
SHIP – SIP HTTP INTERACTION PROTOCOL
Proposing a Thin-client Architecture for IMS Applications

Joachim Zeiß, René Gabner, Sandford Bessler
Telecommunications Research Centre Vienna (ftw.) Donau-City-Straße 1, A-1220 Vienna, Austria

Marco Happenhofer
Vienna University of Technology Favoritenstraße 9/388, A-1040 Vienna, Austria

Keywords: Distributed mobile computing, HTTP, IMS thin client, Mobile client s/w virtualization, Mobile widgets,
SaaS, SIP

Abstract: IMS is capable of providing a wide range of services. As a result, terminal software becomes more and
more complex to deliver network intelligence to user applications. Currently mobile terminal software needs
to be permanently updated so that the latest network services and functionality can be delivered to the user.
In the Internet, browser based user interfaces assure that an interface is made available to the user which
offers the latest services in the net immediately. Client software is virtualized using script and widget
technologies, which allow user interfaces to run on different hardware platforms and operating systems. Our
approach, called SHIP, combines the benefits of the Session Initiation Protocol (SIP) and those of the HTTP
protocol to bring the same type of user interfacing to IMS. SIP (IMS) realizes authentication, session
management, charging and Quality of Service (QoS), HTTP provides access to Internet services and allows
the user interface of an application to run on a mobile terminal while processing and orchestration is done
on the server. A SHIP enabled IMS client only needs to handle data transport and session management via
SIP, HTTP and RTP and render streaming media, HTML and Javascript.. Furthermore, the SHIP
architecture allows new kinds of applications, which combine audio, video and data within a single
multimedia session.

1 INTRODUCTION

The IP Multimedia Subsystem (IMS) (3GPP, 2009)
is expected to provide convergent applications to
mobile terminals using the Session Initiation
Protocol (SIP) (Rosenberg et al., 2002). The IMS
architecture envisions mobile terminals supporting
SIP. SIP messages are routed from a user terminal
across the IMS infrastructure to a specific
application server in the system. A service
application or component is triggered which, in turn,
orchestrates service enablers (such as presence,
location, etc.).

Besides SIP, currently, additional protocols are
required to be supported by an IMS capable client:
the XML Configuration Access Protocol (XCAP)
(Rosenberg, 2007) for configuration of XML
documents on XML Document Management Server
(XDMS), the Message Session Relay Protocol

(MSRP) (Campbell et al., 2007) for stateful
messaging, and of course HTTP (Fielding et al.,
1999) – for accessing the services via web front-
ends. From the observation above, we see the need
to simplify the interactions with service applications,
to reduce the number of required protocol stacks and
the amount of processing in the terminal.

The lack of IMS terminals on the market is a
major obstacle for IMS/NGN roll-out. Like existing
SIP clients, current IMS clients support in general a
non-extensible set of applications like VoIP, video,
chat, presence, and address book functions.
Interlinking the SIP and HTTP protocols, as
presented in this paper, however, will provide the
basis for an open model of SIP/IMS terminals. With
this model new services and enablers become
available to the mobile terminal instantly; there is no
need to deploy additional client software or even
upgrade the operating system to support new
network capabilities and services.

21
ZeiÃ§ J., Gabner R., Bessler S. and Happenhofer M.
SHIP âĂŞ SIP HTTP INTERACTION PROTOCOL - Proposing a Thin-client Architecture for IMS Applications.
DOI: 10.5220/0001840600210028
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

We propose a thin client architecture for IMS
applications by introducing a distributed MVC
software pattern (Gamma et al., 1995). The user
interface components (view and control) run on the
terminal and interact with processing components
(model) executed on the application server. The
components communicate via HTTP session
controlled by SIP, concurrently with voice or video
transport inside the same dialog.

Generally, the SHIP solution follows the
Software as a Service (SaaS) model already
envisioned by Bennett et al. (Bennett et al., 2000) to
unburden the user of software maintenance, ongoing
operation, and support. Our architecture enables on-
demand pricing of applications, a better protection
of intellectual property for the software vendor and
the network operator to control services and act as
application service provider.

