
Flexible Composites and Automatic
Component Selection for Service-Based Applications

Jacky Estublier, Idrissa A. Dieng, Eric Simon and German Vega

Grenoble University - LIG, 220 rue de la Chimie, 38041 Grenoble BP53 Cedex 9, France

Abstract. In traditional Software Engineering approaches, an application is
described as a composite entity containing all its components. This approach is
no longer relevant in modern Software Engineering, at least when developing
service-based applications where some components (services) are selected very
late during the development process or even “discovered” at execution. This
new context requires describing an application in a more flexible way, leaving
room for delayed selection. In turn, if component selection can be performed all
along the life-cycle, an application description must explicitly include the
application requirements and goals and the system must at least ensure that the
selections satisfy the application description.
In this work, we propose a concept of composite addressing the needs of the
advanced and flexible service-based applications, automating component
selection and building composites satisfying the application description and
enforcing minimality, completeness and consistency properties. We also
propose tools and environment supporting these concepts and mechanisms in
the different phases of the application life-cycle.

1 Introduction

Service-based technology is becoming widespread, and an increasing number of
applications applying this technology are under development. Despite this success,
developing service-based applications, today, is a challenging task, because the
technology is somehow different, and because these applications often have unusual
characteristics and constraints, which require adapting or rethinking the methods and
tools needed for supporting their development.

Service Oriented Computing (SOC) [13] like its predecessor, Component Based
Software Engineering (CBSE), relies on a clear separation between interface (service)
and implementation (component). But SOC emphases the fact many implementations
and even many running instances of a service may be available (locally, on the net or
elsewhere) and that the selection of the implementation(s) and/or instances to use for
a given service can be performed at any time during the life-cycle, including at
execution. These characteristics make that SOC is especially well adapted to new kind
of software applications like those managing captors, sensors and actuators. For
example, in a house, a window shutter service may be present an undefined number of
times (it is the number of windows having an automated shutter); many
implementations of this service may exist and may be used simultaneously (each

Estublier J., Dieng I., Simon E. and Vega G. (2009).
Flexible Composites and Automatic Component Selection for Service-Based Applications.
In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 9-20
DOI: 10.5220/0001857500090020
Copyright c© SciTePress

shutter maker may have a different implementation of the service); new services and
implementations can appear or disappear during the application execution (installing
or removing a shutter, of same or different brand); and the same shutter can be used
by different software applications. This context does not fit the usual component
based technology, which implicitly, hypothesizes a static structure, with a single
component implementation and instance per service, known before hand, not shared
and so on. It does not mean that it is not possible to develop, with traditional
technology, applications with more relaxed hypothesis, like the one mentioned above,
but in this case the designer and developer are left alone with complex and low-level
technology, without any tools and methods to help them; and development turns out
to be more a hacking nightmare than Software Engineering. To a lesser degree this
also applies to service-based applications due to the current lack of support tool.

Our main objective is to facilitate the realization of advanced service-based
software applications which requires concepts, tools and Software Engineering
environments which natively support the hypothesis required by such advanced
applications. A software application is often described as a composite entity; but
depending on the life-cycle phases, the composite elements and their relationships are
of different nature. For example, at design time, the application can be described in
term of coarse grain functional elements with constraints and characteristics; while at
deployment time, it can be a set of bundles with dependencies. The “usual” composite
concept fits mostly the development phase with elements being components and
relationships being wires. This concept of composite is unsatisfactory for at least two
reasons:
• It is too rigid to accommodate for the flexibility required by advanced applications.
• It is a low-level implementation view of the application.

Different kinds of composites have been proposed so far, adapted to different
needs, different technologies and different contexts. Orchestration and choreography
[14], as well as ADL (Architecture Description Language) and configurations are
different kinds of composite. For example, orchestration has been proposed to solve
some issues found in service-based applications, with the hypothesis that services
(most often web services) can be discovered at execution, that services do not have
dependencies, and that the structure of the application is statically defined (the
workflow model). In this work, we propose a concept of composite that addresses the
needs of the advanced service-based applications, proposing technical concepts and
mechanisms allowing designing, developing and executing applications which require
high levels of flexibility and dynamism.

This paper is structured as follows: In Section 2, we briefly introduce our SAM /
CADSE approach. Then in Section 3, we propose a way to define and manage the
concept of composite addressing several needs of service-based applications. Section
4 highlights related work. Finally, we present our conclusion and future work in
Section 5.

