
SIHC: A STABLE INCREMENTAL HIERARCHICAL CLUSTERING
ALGORITHM

Ibai Gurrutxaga, Olatz Arbelaitz, José I. Martı́n, Javier Muguerza, Jesús M. Pérez and Iñigo Perona
Computer Architecture and Technology Dept., University of the Basque Country, Donostia, Spain

Keywords: Hierarchical clustering, Incremental, Stability.

Abstract: SAHN is a widely used agglomerative hierarchical clustering method. Nevertheless it is not an incremental
algorithm and therefore it is not suitable for many real application areas where all data is not available at the
beginning of the process. Some authors proposed incremental variants of SAHN. Their goal was to obtain
the same results in incremental environments. This approach is not practical since frequently must rebuild the
hierarchy, or a big part of it, and often leads to completely different structures. We propose a novel algorithm,
called SIHC, that updates SAHN hierarchies with minor changes in the previous structures. This property
makes it suitable for real environments. Results on 11 synthetic and 6 real datasets show that SIHC builds
high quality clustering hierarchies. This quality level is similar and sometimes better than SAHN’s. Moreover,
the computational complexity of SIHC is lower than SAHN’s.

1 INTRODUCTION

Clustering is an unsupervised pattern classification
method which partitions the input space into groups
or clusters. The goal of a clustering algorithm is to
perform a partition where objects within a group are
similar and objects in different groups are dissimi-
lar. Therefore, the purpose of clustering is to identify
natural structures in a dataset and it is widely used
in many fields (Jain and Dubes, 1988; Mirkin, 2005;
Sneath and Sokal, 1973).

Many clustering algorithms exist, but all of them
can be broadly classified in two groups: partitional
and hierarchical. Partitional algorithms process the
input data and create a partition that groups the data
in clusters. On the other hand, hierarchical algorithms
build a nested partition set called cluster hierarchy.
The procedures to obtain this nested set of partitions
are classified as agglomerative (bottom-up) and divi-
sive (top-down).

These clustering hierarchies are suitable to present
in a graphical way. The most usual procedure is to
draw them as a tree diagram called dendrogram. The
root node of this tree contains the topmost partition
while the leaf nodes contain the partition at the lower
level of the hierarchy. A merge in an agglomerative
algorithm is represented as a new node which is set to
be the parent of the merged nodes. Similarly, a split in

a divisive algorithm is viewed as new nodes which are
set to be the children of the split node. This graphical
representation is very helpful for the end user since
it allows a rapid identification of the most interesting
structures in the data.

Several hierarchical algorithms exist (Fisher,
1987; Jain and Dubes, 1988; Mirkin, 2005). SAHN is
a widely known general method to build cluster hier-
archies (Sneath and Sokal, 1973). It defines a simple
and intuitive procedure and has been widely used in
many areas. Unfortunately it is not an incremental
method, meaning that we must rebuild the entire hier-
archy if we want to add some new data to an existing
one. Since many real applications work with a data
stream some authors proposed incremental versions
of the SAHN method (El-Sonbaty and Ismail, 1998;
Ribert et al., 1999). The goal of these approaches is
to incrementally build a tree identical to the one that
would be obtained with the original SAHN method.
This goal is interesting from a theoretic point of view,
but we claim it is not crucial from a practical point of
view.

Final users of incremental clustering algorithms
need a stable structure. The user updates its knowl-
edge as the incremental procedure is carried out. Con-
sequently this process must keep the main structure
of the updated dendrogram. If the addition of few
new cases leads to a dramatic change of the learned

300 Gurrutxaga I., Arbelaitz O., Martín J., Muguerza J., Pérez J. and Perona I. (2009).
SIHC: A STABLE INCREMENTAL HIERARCHICAL CLUSTERING ALGORITHM.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Artificial Intelligence and Decision Support Systems, pages
300-304
DOI: 10.5220/0001857103000304
Copyright c© SciTePress



structures, the user will be unable to assimilate the
changes. In addition, it will lose confidence on the
learning algorithm. The incremental versions of the
SAHN algorithm do not provide a stable structure.
Since their goal is to obtain the same tree we would
obtain with the original method they must, in many
cases, rebuild the entire tree or an entire branch of it.

The purpose of our work is to present a stable in-
cremental version of SAHN algorithm. The proposed
algorithm adds a new case without varying the previ-
ously obtained structures.

To evaluate the proposed algorithm we answer two
main questions in this paper. Which is the quality of
the incremental dendrograms compared to those built
with the SAHN method? How does the arrival order
of the new cases affect the updating algorithm? We
experimented with 11 synthetic and 6 real datasets
and 3 algorithms based on the SAHN method. Re-
sults confirm that the incremental algorithm is able to
update dendrograms with no quality loss. Therefore,
we claim this algorithm is a good choice on real in-
cremental environments where stability and compre-
hensibility are important factors.