The main objective of this work is to present a
solution for a better exploitation of the SIP signaling
towards a seamless, secure, user friendly and
provider-efficient deployment of IMS services. Such
a solution would satisfy a number of wishes of
network operators and users:
• User micro-portal: IMS subscribers can connect

to a user-friendly, appealing personalized
homepage in which relevant information and
their commonly used functions are presented.
The users can manage their own profile data,
application preferences and privacy settings.

• Single sign-on: a user authenticated to IMS
doesn’t need to authenticate again to perform
actions for them she is authorized or consume
services to which she is subscribed.

• Web based user interface: in order to avoid the
development and installation of client
applications, web and web 2.0 technology
could be used in the browser.

• Asynchronous (HTTP push) events dispatched
by applications towards user terminals are
supported.

The SHIP (SIP/HTTP interaction protocol)
architecture is a blending of the SIP and HTTP
protocols. IMS authentication is used to manage
HTTP sessions within a SIP dialog. This approach
leads to a novel, web based, universal IMS terminal.

1.1 Related Work

Addressing the single-sign-on feature, 3GPP has
proposed the Generic Bootstrapping Architecture
(GBA) (3GPP, 2008) (M. Sher, T. Magedanz, 2006).
This framework introduces two new functions called
Bootstrapping Server Function (BSF) and Network

Authentication Function (NAF). The BSF has access
to the Home Subscriber Server (HSS) and can
download user profiles and credentials. The NAF
offers services to the User Equipment (UE). In order
to use the service, the UE has first to authenticate on
the BSF and the NAF can later check the UE
authentication. This requires an implicit
authentication at the network; our approach realizes
the authentication explicit.

The Sun JSR 281 specification (Java
Specification, 2006) describes the IMS API that
enables IMS applications to be installed on a
JSR281-enabled device. The API assumes the
existence of basic capabilities such as Push-to-Talk
over Cellular (PoC), presence, instant messaging,
etc. as well as the access to SIP headers and message
bodies. Complementary to our approach, the use of
JSR 281 implies the development and deployment of
each new application on the terminal. Thus often
CPU-intensive and complex orchestration of IMS
enablers has to be done at the client’s terminal.

In the EU FP6 project Simple Mobile Services
(SMS) the authors propose to transport serialized
messages coded in JSON (scripts) via SIP messages,
taking advantage of the asynchronous character of
SIP. This approach uses the signaling infrastructure
(SIP proxies) to transport user data. Our approach
uses the infrastructure only to establish a session and
transports the user data point to point and reduces so
the load on the SIP infrastructure.

1.2 Structure of this Paper

The rest of the paper is organized as follows: section
2 describes the proposed system architecture, section
3 explains the mechanisms to integrate bi-directional
HTTP transport into a SIP session, section 4
explains the implementation of the SHIP concept on
clients and servers and section 5 describes a design
example for a typical SHIP based application.
Section 6 concludes our work and gives further
research directions.

2 SYSTEM ARCHITECTURE

In the following we assume that the environment for
deploying our solution is that of an IMS service
provider. First we introduce the SHIP concept and
analyze the functionality required by the (mobile)
terminal as well as on the server. Section 2.2
explains the integration of SHIP into an IMS overlay
network.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

22

2.1 General Architecture

The basic concept of SHIP is to combine and
manage HTTP sessions with SIP. A SIP INVITE
message is used to negotiate a TCP channel for
HTTP connections. To achieve this, the media
capabilities of a User Agent to handle HTTP
requests are extended. A detailed explanation of the
session setup is given in section 3. Of course it is
still possible to establish additional media sessions
(e.g. voice and video) within the same SIP dialog.

Figure 1: SHIP architecture.

Figure 1 gives an overview of the involved
functions. It illustrates the SHIP terminal on the left
hand side and a SHIP server on the right hand side.
Both components are connected via a mobile IP
network.