10

2 The SAM / CADSE Approach

2.1 The Approach

In “pure” Service Oriented Architecture (SOA) like web services [1], there are not
explicit dependencies and the orchestration model is a static architectural description.
Dynamic service frameworks like OSGi [11] do the opposite: only service
dependencies are known, and there is no explicit architectural description. This kind
of mechanism provides dynamic behavior since the framework is in charge to resolve
dynamically the dependencies; but it has the drawback that the application is not
explicitly defined, it has no architecture; no explicit structure. There is a conflict
between making explicit the application structure and content; and providing the
application a large degree of dynamism.

It is interesting to mention that this conflict also exists between the early design
phase when only the purpose, constraints and gross structure are defined, and the
implementation phase that (usually) requires knowing the exact structure and content
of the application.

To solve this conflict, we propose to see a software project as a succession of
phases which purpose is to gradually select, adapt and develop components until the
structure and content of an application is fully defined and complete. These phases are
either performed by humans, before execution, or by machines at execution. Or
course, the machine at execution can only perform selections; but for those selections
to be automated (at all phases), at least a part of the goal, purpose and constraints of
the application must be made explicit, and a repository of components must be
available.

Our solution relies on two systems: SAM (Service Abstract Machine) a service
framework for executing the application, and a set of CADSEs (Domain Specific
Software Engineering environments) [5] in which are performed the Software
Engineering activities. The approach makes the hypothesis that each activity receives
a composite as input, and produces a composite (the same or another one) as output.
The output composite represents the same application as provided as input, but more
precisely. In the same way, SAM receives a composite in input; it executes those parts
that are defined, and complete those that are not fully defined, dynamically selecting
the missing services.

Therefore our approach relies on a composite concept which can describe the
application in abstract terms, through the properties and constraints it must satisfy,
and which can describe that same application, in terms of services and connections, as
understood by the underlying service platform(s). We believe that there is a
continuum from these two extremes; each point being represented by a composite.
All these composites and environments share the same basic SAM core metamodel,
presented bellow.

2.2 SAM Core

The goal of Service Abstract Machine (SAM) is to dynamically delegate the
execution performed in SAM toward real service platforms, like OSGi, J2EE or Axis

11

Web services. Its basic metamodel, called SAM core therefore subsumes the
metamodels supported by the current service platforms.

A composite, during execution, is expressed in terms of the concepts exposed by
SAM core; but composites also represent the application during the early phases of
the life-cycle; SAM core is the metamodel shared by all composites, both in the
Software Engineering activities and at execution; for that reason it must be abstract
enough and independent from specific platforms and technologies.

The central concept is service. But service, in SAM core is an abstraction
containing a Java interface along with its properties (a set of attribute/values pairs)
and constraints (a set of predicates). Its real subclasses are Specification,
Implementation and Instance, seen as different materializations of the concept of
service. Specifications are services indicating, through relationships requires, their
dependencies toward other specifications. Despite being a rather abstract concept (it
does not include any implementation, platform or technical concern), it is possible to
define a structural composite only in terms of service specifications, as well as
semantic composites in term of constraints expressing the characteristics (functional
or non functional) required from the services that will be used. Still, the system is
capable to check completeness (no specification is missing), and consistency (all
constraints are valid) on abstract composites, making it relevant for the early phases.

An implementation represents a code snippet which is said to provide one or more
specifications. Conversely, a specification may be provided by a number of
implementations. The provides relationship has a strong semantics: the
implementation object inherits all the properties values, relationships and interfaces of
its specifications and it must implement (in the Java sense) the interfaces associated
with its specifications. In particular, if specification “A” requires specification “B”,
all A’s implementations will require B. An implementation can add dependencies,
through relationship requires, toward other specifications. It is important to mention
that, in contrast to most systems, an implementation cannot express dependencies
toward other implementations.

Instances are run-time entities (threads) corresponding to the execution of an
implementation. An instance inherits all the properties and relationships of its
associated implementation. Fig. 1 illustrates the concepts of our SOA model:

Specification
0..n

0..n

0..n

requires

0..n InstanceImplementation

0..n 0..n0..n 0..n

requires

1..n 0..n1..n 0..n
provides

0..n1 0..n1

Property

 Interface

Contraints Service
0..n0..n

11

0..n0..n

Fig. 1. SAM Core Metamodel.

