involved with
the front-end of the compiler) in the course. In order
to pass the course students have to pass two of these
rounds. Doing more than the required number of as-
signments is voluntary and does not give any extra
credit to the students. After adopting ACE the per-
centage of students who completed all three rounds
increased from 37% to 51% (the figures are averages
over several years).

When ACE was used for the first time, we asked
the students of the course to answer a questionnaire,
and 60% of the 91 students replied. Concerning the
possible advantages of ACE, the most common an-
swer dealt with immediate feedback, which helped
students to correct their mistakes. Also the ability to
make a round incrementally in several sessions and
the possibility to iterate answers were important ben-
efits.

Several students said that ACE saves time when
compared with the traditional pen and paper way.
However, the students who already mastered the
topic of an assignment before using ACE found the
computer-aided approach slower than pen and paper,
because learning ACE was in a way additional to
them. Related to this, we asked whether the students
felt wasting time with ACE. Only 13% of them an-
swered yes, and 2% were uncertain. The rest 85% did
not waste time. The average use time per round was 4
h 8 min.

We also asked the students if they encountered
any problems when using ACE, and 76% of them re-
ported some problems, mostly minor technical prob-
lems. All the problems have already been corrected.
A typical complaint dealt with vague error messages
and unclear and limited instructions. Several students
wished for demonstrations and examples in order to
get easier acquainted with the system.

Then we asked whether ACE supported learning.
The answer was clear: 96% of the students answered
“yes”.

We requested the students to compare ACE with
similar computer-aided tools for homework assign-
ments of other courses. There are at least three other
courses using such technology at our department. So
80% of the students had used similar systems earlier.
ACE was well received, and almost half of students
considered it to be at least better than the other sys-
tems. One student explained his opinion as follows
pointing out some problems of computer-aided in-
struction: “ACE is better because it is not as mechan-
ical as some other tools, which do not require ponder-
ing at all; yet even ACE provides so much help (in
guiding towards the solution) that if only using ACE,
one does not know what to do without it. So ACE is

TOWARDS AUTOMATED MANAGEMENT OF COMPILER ASSIGNMENTS

247



good, but pen-and-paper is still needed.”
Among the same student group we made another

questionnaire in connection with the course evalua-
tion in which 54% of the students participated. A
course evaluation is organized in the end of every
course at our department. Besides fixed questions,
the teacher is allowed to present additional questions.
We asked the students to compare ACE with the tra-
ditional approach. The group studied the original ver-
sion of our course so that they had also three other
assignment rounds concerning the back-end of a com-
piler. These rounds consisted of traditional pen-and-
paper assignments. The first questionnaire took place
in the middle of the course, whereas the students had
completed all the assignments while the second ques-
tionnaire was made.

The first question dealt with meaningfulness.
Only few of the students had experienced the tradi-
tional way more meaningful than ACE. One third did
not see any difference between the alternatives, and
more than half found the computer-aided way more
meaningful.

Next the students were asked to compare the labo-
riousness of the approaches. Based on the first ques-
tionnaire we already knew that those students, who
already mastered the subject, wasted time whereas
those students, who did not know the subject before-
hand, saved time. Now in the end of the course, half
of the students found the traditional way more labo-
rious. About one third experienced both approaches
similar, and the rest of the students considered ACE
more laborious.

The last question was about learning. Half of
the students thought that the computer-aided approach
was better from the point of view of learning. Only
12% of them found the traditional approach better.
The summary of the second questionnaire is given in
Table 1.

Table 1: Answers to the question: Which way was more
meaningful, more laborious, and better from the point of
view of learning? ACE or the traditional approach? The
numbers are percentages.

Which way was... ACE No diff. Trad.
More meaningful? 59 33 8
More laborious? 18 31 51
Better from the point

of view of learning? 51 37 12

4.2 TKKCC

TKKCC saves the teaching assistant’s time but not at
all as much as in the case of ACE. TKKCC delivers
the assignments automatically. Many students need

consulting, and TKKCC cannot help much. It only
provides semi-automatic assessment as it only runs
tests automatically but the teaching assistant will still
have to check other issues like documentation.

From the student’s point of view, TKKCC does
not offer much additional when compared with con-
ventional use of Coco/R. However, the testing capa-
bility is a new service and the students also appreci-
ated this feature.

5 CONCLUDING REMARKS

We have described two systems managing compiler
assignments. The ACE system automatically as-
sesses assignments related to finite state automata and
parsers. The system supports individual assignments
for students and it has a visual interface for study-
ing and completing the assignments. The system has
been used four times in our compiler course, and it
was well received by the students.

ACE is an advanced learning environment. It
makes the concepts of compiler construction concrete
by visualizing them. ACE supports learning by do-
ing. The student can submit a trial solution, and the
system gives feedback about the possible errors. Be-
cause only correct submissions are accepted, the stu-
dent is allowed to try each assignment of a round sev-
eral times. Most of the assignments are constructed
in such a way that it is almost impossible to reach an
acceptable solution only by guessing.

ACE shares a part of the visualizations of JFLAP
which is an excellent tool for demonstration and self-
study purposes. However, the integrated assessment
and bookkeeping make ACE more useful than JFLAP
because the assignments of a large course can be de-
livered and graded automatically with ACE.