A traditional User Agent for voice and audio
calls, called “SIP basic services” is depicted in

Figure 1 . For these services a client uses both a
SIP and a RTP stack. The SHIP terminal reuses the
existing functionalities while adding additional
capabilities. The SHIP logic uses SIP to establish
a dialog that negotiates a TCP channel for HTTP
traffic. The processing logic establishes, manages
and terminates the SIP dialog for the SHIP session.
It also ensures that each HTTP request is associated
with a secret session key. The SHIP logic is the only
component, which is aware of the 1:1 relation
between a SIP dialog and a SHIP session. The Web
front-end (e.g. a web browser or html rendering
engine) uses the SHIP logic to send and receive
HTTP messages and to display the HTTP part of the
service. It is possible to access services which offer
audio, video and data in any combination with only
one user agent. This approach makes the SHIP
architecture flexible for service developers and can
be used to run the user interface at the user terminal,
whereas service logic is being processed at the
server.

At the server side HTTP and RTP traffic as well
as SIP signaling are terminated. The RTP media is
being processed by the SIP basic services
component and the HTTP traffic by the SHIP logic

 component. SIP signaling is terminated in one or
both components, depending on the requested media
type. Since the SIP signaling and the HTTP traffic of
the client terminates at the server, the SHIP logic
can correlate both sessions with a unique secret
session key negotiated via SIP. The SHIP logic
assigns the key to each incoming valid HTTP
request and forwards the request to the application.
The latter can be a value-added service as
depicted in Figure 1, or a proxy which forwards the
request with the user identification to a 3rd party
application in a trusted domain.

A SHIP server consists of two main components
the SIP Session Manager (SSM) and an HTTP
proxy.

The SSM is the endpoint for SIP messages sent
by a client to establish a SHIP session. It stores a
unique session ID for each SHIP session.
Subsequent HTTP requests from the client’s
terminal containing a valid session ID are forwarded
by the HTTP proxy. The proxy optionally replaces
the SHIP session ID with the “P-Asserted-Identity”
(Jennings et al., 2002) header value to assure the
identity of the requester to subsequent AS.

2.2 Integration of SHIP in IMS

This section shows a possible integration of SHIP
into a mobile provider’s IMS. Figure 2 depicts the
provider’s IMS core, the SHIP server and IMS
service enablers, like presence, location or group
management. The enablers provide beneficial IMS
features, which can be easily used and combined by
SHIP services without the need of deploying enabler
specific software on the user terminals. SHIP clients
and 3rd party providers can connect to the SHIP
server. The IMS core is the point of contact for any
SIP based communication from and to the end-user.
SIP requests, addressing a SHIP service, received at
the IMS Call Session Control Functions (CSCFs) 0
are routed to the SHIP server, by executing Initial
Filter Criteria (IFC) or by resolving the provided SIP
URI. The connection from the SHIP terminal to the
IMS core and the SHIP server is provided by the
PLMN using HSDPA, WLAN, etc. 3rd party content
and service provider are connected via Internet.

However, it is possible to build more
sophisticated services using a SHIP terminal as
shown in section 5. Similar to enabler services, 3rd
party data and applications could be used to create

RTPSIPHTTP

SHIP
logic

SIP Basic
Services

RTP SIP HTTP

SHIP
logic

SIP Basic
Services

SIP/IMS
core

IP network

Video‐
Audio
Client

Value‐added services
(audio, video and data)

d

Web
Frontend

a b e

fc

SHIP - SIP HTTP INTERACTION PROTOCOL - Proposing a Thin-client Architecture for IMS Applications

23

valuable services.
The existence and correctness of the “P-

Asserted-Identity” header provided by the IMS
overlay network is essential for the functionality and
authentication, because the involved components
may authenticate the subscriber by using this header.
To realize correctness, all involved SIP entities and
HTTP entities which receive or forward SIP or
HTTP requests, have to guarantee that this header is
not manipulated and therefore they have to be in a
domain of trust. In the case of IMS this could be the
home network of the subscriber or just a trusted 3rd
party service provider.

Figure 2: SHIP in IMS.

3 MANAGING THE HTTP
SESSION

SIP uses the Session Description Protocol (SDP)
(Handley, Jacobson, 1998) to negotiate the
parameters of a session like protocol, media type, IP
addresses and port numbers. Media types in SDP
are: video, audio, application and data, with UDP as
transport protocol. Currently, it is not possible to
specify HTTP interactions with SDP since HTTP
relies on TCP as transport protocol. In (Gamma et
al., 1995) the authors specified an extension to SDP
to enable the transport of fax data using SIP. For that
purpose an extension is defined that expresses TCP
data as a media type.

