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Abstract: The problem of decomposing a DAG (directed acyclic graph) into a set of disjoint chains has many 
applications in data engineering. One of them is the compression of transitive closures to support 
reachability queries on whether a given node v in a directed graph G is reachable from another node u 
through a path in G. Recently, an interesting algorithm is proposed by Chen et al. (Y. Chen and Y. Chen, 
2008) which claims to be able to decompose G into a minimal set of disjoint chains in O(n2 + bn b ) time, 
where n is the number of the nodes of G, and b is G’s width, defined to be the size of a largest node subset 
U of G such that for every pair of nodes u, v ∈ U, there does not exist a path from u to v or from v to u. 
However, in some cases, it fails to do so. In this paper, we analyze this algorithm and show the problem. 
More importantly, a new algorithm is discussed, which can always find a minimal set of disjoint chains in 
the same time complexity as Chen’s. 

1 INTRODUCTION 

Given a DAG G(V, E) (directed acyclic graph) with 
|V| = n and |E| = e, we want to decompose it into a 
minimal set of disjoint chains such that any node in 
G appears on some chain, and on each chain, if node 
v appears above node u, there is a path from v to u in 
G.  

This problem is important to compressing a 
transitive closure (Wang et al. , 2006; Warshall, 1962) 
to support reachability queries, by which we will 
check whether a given node v in G is reachable from 
another node u through a path in G (Cohen, 1991; 
Cohen et al., 2003; Cheng et al., 2006; Jagadish, 
1990; Schenkel et al., 2006; Teuhola, 1996; Zibin et 
al., 2001), which has a wide range of applications. 
For example, in object-oriented databases, graph 
reachability is important in managing class 
inheritance hierarchies.  

As an example, consider a graph G shown in Fig. 
1(a). Its transitive closure is shown in Fig. 1(b). It 
can be stored as a 0-1 matrix as shown in Fig. 1(c) 
with O(n2) space requirement.  

Assume that we can decompose G into a set of 
disjoint chains as shown in Fig. 2(a). Then, we can 
assign each node an index as follows: 
(1) Number each chain and number each node on a 

chain. 

(2) The jth node on the ith chain will be assigned a 
pair (i, j) as its index. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: DAG, transitive closure and  0-1 matrix. 

In addition, each node v on the ith chain will be 
associated with an index sequence of length k - 1: (1, 
j1) … (i – 1, ji - 1) (i + 1, ji + 1) … (k, jk) such that 
any node with index (x, y) is a descendant of v if x = 
i and y > j or x ≠ i but y ≥ jx, where k is the number 
of the disjoint chains. In this way, the space over-
head is decreased to O(kn) (see Fig. 2(a) for 
illustration). Especially, we can also store all the 
index sequences as a n × k matrix M, in which each 
entry M(v, j) is the j-th element in the index 
sequence associated with node v. See Fig. 2(b) for 
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illustration. So, a reachability checking needs only 
O(1) time. 
 
 
 
 
 
 
 
 
 

Figure 2: Graph encoding. 

Note that the above method can also be used for 
cyclic graphs (graphs containing cycles) since we 
can always transform a cyclic graph to a DAG by 
identifying all the strongly connected components 
(SCCs) and then collapse each of them into a 
representative node. Clearly, all of the nodes in an 
SCC is equivalent to its representative as far as 
reachability is concerned (Wang et al., 2006). Using 
Tarjan’s algorithm (Tarjan, 1972), all SCCs in G can 
be found in O(n + e) time. 

This idea was first suggested by Jagadish 
(Jagadish, 1991). However, his algorithm needs 
O(n3) time to decompose a DAG into a minimal set 
of disjoint chains (see page 566 in Jagadish, 1991). 
For this reason, Jagadish suggested a heuristic 
method to decompose a DAG into a set of paths and 
then stitch some paths together to form a chain. In 
doing so, the number of the produced chains is 
normally much larger than the minimum number of 
chains, increasing significantly both space and query 
time.  

In (Y. Chen and Y. Chen, 2008), Chen discussed 
a new algorithm to do the task. It requires only O(n2 
+ bn b ) time, where b is the DAG’s width, defined 
to be the size of a largest subset of pairwise unreach-
able nodes. Unfortunately, in some cases, the chain 
set found using Chen’s algorithm is not always 
minimum. 

In this paper, we propose a new algorithm to 
decompose a DAG into a minimal set of disjoint 
chains. The time complexity of the new algorithm is 
still bounded by O(n2 + bn b ). 

The rest of the paper is organized as follows. In 
Section 2, we present our algorithm in detail. Then, 
in Section 3, we analyze the time complexity. 
Finally, a short conclusion is set forth in Section 4. 