ACE works on the Web so that students can do the
assignments anywhere at the time suitable for them.
Thus ACE suits well to distance learning e.g. in a vir-
tual university. The general principles of ACE can
be adapted to other subjects with constructive assign-
ments.

TKKCC manages compiler projects. It generates
languages for students, and provides a testing frame-
work for the implemented compiler. We plan to add
a new module, which would help students in writ-
ing attribute grammars for Coco/R, to TKKCC . This
module would recognize some typical errors students
make and provide instructions on how to proceed.

Recently we have updated the language generator
of TKKCC so that it produces two alternative assign-
ments for each student: easy and full. Arrays, and
functions and function calls have been removed from

CSEDU 2009 - International Conference on Computer Supported Education

248



the easy assignment and the associativity and prece-
dence of operators in expressions have been solved
for the student in a trivial way by requiring explicit
use of parenthesis in the input programs of the stu-
dent’s compiler. This will allow the weaker students
to start working with an easy assignment while still
giving them the possibility to switch to the full as-
signment later. Of course, the highest points cannot
be scored with an easy assignment. This feature will
be used in our course this fall for the first time.

Both of the tools, ACE and TKKCC, are freely
available.

ACKNOWLEDGEMENTS

We thank Susan Rodger and Tomi Janhunen for let-
ting us use their codes. The help of Venla Hytönen is
appreciated.

REFERENCES

Aiken, A. (1996). Cool: a portable project for teaching com-
piler construction.SIGPLAN Not.31(7):19–24.

Aycock, J. (2003). The art of compiler construction
projects.SIGPLAN Not.38(12):28–32.

Benford, S., Burke, E., Foxley, E., Gutteridge, N., and Zin,
A. M. (1993). Ceilidh: A course administration and
marking system. InProceedings of the 1st Interna-
tional Conference of Computer Based Learning.

Boroni, C., Goosey, F., Grinder, M., and Ross R. (2001).
Engaging students with active learning resources: Hy-
pertextbooks for the web. InProceedings of the 32nd
SIGCSE Technical Symposium on Computer Science
Education, pages 65–69. ACM.

Cavalcante, R., Finley, T., and Rodger, S. H. (2004). A
visual and interactive automata theory course with
JFLAP 4.0. InProceedings of the 35th SIGCSE Tech-
nical Symposium on Computer Science Education,
pages 140–144. ACM.

FreeMarker (2008). http://www.freemarker.org/. Oct. 2008.

Groovy (2008). http://groovy.codehaus.org. Oct. 2008.

Janhunen, T., Jussila, T., Järvisalo, M., and Oikarinen,
E. (2004). Teaching Smullyan’s analytic tableaux in
a scalable learning environment. InProceedings of
the 4th Finnish/Baltic Sea Conference on Computer
Science Education.

Kerren, A. (1999). Animation of the semantical analysis.
In Proceedings of 8. GI-Fachtagung Informatik und
Schule, INFOS99. Informatik aktuell, Springer. (in
German).

Khuri, S. and Sugano, Y. (1998). Animating parsing algo-
rithms. InProceedings of the 29th SIGCSE Technical
Symposium, pages 232–236. ACM.

Korhonen, A., Malmi, L., and Silvasti, P. (2003).
TRAKLA2: a framework for automatically assessed
visual algorithm simulation exercises. InProceedings
of the 3rd Finnish/Baltic Sea Conference on Computer
Science Education, pages 48–56.

Malmi, L., Korhonen, A., and Saikkonen. R. (2002). Expe-
riences in automatic assessment on mass courses and
issues for designing virtual courses. InProceedings of
the 7th Annual SIGCSE/SIGCUE Conference on In-
novation and Technology in Computer Science Edu-
cation, pages 55–59. ACM.

Mössenböck, H., Löberbauer, M., and Wöß, A. (2008).
The Compiler Generator Coco/R. http://www.ssw.uni-
linz.ac.at/coco/. Oct. 2008.

Olshansky, T. and Pnueli, A. (1977). A direct algorithm for
checking equivalence of LL(k) grammars.Theoretical
Computer Science4:321–349.

Resler R. D. and Deaver, D. M. (1998). VCOCO: A visu-
alisation tool for teaching compilers.ACM SIGCSE
Bulletin, 30(3):199–202.

Rosenkrantz, D. J. and Stearns, R. E. (1970). Properties of
deterministic top-down grammars.Information and
Control, 17(3):226–256.

Saikkonen, R. , Malmi, L. , and Korhonen, A. (2001). Fully
automatic assessment of programming exercises. In
Proceedings of the 6th Annual SIGCSE/SIGCUE Con-
ference on Innovation and Technology in Computer
Science Education, pages 133–136. ACM.

Salmela, L. and Tarhio, J. (2004). ACE: Automated
compiler exercises. InProceedings of the 4th
Finnish/Baltic Sea Conference on Computer Science
Education.

Tscherter, V., Lamprecht, R., and Nievergelt J. (2002). Ex-
orciser: Automatic generation and interactive grading
of exercises in the theory of computation. In4th In-
ternational Conference on New Educational Environ-
ments, pages 47–50.

Vegdahl, S. R. (2001). Using visualization tools to teach
compiler design. Journal of Computing Sciences in
Colleges, 16(2):72–83.

TOWARDS AUTOMATED MANAGEMENT OF COMPILER ASSIGNMENTS

249