According to (Yon, Camarillo, 2005) in which a
TCP connection for transmitting a fax is announced
via SDP (see figure 3) we propose a similar
extension for HTTP sessions. If the calling party
offers the SDP of Figure 3 and the called party

answers with the SDP of Figure 4, then the called
party would start a TCP connection form port 9 (IP
address 192.0.2.1) to port 54111 (IP address
102.0.2.2).

To handle a HTTP connection we propose the

configuration depicted in Figure 5 and Figure 6. In
our case media type m changes from image to
application and protocol from t38 to http.
Furthermore, we reuse the encryption key parameter
k of the SDP to store a session key.

For a User Agent, which is able to handle HTTP

request and response messages, the associated SDP
message includes the server and client part (Figure
7) to establish bi-directional HTTP data transport.

m=application 54111 TCP http
c=IN IP4 192.0.2.2
a=setup:passive
a=connection:new
k=clear:key123
m=application 9 TCP http
c=IN IP4 192.0.2.1
a=setup:active
a=connection:new

Figure 7: HTTP bi-directional.

The encryption of the HTTP stream should be
handled by SSL/TLS (Lennox, 2006). The SDP also
transports a session key, to be added as custom
header to each HTTP request. It maps the incoming
HTTP requests to their corresponding SIP session.
This mapping mechanism authenticates the HTTP
request originator. An IP address and port inspection
could also identify the user.

Figure 8 shows the message flow of a SHIP
session. The calling party acts as HTTP client and

m=image 9 TCP t38
c=IN IP4 192.0.2.1
a=setup:active
a=connection:new

Figure 3: TCP client part.

m=application 54111 TCP http
c=IN IP4 192.0.2.2
a=setup:passive
a=connection:new
k=clear:key123

Figure 5: HTTP server part.

m=application 9 TCP http
c=IN IP4 192.0.2.1
a=setup:active
a=connection:new

Figure 6: HTTP client part.

m=image 54111 TCP t38
c=IN IP4 192.0.2.2
a=setup:passive
a=connection:new

Figure 4: TCP server part.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

24

SIP User Agent, the called party as HTTP server and
SIP User Agent. In this scenario the called party
assigns a session key “key123” to the SIP Call-ID
“call1”. The called party sends the session key in
the 200 OK SIP response to the calling party. The
HTTP server maps all incoming HTTP requests with
session key “key123” to call-ID “call1”.

The validity of a HTTP session is limited by the
validity of the corresponding SIP session. If the SIP
session is closed or no longer valid, the HTTP
servers will not accept any request with key
“key123”. Both parties are able to start additional
video and audio streams using re-INVITE. It is also
possible to add an HTTP stream to a video and audio
stream, so that the multimedia session can cover
audio, video and data (application).

UA Alice UA SHIP
server

 INVITE + SDP.

 200 OK + SDP.

 ACK.

HTTP client
Alice

HTTP SHIP
serverCall‐ID = call1

Call‐ID = call1
Session‐Key = key123

Call‐ID = call1

Session
valid

 HTTP GET + Session‐Key = key123.

 200 OK.

 BYE.
Call‐ID = call1

 200 OK.
Call‐ID = call1

 HTTP GET + Session‐Key = key123.

 401 Unauthorized.

Call‐ID call1
SIP‐URI alice

Key key123
Figure 8: Authenticated HTTP dialog within a SIP session.

4 SYSTEM IMPLEMENTATION

Our implementation is based on the IMS
Communicator (http://imscommunicator.berlios.de/)
and the SIP communication server from Oracle. Our
extended version of the IMS Communicator
performs the IMS registration, and the SIP session
establishment. From the received SDP data, it takes
the IP address, port and session key information and
forwards it to the local running HTTP proxy, which
realizes the SHIP logic in Figure 1. The local web
browser is configured to communicate via this
HTTP proxy. At the remote side the SIP server

handles both SIP and an HTTP. SIP functions are
implemented as SIP Servlets (Java Specification,
2008), the HTTP part is implemented using HTTP
Servlet technology. To achieve SHIP functionality
the SIP Servlet as well as the HTTP Servlet share a
common session object provided by the SIP server.