2 ALGORITHM DESCRIPTION 

In this section, we give our new algorithm, which is 
inspired by Chen’s algorithm. However, to remove 
the problem in Chen’s algorithm, we devise two new 
procedures for generating chains and resolving 
virtual nodes, respectively. 
First, for the chain generation, we distinguish 
between two kinds of virtual nodes and handle them 
in different ways so that the reachability between 
nodes can be transferred bottom-up by using such 
virtual nodes. 

Second, for the virtual node resolution, a new 
data structure, the so-called combined alternating 
graph, is constructed so that the number of virtual 
nodes resolved at each level is maximized. 

In the following, we first discuss how a DAG 
can be decomposed into disjoint chains which may 
contain virtual nodes in 2.1. Then, in 2.2, we show 
how the virtual nodes can be resolved. 

2.1 DAG Stratification and Chain 
Generation 

As with Chen’s algorithm, our algorithm works in 
three phases: DAG stratification, chain generation, 
and virtual node resolution. 

In the first phase, a DAG G(V, E) is stratified 
into several levels V0, ..., Vh-1 such that V = V0 ∪ ... 
∪ Vh-1 and each node in Vi has its children appearing 
only in Vi-1, ..., V1 (i = 2, ..., h), where h is the height 
of G, i.e., the length of the longest path in G. For 
each node v in Vi, its level is said to be i, denoted l(v) 
= i. In addition, Cj(v) (j < i) represents a set of links 
with each pointing to one of v’s children, which 
appears in Vj. Therefore, for each v in Vi, there exist 
i1, ..., ik (il < i, l = 1, ..., k) such that the set of its 
children equals )(

1
vCi ∪ ... ∪ )(vC

ki
. Assume that 

Vi = {v1, v2, ..., vl}. We use i
jC (v) (j < i) to represent 

Cj(v1) ∪ ... ∪ Cj(vl). 
This phase is almost the same as Chen’s. But for 

each node v at a level, we also use Bj(v) to represent 
a set of links with each pointing to one of v’s 
parents, which appears in Vj. 

In the second phase, a series of (undirected) 
bipartite graphs (Asrtian et al., 1998; Hopcroft et al., 
1973) will be constructed. In this process, some 
virtual nodes may be introduced into the levels Vi (i 
= 1, ..., h - 2). Especially, we distinguish between 
two kinds of virtual nodes. One is the virtual nodes 
created for actual nodes; and the other is the virtual 
nodes generated for virtual nodes. They will be 
handled differently. 
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In the following, we begin our discussion with a 
summarization of some important concepts related 
to bipartite graphs, which are needed to define 
virtual nodes. 

Definition 1. (concepts related to matching, Asrtian 
et al., 1998) Let G(V, E) be a bipartite graph. Let M 
be a maximum matching of G. A node v is said to be 
covered by M, if some edge of M is incident to v. 
We will also call an uncovered node free. A path or 
cycle is alternating, relative to M, if its edges are 
alternately in E\M and M. A path is an augmenting 
path if it is an alternating path with free origin and 
terminus.    

In addition, it is well known that using the 
Hopcroft-Karp algorithm (Hopcroft et al., 1973) a 
maximum matching of G can be found in 
O(|E| ||V ) time. 
Also, the following symbols are used for ease of 
explanation: 
Vi’ = Vi ∪ {virtual nodes introduced into Vi}. 
Ci =  (v) ∪ {all the new edges from the nodes in Vi 

to the virtual nodes introduced into Vi-1} 
G(Vi, Vi-1’; Ci) - the bipartite graph containing Vi and 
Vi-1’. 

Definition 2. (virtual nodes for actual nodes) Let 
G(V, E) be a DAG, divided into V0, ..., Vh-1 (i.e., V = 
V0 ∪ ... ∪ Vh-1). Let Mi be a maximum matching of 
the bipartite graph G(Vi, Vi-1’; Ci) and v be a free 
actual node (in Vi-1’) relative to Mi (i = 1, ..., h - 1). 
Add a virtual node v’ into Vi. In addition, for each 
node u ∈ Vi+1, a new edge u → v’ will be created if 
one of the following two conditions is satisfied: 
1. u → v  ∈ E; or 
2. There exists an edge (v1, v2) covered by Mi such 

that v1 and v are connected through an alternating 
path relative to Mi; and u ∈ Bi+1(v1) or u ∈ 
Bi+1(v2).   

v is called the source of v’, denoted s(v’).   
A virtual edge from v’ to v is also generated to 

indicate the relationship between v and v’. Besides, a 
new edge u → v’ will be marked with ‘directly 
connectable’ if one of the following conditions are 
satisfied: 
1. u → v  ∈ E; or 
2.  There is an alternating path of length 1, which 

connects v1 and v. That is, v1 → v ∈ E. 
We mark these edges with ‘directly connectable’ 
because it is possible for us to directly connect u and 
v to remove v’. 