12

2.3 An Example

Let us introduce our Media Player Application (MPA) example that we use thereafter
in this paper. In our system, each MPA to be built is a composite which consists of a
media renderer (which consumes a flux, for example a video stream), a media server
(which provides flux found in a storage), and a controller that interacts with the
customer and connects servers and renderers. Each MPA must fulfill a set of
characteristics (properties and constraints) to be consistent. Its components (services)
should be chosen among those available in the SAM repository if available, if not
they are to be developed, but in any case these services must be compatible and
deliver the desired characteristics of the composite.

Suppose the SAM repository has the content shown in Fig. 2. In this repository,
MediaPlayerImpl is an implementation which integrates the functionalities of both a
media renderer and a controller; therefore it provides MediaPlayer specification. The
Log specification has two implementations namely LogImpl_1 and LogImpl_2.
LogImpl_1 requires a DB (a database) and Security (for secure logging). DivX is an
implementation that provides Codec specification, and that has a property “Quality =
loss”. Codec has property Unique=false which means that an application may use
more than one Codec implementation simultaneously. Unique is a predefined attribute
whose semantic is known by the system, “Unique=true” is the default value.
Shared=true|false (e.g. property of LogImpl_2) is another predefined attribute
expressing the fact that an implementation or an instance can be shared by different
applications (false is the default value).

Fig. 2. A SAM Repository.

The MediaPlayer specification requires MediaServer specification which means
that all its implementations (e.g. MediaPlayerImpl) also require MediaServer
specification. From a service (e.g. BrokerMediaServer) we can navigate its
relationships to obtain for example the service(s) it requires (Log) or its available
implementations (LogImpl_1 and LogImpl_2) following the provides relationship.

Services may have constraints which, like in OCL, are predicates. In contrast with
OCL, these constraints can be associated both on types and on service objects (i.e.
Specifications, Implementations and Instances). The language allows both navigating
over relationships and LDAP search filters as defined in [6]. For example, LogImpl_1

13

implementation may declare that it requires an in_memory DB. This constraint can be
expressed as follows:
Self.requires(name=DB)..provides (execution = in_memory);

Self denotes the entity on which the constraint is associated (LogImpl_1).
Self.requires denotes the set of entities required by Self ({DB, Security}); (name =
DB) select the elements of the set satisfying the expression (DB), ..provides is a
reverse navigation which returns all elements that provide DB ({Oracle, MySQL,
HSQLDB}); finally the expression returns the set {HSQLDB} since it is the only DB
implementation with property (execution= in_memory). An expression returning at
least an element is considered true. The constraint means that from the point of view
of the object origin of the constraint (LogImpl_1), DB has a single valid
implementation: HSQLDB.

If the constraint follows a single relationship type, it expresses which relationships
are valid. When the relationship is created, the constraint is evaluated for that
relationship, if false the relationship cannot be created. For example, if we want that
Codec implementations cannot have more dependencies than Codec itself, we can set
the constraint:
equals(Self.requires, Self..provides.requires);

In this example, Self denotes the Codec specification that defines the constraint.
Self..provides denotes the set of implementations which provide it (MPEG and DivX).
This constraint is relevant for all implementations providing Codec. Therefore, such
constraints enforce some repository integrity.

The BrokerMediaServer implementation may declare that it requires MediaServer
implementations that are UPnP, but not a bridge:
Self.requires(name=MediaServer)..provides
 (&(kind!=UPnP_Bridge)(protocol=UPnP));

3 Composite

Suppose that we want to build an UPnP-based home appliance MPA such that, when
running in a particular house, it is capable of discovering the media servers available
in that house and to provide MediaPlayer functionalities. Defining that MPA in the
traditional way, as a composite which gives the full list of components, is
inconvenient, or even impossible for a number of reasons:
• Some components may not exist (yet);
• Some components may be known (yet);
• There is no guaranty of completeness;
• There is no guaranty of consistency;
• There is no guaranty of optimality.

Creating a complex composite on real cases, is not only a time consuming and
error prone task; but it may be simply impossible when components are missing (they
must be developed like the Security service in Fig.2) or when components are selected
in a later phase, or even discovered during execution (like MediaServers and Codecs).

14

Our goal is to propose a way to build and manage composites that avoid the above
pitfalls. Such composites are rather demanding; indeed they require the following
properties:
• Completeness control. A composite must be capable of being explicitly

incomplete; this is the case when components will be developed, when design
choices have not made or when the components cannot be known before execution
time. The composite must tell what is missing and why.