Next section is devoted to describe the SAHN
method and some previous incremental approaches.
The algorithm we propose is described in Section
3. In Section 4 we describe the experimentation de-
signed to measure the quality of the proposed algo-
rithm and results are described in Section 5. Finally,
Sections 6 and 7 are devoted to discuss the results and
draw conclusions.

2 HIERARCHICAL CLUSTERING

In this section we first describe the SAHN method: a
method to obtain cluster hierarchies. Then, we briefly
describe two previously published incremental ver-
sions.

The SAHN method is based on two main steps.
First, each individual point of the input dataset forms
a cluster on its own. That is, if n denotes the number
of data points in the dataset the method begins with
a partition of n singleton clusters. Second, the two
closest clusters are merged. This second step is re-
peated until all the points are merged in a single clus-
ter. This method automatically obtains a set of nested
partitions forming a hierarchy. The output of this pro-
cedure is a set of exactly n partitions, from the n sin-
gleton clusters to the all-in-one cluster partition.

To measure the proximity of two clusters we
must define a cluster proximity measure. The SAHN
method is often used with one of the following prox-
imity measures: single-linkage (nearest neighbour),

complete-linkage (farthest neighbour) and average-
linkage (group average). Single-linkage computes the
distance between two clusters as the distance between
the two nearest points in both clusters. Similarly,
complete-linkage computes the distance between the
two farthest points in both clusters. Finally, average-
linkage computes the average distance between all the
points from one cluster to the points in the other clus-
ter.

(Ribert et al., 1999) proposed an incremental vari-
ation of the SAHN method. The tree they obtain is ex-
actly the same obtained applying the SAHN method
to the union of the initial dataset and the new case. Al-
though an analysis of the computational cost of the in-
cremental method is not done, empirical results show
similar behaviour to SAHN’s. On the other hand, the
memory usage is considerably reduced.

(El-Sonbaty and Ismail, 1998) described another
incremental version of the single-linkage algorithm.
Its computational cost is O(n2), opposite to the O(n3)
cost of the SAHN method. They empirically showed
that the algorithm obtains the same tree as the single-
linkage algorithm for some values of an internal pa-
rameter of the algorithm. Nevertheless, the new
method cannot be applied to other proximity mea-
sures commonly used with the SAHN method.

3 SIHC ALGORITHM

The aim of the algorithm we present, called SIHC, is
to incrementally add new cases to dendrograms built
with the SAHN method. The novelty of this incre-
mental algorithm is that the updated tree keeps its
main structure. This way users will easily assimilate
the small variations produced by the learned cases.
Although the algorithm can be used on its own, we
designed it as an updating method for SAHN-based
dendrograms.

SIHC is a top-down process described in Algo-
rithm 1. It is a recursive procedure that begins at the
root node. This procedure computes the distance be-
tween the new case and the cluster represented by the
current node. This distance can be based on any prox-
imity measure, so the method adapts to any SAHN-
based algorithm. If the height of the node is less or
equal than the computed distance the recursive proce-
dure stops. A new node, whose children are the new
case and the current node, is created and it replaces
the current node in the dendrogram.

If the height of the current node is higher than the
distance from the new case to it, the recursive proce-
dure is repeated on the child nearest to the new case.
In this case the height of the traversed node should be

SIHC: A STABLE INCREMENTAL HIERARCHICAL CLUSTERING ALGORITHM

301



Algorithm 1 : SIHC.

dnode← distance(newcase,node)
if node.height ≤ dnode then

singleton← new leaf node
singleton.addCase(newcase)
newnode← new internal node
newnode.addChildren(node,singleton)
newnode.height← dnode
replace node with newnode

else
nearest← argminchild(distance(newcase,child))
update height(node)
SIHC(newcase,nearest)

end if

updated. The new height is easily computed since it is
the distance between its children once the new case is
added to the nearest children. Anyway, for most used
proximity measures there is a simple way to compute
this value. Let h be the height of the traversed node,
nnear the number of cases in the child nearest to the
new case and d f ar the distance from the new case to
the farthest child. The new height of the node is com-
puted as follows:

• Single-linkage: min(h,d f ar)

• Complete-linkage: max(h,d f ar)

• Average-linkage: (h×nnear +d f ar)/(1+nnear)

Similar functions can easily be found for other prox-
imity measures.

The algorithm ensures that the addition of a new
case will not vary previously defined structures. It
just adds a new node where appropriate. Notice that
the definition of the procedure prevents incoherences
such as a node being located higher than its parent
node.