4.1 Session Setup

When the user accesses a webpage (e.g. personalized
access to subscribed services), the browser sends the
request to the local HTTP proxy. If a SHIP session
already exists, the proxy adds the corresponding
session key to the HTTP request and forwards the
request to the SIP communication server. If no SHIP
session is running, the proxy triggers the IMS
Communicator to establish the SIP dialog of the new
SHIP session.

For this purpose a SIP INVITE message is sent
to a predefined SIP service URL including SDP data
depicted in Figure 7. Initial Filter Criteria (IFC)
evaluate the corresponding SIP server. The “P-
Asserted-Identity” header assures the application
server of the callers’ identity. The incoming SIP
INVITE message triggers a SIP Servlet at the
application server which generates the SHIP session
key. This ID is stored for later usage by HTTP
Servlets. A SIP 200 OK response message
containing session key as well as HTTP server IP
and port number is sent in reply to the INVITE.
When the IMS Communicator receives the 200 OK
it forwards the relevant SDP parameters to the
HTTP proxy module.

To setup the HTTP part of the SHIP session, the
HTTP proxy takes the IP address and port number of
the communication server and prepares a connection
for later HTTP requests. Now, the SHIP session is
valid and HTTP requests can flow in both directions

Incoming HTTP requests at the SHIP server
trigger an HTTP Servlet which inspects the
authentication header as well as the originating IP
address and port. It compares the session key to the
previously stored value. In case of matching session
key values, the session key header is replaced by the
P-Asserted-Identity header of the linked SHIP
session. Next, the server forwards the request to its
final destination. If there is no matching key, the
Servlet rejects the HTTP request with an HTTP 401
error response.

Since the application server correlates all
incoming traffic with a certain session key to the
identity of the called party and no further
authentication is used to access value-added
services, it might become a target for “man in the
middle” attacks. If one eavesdrops the HTTP (or

SHIP - SIP HTTP INTERACTION PROTOCOL - Proposing a Thin-client Architecture for IMS Applications

25

SIP) traffic he can find out the session key and use it
for service requests on behalf of the original called
party. Therefore, it is required to use TLS (Dierkse,
Allen, 1999) to secure the HTTP transport and IPSec
(Kent, Atkinson, 1998) to secure SIP.

Since the proposed mechanism is applied for
each TCP connection, the HTTP performance
deteriorates, since each request has to be processed
sequentially. Most web browsers start several TCP
connections to decrease the latency due to the
processing of a webpage composed of several
resources. To improve the performance, the proxy
module of the IMS Communicator has been
modified so that several TCP connections are
established and are also accepted by the HTTP
protocol stack within the SIP application server,
without considering the TCP port announced earlier
in the SDP of the IMS Communicator.

5 APPLICATION EXAMPLE

This section discusses a typical SHIP based
application example. The Multimedia Call Center
presented is a rich call scenario where
communication takes place via voice and visual
components derived from an associated HTML
connection. Thus, we combine two different media
types - data and voice - to one session, referred to as
“rich call” (optional video).

In call centers there are often different experts
for different concerns or questions. To forward calls
to the right expert, Interactive Voice Response
(IVR) is used. The system informs the caller, which
key to press or which keyword to speak in order to
proceed. The IVR system detects the selections and
finally forwards the call to the corresponding expert.
This approach reduces the number of call agents,
who only categorize and forward calls. But there are
also drawbacks. After listening to a long list of
options people might not be able to recall their best
choice, or cannot decide which option to choose.
Some sorts of dialogues cannot be implemented
using IVR systems at all, as there are too many
options confusing the customer just by listening to
them. To reduce this problem most IVR systems
query the caller several times with small questions.
But in general, complex, voice-only, IVR dialogues
are hard to follow for humans. We believe that
serving customer requests can be simplified, if
graphical user interfaces are combined with voice
communication.

Callers are guided through the menus by visual
input forms optionally in combination with voice

instructions like “please assign a category to your
question, if possible”. Indeed this approach does not
require any voice recognition, because the choices
made by the caller are transmitted as data to the call
center. Therefore, this type of rich call applications,
can realize much more complex dialogues as today’s
IVRs. Processing the Personal Identification
Number (PIN) or determining the right agent are just
two possible examples.