• Consistency control. The composite must be able to detect and report
inconsistencies and constraints violation.

• Automation and optimality. The system should be capable to compute an optimal
and consistent list of components, satisfying the composite requirements and
constraints, but also the degree of completeness required.

• Evolution. Incomplete composite must be such that they can be incrementally
completed.
The following sections present the concepts and mechanisms for composite

management.

3.1 Static Composite Definition

Interface

Property

Constraint
Service

PID

11

0..n0..n

0..n0..n

Characteristics Wire

Implementation
1 11

wires
1

Instance0..n

1

0..n

1
Specification

0..n

0..n

0..n

requires

0..n
0..n

0..n

0..n

0..n

requires

1..n

0..n

1..n

0..n

provides

Composite
state

0..n0..n

containsImpl

delayImpl

refines

0..n0..n0..n0..n

containsSpec

delaySpec

Fig. 3. Composite Metamodel.

In our system, we define a composite as an extension of the SAM core presented
above. The extension presented in Fig. 3 is only one of the different SAM Core
extensions; indeed other simpler composite concepts have also been defined and
implemented.

As shown in Fig. 1 a SAM composite is a service implementation that can contains
specifications (containsSpec relationship), implementations (atomics or composites;

15

containsImpl relationship) and instances. Classically, a SAM composite can be
defined by the list of its service components (specifications and/or implementations)
setting explicitly the containsSpec and containsImpl relationships.

Being an implementation, a composite is not necessarily self-contained; it may
have requires relationships toward other services. Similarly, it is not necessarily
complete. As explained above, a composite must be capable of being incomplete by
giving explicitly the delayed choices of components. Thus, a delaySpec or delayImpl
relationships toward an entity “X” express the fact that the selection process should
not follow the “X” dependencies. Delayed service selections can be carried out at any
later time for example during development, at deployment or at execution; the
strategy is up to the user.

3.2 Automatic Composite Building

Selecting manually the components of a composite, and creating explicitly the
associated relationships is tedious and error prone since this manual process does not
guaranty minimality (all components are useful), completeness (all required
components are present) nor consistency (constraints are all valid). To simplify the
process of defining a composite and to enforce the properties of completeness,
consistency and minimality, we need an automatic composite construction
mechanism. Thus, we need a language in which it is possible to specify the required
characteristics of the composite to build, and an interpreter, which analyses the
composite description and selects, in the database, the components that together
constitute a composite satisfying the description, complete and consistent.

Therefore, a SAM composite can also be defined by its goal i.e. by its
characteristics, properties and constraints. We use a language to describe the intended
properties and constraints of composites. To create a composite, the designer first
defines the Specification(s) it provides, and then, optionally, imposes some choices
explicitly creating relationships indicating the Specifications it requires, the
Specifications or Implementations it contains and those it delays. Then the designer
expresses the expected composite properties; our system performs the rest of the job.
For example, to build our UPnP-based home appliance MPA, one could first create a
provides relationship to MediaPlayer, a delaySpec relationship to Codec, and a
containsImpl relationship to MPEG as in Fig. 4:

Fig. 4. Composite initial MPA definition.

16

Then we can declare the intended characteristics of the MPA as follows:
• We want to create an UPnP MPA:
Select Implementation (Protocol=UPnP);

• The MPA to build must provides a trace of executing actions:
Optional Implementation (Trace=true);

• The MPA should foster service sharing whenever possible.
Select Implementation (Shared=true);

This language is an extension of the constraint language, in which Self can be
replaced by any set, including a complete type extension, like Implementation
meaning all actual implementations found during the selection process. In our
example, traces are preferred but not required. Since the system is weakly typed, an
expression is ignored if no element (in the selection set) defines the attribute; if only
one element defines the attribute with the good value, it is selected. The first sentence
means that we must select an implementation with protocol=UPnP for those
Specifications for which at least one Implementation defines the protocol attribute; in
our example, this selection applies only to MediaServer.

These expressions are interpreted when computing which are the required services
and selecting the implementations and instances that fulfil (1) the intended composite
constraints, and (2) all the constraints expressed by the already selected components.
For instance, if we select the LogImpl_1 implementation then we will necessarily
select HSQLDB since it is the only DB that satisfies the LogImpl_1 constraints.