The following example helps for illustration. 

Example 1. Consider the graph shown in Fig. 3(a). 
It can be divided into three levels as shown in Fig. 

3(b). The bipartite graph made up of V1 and V0, 
G(V1, V0; C1), is shown in Fig. 3(c) and a possible 
maximum matching M1 of it is shown in Fig. 3(d). 

 
Figure 3: A bipartite graph and a maximum matching. 

Relative to M1, we have two free nodes i and a. For 
them, two virtual nodes i’ and a’ will be constructed. 
Then, V1’ = {b, e, h, i’, a’}. In addition, four new 
edges (d, i’), (d, a’), (g, i’), and (g, a’) will be 
constructed. But all of them will not be marked with 
‘directly connectable’.   

The motivation of constructing such a virtual 
node (e.g., i’) is that it is possible to connect f to d or 
g to form part of a chain if we transfer the edges on 
an alternating path: b → c → e → f (see Fig. 3(e), 
where a solid edge represents an edge belonging to 
M1 while a dashed edge to C1\M1), or h → j → b → c 
→ e → f. Then, we can connect d or g to f, as well as 
b or h to i without increasing the number of chains, 
as illustrated in Fig. 3(f). This can be achieved by 
the virtual node resolution process (see 2.2). 
For the graph shown in Fig. 4(a), which is the 
second bipartite graph established for the graph 
shown in Fig. 3.4(a), a possible maximum matching 
M2 is shown in Fig. 4(b). So M1 ∪ M2 is a set of 
chains as shown in Fig. 4(c) 

Definition 3. (virtual nodes for virtual nodes) Let Mi 
be a maximum matching of the bipartite graph G(Vi, 
Vi-1’; Ci) and v’ be a free virtual node (in Vi-1’) 
relative to Mi (i = 1, ..., h - 1). Add a virtual node v’’ 
into Vi. Set s(v’’) to be w = s(v’). Let l(w) = j. For 
each node u ∈ Vi+1, a new edge u → v’ will be 
created if there exists an edge (v1, v2) covered by 
Mj+1 such that v1 and w are connected through an 
alternating path relative to Mj+1; and u ∈ Bi+1(v1) or u 
∈ Bi+1(v2).  

Again, a virtual edge from v’’ to v’ will be 
generated to facilitate the virtual node resolution 
process. 

(a)b

ac

g

h

i f 

e
d

j ac i f j 

b h e 

d g 

V0: 

V1: 

V2: 

(b)

b

ac

h

i f 

e

j V0:

V1:

a

h 

i 

e b 
c f j 

b

c f 

e
g 

b 
c f 

e 

(c) (d)

(e) (f)

DIRECTED ACYCLIC GRAPHS AND DISJOINT CHAINS

19



 

  
Figure 4: A bipartite graph and a maximum matching. 

Example 2. Consider the graph shown in Fig. 5(a). 

 
Figure 5: Illustration for virtual nodes. 

This graph can be divided into four levels as 
shown in Fig. 5(b). The first bipartite graph 
consisting of V1 and V0, G(V1, V0; C1), is shown in 
Fig. 5(c) and a possible maximum matching M1 of it 
is shown in Fig. 5(d). Relative to M1, we have a free 
node f. For it, a virtual nodes f’ will be constructed. 
Then, V1’ = {b, f’, d, h} (see Fig. 5(e)). Assume that 
the maximum matching found for G(V2, V1’; C2) is 
as shown in Fig. 5(f). A virtual node f’’ for f’ will be 
established. So V2’ = {f’’, e, g}. Especially, we are 
able to connect node f’’ and node p for the following 
reason: 
i) s(f’’) = s(f’) = f; 
ii) (b, c) ∈ M1; 
iii) f is connected to b through an alternating path: f 

→ b; and 
iv) p ∈ B3(c). 

The corresponding bipartite graph G(V3, V2’; C3) 
is shown in Fig. 5(g). The unique maximum 
matching of G(V3, V2’; C3) is shown in Fig. 5(h).   
By unifying M1, M2, and M3, we get a set of disjoint 
chains as shown in Fig. 6(a).   

 
Figure 6: Illustration for disjoint chains. 