Figure 9: Call Center with SHIP architecture.

Figure 9 shows the architecture of a call center using
SHIP. There is a group of call agents with partly
different skills. The Call Center AS (SHIP server)
terminates SIP and HTTP signaling as well voice
data. It might access a database, where account data
are stored. For each SHIP caller the AS stores the
service data (account data, selected question
category, etc.), already entered by the caller. The
call agent has access to these service data, as soon as
he accepts the call.

Figure 10 shows the call flow for this scenario.
Alice sends a SIP INVITE message (1) addressed to
the call center’s SIP URI. The IMS core routes the
request to the application server. It is worth to
mention, that the request includes two different
media types inside the SDP part, one for audio and
one for data (HTTP). If both media types are
present, the AS detects the client’s SHIP
capabilities. The AS agrees to the client’s
connection parameters (2 & 3) and starts a session.
Both, audio and data terminate at the AS. If the SDP
data media type were missing - indicating that the
client cannot handle HTTP - a voice-only call would
be established.

Since both client and server are SHIP enabled,
the client sends an HTTP request (4) associated to
the previously established SHIP session to the
server. The server responds with an HTML form (5)
where Alice can enter her account data, and specify
her concerns. In traditional IVR systems these data

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

26

are transferred via voice. The major benefit of our
solution is that the system assists Alice utilizing text
and audio to fill up the form properly. The client
sends Alice’s service data to the AS (6 & 7) which
generates a ticket for this request and assigns this
request to the correct group of call center agents.
The way the AS assigns the call to a certain agent, is
out of scope of this document.

Before the AS sends an INVITE message (8) to
an agent (Bob), it correlates the call from Alice with
the new one. Note that the correlation includes all
service data of Alice which become accessible for
Bob from now on. From the SIP and RTP
perspective, the AS acts as a Back-2-Back User
Agent (B2BUA), as defined in (J. Rosenberg et al.,
2002) Regarding HTTP the AS acts as an HTTP
server, handling both parties within one joint
session. This call center system requires that all call
agents use SHIP enabled clients. Thus the call can
be established with voice and HTTP media (9 & 10).
Bob’s client is aware of the AS’ SHIP capabilities,
because it received the corresponding SDP data
media type within the INVITE request (8). As a
result Bob’s call agent sends an HTTP request (11).
The AS responds with Alice’s service data (12) (e.g.
an HTML form with all account data and the recent
bills).

Figure 10: Call flow in a SHIP enabled Call Center.

During this session, the associated HTTP
connection supports the call center agent by
displaying certain aspects of Alice’s bill on her
mobile’s display. The following Figure 11 shows
how Bob uses the data channel to display billing
data at Alice’s SHIP client. For this reason he
updates the session at the AS with a new HTTP
request (1 & 2) (e.g. “show bill”). Alice’s client has
to update its screen using AJAX or SHIP based

3) HTTP GET
4) 200 OK + bill data

1) HTTP GET + show bill
2) 200 OK

SSM

HTTP
proxy

Call Center AS
Caller @

SHIP terminal
Call Agent @
SHIP terminal

Alice Bob

Figure 11: End 2 End data communication.

HTTP push) (3 & 4).
With this mechanism it is possible to push

images and websites to the other party or to send
data from the caller to the call agent.Parts of the
functionality described above could also be
implemented as a web application guided by voice
(transferred over HTTP), in connection with a third
party voice call. But our approach reuses the IMS
infrastructure to achieve QoS, and to validate the
identity of the users.

6 CONCLUDING REMARKS

In this paper we show a new way of approaching
application development in IMS. The basic idea is to
blend the SIP and HTTP protocols in order to
achieve authenticated and authorized web based
communication, while keeping the advantages of
IMS (charging, QoS, roaming, usage of service
enablers, etc.). Our first prototype implementation
could proof the concept. For a large scale
deployment, we will discuss the required changes
for SDP standard within the respective
standardization groups.