Based on the description of a composite i.e. its initial relationships and its
constraints, an interpreter computes and selects the required services that satisfy the
composite characteristics. The interpreter “simply” starts from the specification
provided by the composite (e.g. MediaPlayer in our MPA), and follows the requires
relationships to obtain all required specifications. It also follows the requires
relationships of its contained services (containsSpec and containsImpl relationships).
For each specification found (except those delayed and those explicitly required by
the composite itself), it tries to select one or more implementations satisfying all the
constraints associated with the services already selected and the selection expressions
defined by the composite itself. For each selected implementation the interpreter
iterates the above steps to found other required services. For instance, from the
repository in Fig. 2 and the selection expressions declared by the MPA, the interpreter
builds the following composite Fig. 5:

Fig. 5. A configuration of the MPA composite.

17

For the MediaPlayer specification, the interpreter selected its unique
implementation MediaPlayerImpl but MediaPlayerImpl requires a MediaServer,
therefore BrokerMediaServer is selected since it is the only MediaServer
implementation satisfying the composite selection (Protocol=UPnP). In turn
BrokerMediaServer being selected, a Log service is required, and LogImpl_1 is
selected, because LogImpl_2 does not satisfy the composite constraint (Shared=true);
and consequently HSQLDB (because of the LogImpl_1 constraint) and security
because of the requires relationship. Unfortunately Security has no available (or no
convenient) implementation; the state of the composite is “incomplete” and this
specification is added in the MPA composite through the containsSpec relationship.
Codec being delayed, the system does not try to select any of its implementations; at
run-time, depending on the discovered MediaServers, the required Codecs will be
installed. Since the Codec implementations cannot have other dependencies (because
of the Codec constraint), there is no risk, at execution, to depend on an unexpected
service. Composite dynamic execution behaviour will not be discussed in this paper.

Our system guarantees minimality (nothing is useless), completeness (except for
explicit delays) and consistency since all constraints and selection expressions are
satisfied. But we no not guaranty optimality because the system may fail to find the
“best” solution or even a solution when one does exist. Indeed, during the selection
process, if a specification with (unique= true) has more than one satisfactory
implementations, the system selects one of them arbitrarily. It may turn out to be a
bad choice if the selected one sets a constraint that will later conflict with another
component constraint. The solution consists in backtracking and trying all the
possibilities, which turns out to be too expensive in real cases.

3.3 Composite Contextual Characteristics

SAM composite extends SAM Core defining new concepts (e.g. composite), new
relationships (e.g. contains, delay); but any individual composite can also extend the
existing services with properties that are only relevant for the composite at hand.
These relationships and properties are called contextual characteristics (see Fig. 3).

For example, wire is a contextual relationship; it means that two implementations
are directly linked but for a given composite point of view only; this is not true in
general. We may wish to add property to some implementations such that constant
values, parameters or configuration information which are those required in a given
composite only, like bufferSize, localPath and so on. Implementations, along with
their contextual properties are called components in SCA [12]. Contextual
characteristics may apply to implementations, in order to create instances with the
right initial values, as in SCA, but also to specifications, when specific
implementation can be generated out of some parameters. More generally, contextual
characteristics, including constraints, apply to any delayed service, when the selection
must be performed in the scope of the current composite, and with the properties only
relevant in that scope. This is fundamental when selections are delayed until
execution.

18

4 Related Work

We can classify the approaches and languages for service composition as
orchestration, structural and semantic [8], [3], [10].

Orchestration [14] is a recent trend fuelled by web services which de facto standard
is Business Process Execution Language for Web Services (BPEL4WS) [9].
Structural composition defines the application in term of service component linked by
dependency relationships. Service Component Architecture (SCA) specification [12]
is a structural SOA composition model [14]. Most efforts to automate service
composition are performed in the web semantic community. The hypothesis here is
that services do not have dependencies, and that specifications include a semantic
description using ontology languages such as OWL (Ontology Web Language) or
WSML (Web Service Modeling Language). The goal is to find an orchestration that
satisfies the composite semantic description (OWL-S [16] or WSMO [17]).

Automating service selection has been addressed in many research works focusing
on quality-of-service (QoS) criteria like reliability or response time. [7] propose a
QoS based for service selection and discuss about the optimisation of this selection
using heuristic approaches. [2] propose an approach for dynamic service composite
and it reduce the dynamic composition to a constraints (ontology based) satisfaction
problem. In most of these systems, QoS requirements are specified at the overall
application level. Therefore, it becomes unclear how to derive the QoS goals from
participating services [19]. In our approach, service properties and requirements can
be specified both on the individual services that will participate in a given
composition and on the composites themselves.