2.2 Virtual Node Resolution 

In the third phase, we will remove all the virtual 
nodes. This will be done top-down level by level; 
and at each level any virtual node, which does not 
have a parent along a chain, will be simply 
eliminated. In addition, we call a virtual node v’ a 
transit virtual node if one of the following two 
conditions is satisfied. 
1. Let u, v’, w be three consecutive nodes on a chain. 

u → v’ is a marked edge (i.e., a directly 
connectable edge); or 

2. w is a virtual node. 
In both cases, we connect u and w and then 

remove v’. It is because in case (1), both u and w are 
actual nodes and we have u → w ∈ E or there exists 
a actual node x such that u → x ∈ E and x → w ∈ E. 
In case (2), w is a virtual node, working as a 
‘transfer’ of reachability. 

For example, since node f’ in Fig. 6(a) is a 
virtual node, node f’’ is a transit virtual node. It can 
be directly removed, leading to a set of chains as 
shown in Fig. 6(b). But node f’ cannot be removed 
in this way since it is not a transit virtual node. 
In the following, we discuss how to resolve a non-
transit virtual node, for which more effort is needed. 
First, we define a new concept. 

Definition 4. (alternating graph) Let Mi be a 
maximum matching of G(Vi, Vi-1’; Ci). The 
alternating graph 

iG  with respect to Mi is a directed 
graph with the following sets of nodes and edges: 
V(

iG ) = Vi ∪ Vi-1’, and 
E( iG ) = {u → v | u ∈ Vi-1’, v ∈ Vi, and (u, v) ∈ Mi} 
 ∪ {v → u | u ∈ Vi-1’, v ∈ Vi, and (u, v) ∈ Ci\Mi}. 

Example 3. Consider the graph shown in Fig. 3(a) 
once again. Relative to M1 of G(V1, V0; C1) shown in 
Fig. 3(d), nodes i and a are two free nodes. The 
alternating graph with respect to M1 is shown in Fig. 
7(a). It is redrawn in Fig. 7(b) for a clear 
explanation.   

In order to resolve the non-transit virtual nodes 
in Vi’, we will combine 

1+iG  and 
iG  by connecting 
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some nodes v’ in 
1+iG  to some nodes u in iG  if the 

following conditions are satisfied. 
(i) v’ is a non-transit virtual node appearing in Vi’. 

(Note that V(
1+iG ) = Vi+1 ∪ Vi’.) 

(ii) There exist a node x in Vi+1 and a node y in Vi 
such that (x, v’) ∈ Mi+1, x → y ∈ Ci+1, and (y, u) 
∈ Mi. 
We denote this combined graph by 

1+iG  ⊕ 
iG .  

 
Figure 7: An alternating graph. 

For illustration, consider G(V2, V1’; C2) shown in 
Fig. 4(a). Assume that the found maximum matching 
M2 is as shown in Fig. 4(b). Then, the alternating 
graph 2G  (with respect to M2) is a graph shown in 
Fig. 8(a). 2G  ⊕  1G  is shown in Fig. 8(b). Note that 
i’ and a’ are two non-transit virtual nodes. 

 
Figure 8: Illustration for combined graph. 

We also remark that a node in 
1+iG  and a node in 

iG  may share the same node name. But they will be 
handled as different nodes. For example, node e in 

2G  and node e in 1G  are different. 
In Fig. 8(b), we connect node a’ (in 2G ) to node f 

(in 1G ) for the following reason. 
(1) a’ is a non-transit virtual node introduced into 

V1. 
(2) (g, a’) ∈ M2, g → e ∈ C2, and (e, f) ∈ M1. 

As mentioned above, we connect a’ to f since it 
is possible for us to transfer the edges on an 
alternating path (relative to M1) starting from node f 
(relative to M1) and terminating at free node i or a 
(in V0), which will make i or a covered without in-
creasing the number of chains. 

The same analysis applies to node i’ (in 2G ), 
which is also connected to node f (in 1G ). 

In order to resolve as many non-transit virtual nodes 
(appearing in Vi’) as possible, we need to find a 
maximum set of node-disjoint paths (i.e., no two of 
these paths share any nodes), each starting at a non-
transit virtual node (in 

1+iG ) and ending at a free 
node in 

1+iG , or ending at a free node in iG . For 
example, to resolve a’ and i’, we need first to find 
two paths in the above combined graph, as shown in 
Fig. 9(a). 

 
Figure 9: Illustration for node-disjoint paths. 