4 EXPERIMENTAL SETUP

In this section we describe the experimental work per-
formed to measure the quality of the dendrograms up-
dated with the SIHC algorithm. We ran the algorithm
over 11 synthetic and 6 real datasets as explained next.
We split each dataset in 20 folds and built a dendro-
gram using the SAHN method and k folds. We incre-
mentally added the remaining 20− k folds based on
SIHC algorithm. k varied from 1 to 19, and we used
three proximity measures: single, average and com-
plete linkage. This procedure allowed us to measure
how variation on the fraction of incrementally learned
cases affects the obtained dendrogram.

Table 1: Characteristics of the real datasets.

Dataset Dimensions Clusters Cases
Iris 4 3 150

Glass 9 7 214
Wine 13 3 178
Ecoli 8 8 336

Haberman 3 2 306
Ionosphere 34 2 351

To measure the effect produced by the arrival or-
der of the data we repeated the procedure 25 times.
We built 5 dendrograms for each k value randomly
selecting the k folds. Furthermore, we incrementally
added the remaining cases in 5 different orders. This
means that we built 25 incremental dendrograms for
each dataset, k value and proximity measure. In or-
der to have a valid reference we also built a SAHN
tree with all the data from each dataset, resulting in
24,276 dendrograms altogether.

We draw the 6 real datasets from the UCI repos-
itory (Asuncion and Newman, 2007). Their charac-
teristics are described in Table 1. 9 of the synthetic
datasets we designed follow the same pattern and are
named as Normal d s. Here d means the number of
dimensions and we set it to 2, 4 and 6. In each dataset
there is a cluster per dimension created drawing 50
points each from a multivariate normal distribution.
The mean of the distribution of cluster i is set to s∗ ei
and the covariance matrix of every cluster is the iden-
tity matrix. ei is the vector where ith position is set
to 1 while the rest is set to 0. We set s to 3, 5 and
10, and hence obtained clusters with different over-
lapping level. The remaining two datasets, Concen-
tric and T&U, are 2-dimensional and define clusters
that are hard to detect for many clustering algorithms.
The former contains 3 concentric ring-shaped clusters
and a total of 400 points. The latter is composed by
one T-shaped and one U-shaped cluster, of 150 points
each. The trunk of the T is in the concave part of the
U.

To measure the quality of a dendrogram we pref-
ered the partition membership divergence (PMD) dis-
tance rather than the widely used cophenetic distance
because “identical topologies may still prove very dif-
ferent in cophenetic levels” (Podani, 2000). PMD is
defined as the number of partitions implied by the
dendrogram in which a given pair of cases do not be-
long to the same cluster. We measured the quality of
a dendrogram computing the correlation between the
PMD matrix of the dendrogram and the distance ma-
trix.

Although the aim of the proposed algorithm is
not to obtain the same dendrogram SAHN would

ICEIS 2009 - International Conference on Enterprise Information Systems

302



build, we consider interesting to compare the den-
drograms obtained by both algorithms. We compared
two dendrograms computing the correlation between
their PMD matrices.

5 RESULTS

In Figure 1 we show the quality of the dendrograms
obtained by SIHC. In order to have a valid reference
all values were divided by the quality of the cor-
responding SAHN-based dendrogram. This means
that a value greater than 1 represents higher quality
than the SAHN-based dendrogram and a value lower
than 1 represent lower quality. Remind that for each
dataset, algorithm and k value we computed 25 den-
drograms. Each result showed in Figure 1 refers to
the average value of those 25 runs.

The left side of the figure shows average results
for the synthetic datasets. It is clear that the qual-
ity of the dendrogram increases with k value. This
means that better dendrograms were obtained when
less cases were incrementally added. Incremental
dendrograms based on single-linkage never improve
the quality of the SAHN-based dendrogram. On the
other hand, those based on complete and average-
linkage achieve improvements, provided that no more
than 30% or 20% of the data was added incremen-
tally. If we focus on real datasets — on the right side
of the figure— results for single-linkage are better,
improving SAHN-based dendrograms for 5 k values.
For complete and average-linkage results are similar
to those obtained for synthetic datasets, but they are
slightly better for low k values and slightly worse
for high k values. Anyway, the quality of dendro-
grams with about 25% of incrementally added data
is higher than the quality of the corresponding SAHN
dendrograms. All individual datasets show a similar
behaviour pattern.

Previous results suggest that incremental dendro-
grams differ from SAHN dendrograms, at least those
built with average or complete linkage. We have mea-
sured this dissimilarity relation comparing all incre-
mental dendrograms to their corresponding SAHN
dendrogram. Results show that similarity increases
with k. SIHC is very similar to SAHN for single-
linkage while for average and complete-linkage high
similarity levels are obtained for just the highest k val-
ues. Nevertheless, we saw that this dissimilarities of-
ten allowed a quality increment.