Instead of executing a monolithic stand-alone
application on the mobile terminal we propose to
distribute the software between client and server
following the SaaS model. In our application
architecture GUI components are executed on the
client side, whereas functional components, data
processing and enabler orchestration reside on the
application server. Interactions between terminal and
server are entirely controlled by SIP. Bi-directional
HTTP traffic to transport GUI and user events is
managed by a SIP session. We reduced the protocols
required to be supported by an IMS client to SIP
(incl. RTP) and HTTP. There is no need for
deploying enabler or application specific code on the
mobile terminal.

We discussed an application example
demonstrating the capabilities of our approach,
which is currently being implemented by the

SHIP - SIP HTTP INTERACTION PROTOCOL - Proposing a Thin-client Architecture for IMS Applications

27

BACCARDI project (www.ftw.at). This project
investigates future opportunities and enhancements
of IMS and was initiated by the Telecommunication
Research Center Vienna (ftw.) and its industrial
partners.

In the future we will compare the possibilities of
introducing a HTTP push mechanism controlled by
either SIP Subscribe/Notify messages or a Call-Id
related SIP MESSAGE message. In both cases the
client is informed about changes of previously
downloaded content (occurring during the SIP
session). Furthermore, we are looking at integrating
our solution into currently available mobile widget
engines such as the Symbian Web runtime (WRT) .

The SHIP concept is not only a simplification of
IMS protocol handling but opens new opportunities
to service providers, service developers, network
operators and users. Service providers can offer their
Internet services to the community of IMS
subscriber and reuse the IMS infrastructure for
charging, QoS and authentication. Service
developers can implement the services, as they did
for the Internet community, without any special
knowledge about deploying telco services. The
network operators might profit from this approach,
because they can sell more services, like those which
are deployed for the Internet. Finally there is no
need for the user to install and update service
specific software.

ACKNOWLEDGEMENTS

This work has been supported by the Austrian
Government and the City of Vienna within the
competence center program COMET. We thank our
colleagues in the BACCARDI project, especially
Joachim Fabini and Rudolf Pailer for the fruitful
discussions and contributions.

REFERENCES

3GPP TS23.228, 2009. IP Multimedia Subsystem (IMS);
Stage 2

J. Rosenberg et al., 2002. SIP: Session Initiation Protocol,
RFC 3261

J. Rosenberg, 2007. The Extensible Markup Language
(XML) Configuration Access Protocol (XCAP),
RFC4825

B. Campbell, R. Mahy, C. Jennings, 2007. The Message
Session Relay Protocol (MSRP), RFC 4975

R. Fielding et al., 1999. Hypertext Transfer Protocol –
 HTTP/1.1, RFC 2616

Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides. 1995. Design Patterns, Addison-Wesley.

Bennett, K., Layzell, P, Budgen, D., Bereton, P.,
Macauley, L. A., Munro, M., 2000. Service-Based
Software: The Future for Flexible Software, Asia-
Pacific Software Engineering Conference, 5-8
December 2000.

3GPP TS33.220, 2008. Generic Authentication
Architecture (GAA); Generic bootstrapping architec-
ture

M. Sher, T. Magedanz, 2006. Secure Access to IP
Multimedia Services Using Generic Bootstrapping
Architecture (GBA) for 3G & Beyond Mobile
Networks, Q2Swinet

Java Specification, 2006. IMS Services API JSR-281,
online: http://jcp.org/en/jsr/detail?id=281

C. Jennings, J. Peterson, M. Watson, 2002. Private
Extensions to Session Initiation Protocol (SIP) for
Asserted Identity within Trusted Networks, RFC 3325

M. Handley, V. Jacobson, 1998. SDP: Session Description
Protocol, RFC 2327

D. Yon, G. Camarillo, 2005. TCP-Based Media Transport
in the Session Description Protocol, RFC 4145

J. Lennox, 2006. Connection-Oriented Media Transport
over the Transport Layer Security (TLS) Protocol in
the Session Description Protocol (SDP), RFC4572

Java Specification, 2008. Java SIP Servlet Specification
v1.1, JSR-289 online: http://jcp.org/en/jsr/detail?
id=289

T. Dierkse, C. Allen, 1999. The TLS protocol Version 1.0,
RFC 2246

S. Kent, R. Atkinson, 1998. Security Architecture for the
Internet Protocol, RFC 2401

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

28