5 Conclusions

SOC represents the logical evolution we are witnessing in Software Engineering:
increasing the decoupling between specifications (interfaces) and implementations,
increasing the flexibility in the selection of implementations fitting specifications,
delaying the selection even until execution time, allowing multiples implementations
and instances of the same service to pertain to the same application, and finally
allowing some services to be shared between different applications during execution.
Building a complex (service-based) application in this context is very challenging.

The traditional way to define an application is, on the one hand, through a number
of documents and models in which the purpose, constraint and architecture of the
application are defined, and on the other hand, through the full list of its components
(being services or not), often called a composite (or configuration). Building the
composite manually is tedious, error prone when components developed
independently have conflicting requirements, and even impossible when some
selections are to be done very late in the life-cycle.

We propose to extend the concept of composite in order to represent faithfully the
application along the different life-cycle phases, from design to execution. To that
end, the composite must contain a high level description of the application, in term of

19

properties and constraints it must satisfy, and on the other hand in term of
components, bundles and run-time properties.

In this work, we show how it is possible to go seemingly from the high level
description to the execution one, and how the system, all along this long process, is
able to compute and enforce the conformity and compatibility of the different
descriptions, while enforcing minimality, completeness and consistency properties.
Our work is a step toward the above goal, but even in its current form, it provides a
large fraction of the properties discussed above and show the feasibility of the
approach. We expect future work to present an implementation of the full picture.

SAM is available at http://sam.ligforge.imag.fr and CADSE at http://cadse.imag.fr

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, H.: Web Services – Concepts, Architectures
and Applications. Springer, Verlag (2003).

2. Channa, N., Li, S., Shaikh, A. W., Fu, X.: Constraint Satisfaction in Dynamic Web Service
Composition. In 6th International Workshop on Database and Expert Systems Applications
(2005) 658– 664.

3. Dustdar, S., Schreiner, W.: A survey on web services composition. In International Journal
of Web and Grid Services (IJWGS) 1 (2005), 1-30.

4. Escoffier, C., Hall, R. S., Lalanda, P.: iPOJO: an Extensible Service-Oriented Component
Framework. In SCC’08 International Conference on Services Computing, IEEE Computer
Society (2007) 474-481.

5. Estublier, J., Vega, G., Lalanda, P., Leveque, T.: Domain Specific Engineering
Environments. In APSEC’08 Asian Pacific Software Engineering Conference (2008).

6. Howes, T.: RFC 1960: a String Representation of LDAP Search Filters. Web site:
http://www.ietf.org/rfc/rfc1960.txt (1996)

7. Jaeger, M. C., Mühl,G.: QoS-based Selection of Services: The implementation of a Genetic
Algorithm. In KiVS Workshop: Service-Oriented Architectures and Service Oriented
Computing (2007) 359-370.

8. Milanovic, N., Malek, M.: Current solutions for web service composition. Internet
Computing, IEEE 8 (2004), 51–59.

9. OASIS (2007). Web Service Business Process Execution Language Version 2.0. Web site:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

10. Orriens, B., Yang, J., Papazoglou, M. P.: Model Driven Service Composition. In ICSOC’03
International Conference on Service Oriented Computing, Springer 2910 (2003), 75-90.

11. OSGi Release 4. Web site: http://www.osgi.org/Specifications/HomePage
12. OSOA (2007):.Service Component Architecture: Assembly Model Specification Version

1.0.: http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
13. Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:

State of the Art and Research Challenges, IEEE 40 (2007), 38–45.
14. Papazoglou, M. P., Van den Heuvel, W. J.: Service oriented architectures: approaches,

technologies and research issues. VLDB Journal 16 (2007), 389–415.
15. Peltz, C.: Web services orchestration: a review of emerging technologies, tools, and

standards. Hewlett-Packard Company (2003).
16. W3C (2004). Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/
17. WSML: Web Service Modeling Language. Web site: http://www.wsmo.org/wsml/
18. W3C (2005). Web Service Modeling Language.: http://www.w3.org/Submission/WSMO/
19. Yen, I-L., Ma, H., Bastani, F. B., Mei, H.: QoS-Reconfigurable Web Services and

Composition for High-Assurance Systems. IEEE Computer Society Press 41 (2008), 48-55.

20