Since the result for each dataset, algorithm and
k value was the average value of 25 executions we
computed the standard deviation of the quality of the
dendrograms— the correlation of the PMD matrix of

each dendrogram and the distance matrix. The goal
of this analysis was to measure the stability of SIHC
faced to modifications in the arrival order of the data.
Results show that the variation is insignificant. Aver-
age standard deviation was below 0.04 and just a few
cases exceeded 0.15. No significant pattern could be
found in these results although it seems that variance
decreases when k increments.

6 DISCUSSION

The results of the experimentation show that SIHC al-
gorithm builds high-quality dendrograms. This qual-
ity is even higher than SAHN’s provided that no more
than a specific fraction of the total number of cases
have been incrementally added. This threshold is
database and proximity measure dependant, but is
about 35%. Results confirm that SIHC can be used on
its own, but is better used as an updating method for
SAHN dendrograms. Nevertheless, if single-linkage
proximity measure is used, results for SIHC are sim-
ilar to SAHN’s even in stand-alone mode. The al-
gorithm works in optimal conditions if it is used to
update a SAHN dendrogram with a low flow of new
data.

Results also show that the incrementally updated
dendrograms differ from the SAHN dendrograms,
particularly if average or complete-linkage is used.
The positive point is that the differences produced by
SIHC are often used to improve SAHN’s results.

Regarding to the computational cost of SIHC a
worst case analysis determines a O(n2× log(n)) com-
plexity. Notice that each case must traverse, at worst
case, a whole branch of the tree from the root to
a leaf node. The length of this path is O(log(n)).
In each node the new case must be compared to
the cases already in it, which is O(n). Since n is
the total number of cases the overall complexity is
O(n2× log(n)). This complexity level is sensitively
lower than SAHN’s O(n3) complexity.

7 CONCLUSIONS

In this work we presented SIHC: a new incremental
algorithm based on SAHN method. This algorithm
allows to incrementally add new cases to a previously
built dendrogram. The novelty of the algorithm is that
it adds the new data with no changes in the main struc-
ture of the updated dendrogram. It simply adds a new
node were appropriate. This stability is fundamental
for many practical purposes and was ignored in pre-
vious incremental approaches. Furthermore, the loca-

SIHC: A STABLE INCREMENTAL HIERARCHICAL CLUSTERING ALGORITHM

303



Figure 1: Quality of the incremental dendrograms.

tion of the added node can be used with classification
purposes, since it determines the membership of the
new case to previously detected structures or clusters.

Results show that the proposed algorithm builds
similar dendrograms to SAHN for single-linkage, but
differences arise with other proximity measures. Nev-
ertheless, these differences allow SIHC to build bet-
ter quality dendrograms. It seems that these improve-
ments are kept while the incrementally added data is
about half of the data in the initial SAHN tree.

The incremental algorithm can be adapted to any
proximity measure used with SAHN method. More-
over, many computations can be avoided based on
properties that the most used proximity measures
have. On the other hand, although SIHC depends on
how the incremental data is ordered, variations are not
significant.

We also showed that the complexity of SIHC sig-
nificantly reduces the complexity of SAHN method
from O(n3) to O(n2× log(n)).

In few words, we present a new algorithm that al-
lows updating SAHN dendrograms, at a reduced com-
putational cost, keeping the main cluster structures.
This capabilities make the algorithm suitable for prac-
tical use in real enterprise environments.

ACKNOWLEDGEMENTS

The work described in this paper was partly done
under the University of the Basque Country, project
EHU 08/39. It was also funded by the Diputacin Foral
de Gipuzkoa and the European Union.

REFERENCES

Asuncion, A. and Newman, D. (2007).
UCI machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html

El-Sonbaty, Y. and Ismail, M. (1998). On-line hierarchichal
clustering. Pattern Recognition Letters, 19:1285–
1291.

Fisher, D. H. (1987). Knowledge acquisition via incremen-
tal conceptual clustering. Machine learning, 2:139–
172.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clus-
tering Data. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

Mirkin, B. (2005). Clustering for Data Mining: A Data
Recovery Approach. Chapman & Hall/CRC.

Podani, J. (2000). Simulation of random dendrograms and
comparison tests: Some comments. Journal of Clas-
sification, 17:123–142.

Ribert, A., Ennaji, A., and Lecourtier, Y. (1999). An incre-
mental hierarchical clustering. In Vision Interface ’99,
pages 586–591, Trois-Rivières, Canada.

Sneath, P. H. A. and Sokal, R. R. (1973). Numerical Taxon-
omy. Books in biology. W. H. Freeman and Company.

ICEIS 2009 - International Conference on Enterprise Information Systems

304