(In Fig. 9(b), we show another two node-disjoint 
paths.) 
By transferring the edges on such a path, the 
corresponding virtual node can be removed as 
follows. 
(1) Let v1 → v2 → ... → vk be a found path. Transfer 

the edges on the path. 
(2) If vk is a node in 

1+iG , we simply remove the 
corresponding virtual node v1. 

(3) If vk is a node in 
iG , connect the parent of v1 

along the corresponding chain to v2. Remove v1. 
For instance, by transferring the edges on the path 
from a’ to e (in 2G ) in Fig. 9(a), we will connect g 
to e (in 2G ). a’ will be removed. By transferring the 
edges on the path from i’ to a in Fig. 9(a), we will 
connect h (in 1G ) to a, b to j, e to c, and d to f. Then, 
i’ is removed. Note that a is in 1G  and d is the parent 
of i’ along a chain (see Fig. 4(c)). In this way, we 
will change the chains shown in Fig. 4(c) to the 
chains shown in Fig. 10(a) with all the virtual nodes 
being removed. The number of chains is still 5. 
By resolving node f’ in the chain set shown in Fig. 
6(b), we will get a set of disjoint chains shown in 
Fig. 10(b). 

 
Figure 10: Minimum sets of chains. 
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It remains to show how to find a maximal set of 
node-disjoint paths in 

1+iG ⊕ 
iG .  

For this purpose, we define a maximum flow 
problem over 

1+iG  ⊕  iG  (with multiple sources and 
sinks) as follows. 
1) Each non-transit virtual node in 

1+iG  is 
designated as a source. Each free node (in 

1+iG ) 
relative to Mi+1, or free node (in 

iG ) relative to Mi 
is designated as a sink. 

2) Each edge u → v is associated with a capacity 
c(u, v) = 1. (If (u, v) is not an edge in  

1+iG  ⊕ iG , 
c(u, v) = 0.) 
Generally, to find a maximum flow in a network, 

we need O(n3) time (Even, 1979; Karzanov, 1974; 
Cotman et al., 2001). However, a network as 
constructed above is a 0-1 network. In addition, for 
each node v, we have either din(v) ≤ 1 or dout(v) ≤ 1, 
where din(v) and dout(v) represent the indegree and 
outdegree of v in 

1+iG  ⊕ 
iG , respectively. It is 

because each path in 
1+iG  ⊕ 

iG  is an alternating path 
relative to Mi+1 or relative to Mi. So each node 
excerpt sources and sinks is an end node of an edge 
covered by Mi+1 or by Mi. As shown in (Even, 1979, 
Theorem 6.3 on page 120), it needs only O( n e) 
time to find a maximum flow in this kind of 
networks. Especially, a maximum flow exactly 
corresponds to a maximal set of disjoint paths. See 
the proof of Lemma 6.4 in (Even, 1979, page 120.)  
According to the above discussion, we give the 
following algorithm for resolving virtual nodes. We 
assume that each virtual node has a parent along a 
chain. Otherwise, it can be simply eliminated. 

Algorithm virtual-resolution(S)    
input: S - a chain set obtained by executing the chain 

generation process. 
output: a set of chains containing no virtual nodes. 
begin 
1. for i = h - 2 downto 1 do 
2. {for any transit virtual node v’ in Vi’ do 
3. { 
4. let u, v’, w be three consecutive nodes on a 
 chain; 
5. connect u and w; 
6. } 
7. construct 

1+iG  ⊕ 
iG ; (*Begin to handle 

  non-transit virtual nodes.*) 
8. find a maximal set of node disjoint paths: P1, ... Pl; 
9. for j = 1 to l do 
10. {let Pj = v1 → v2 → ... → vk; 
11. if vk is a free node relative to Mi then 

12. {transfer the edges on Pj; remove v1;} 
13. else (* vk is a free node relative to Mi-1.*) 
14. {let u be a node such that (u, v1) ∈ Mi; 
15.  transfer the edges on Pj; remove v1; 
16. connect u to v2; 
17.  } 
18.  removed any unsolved virtual node; 
19. } 
end 

In the main for-loop of the above algorithm, we 
first handle transit virtual nodes (lines 2 - 6). Then, 
we construct iG  ⊕ 

1−iG  to resolve all the non-transit 
virtual nodes (see line 7.) For this purpose, we 
search for a maximal set of node disjoint paths (see 
line 8). We also distinguish between two kinds of 
node disjoint paths: paths ending at a free node 
relative to Mi, and paths ending at a free node 
relative to Mi-1. For the first kind of paths, we simply 
transfer the edges on a path and then remove the 
corresponding virtual node (see line 12). For the 
second kind of paths, we need to do something more 
to connect the parent of the corresponding virtual 
node (along the chain) to the second node of the path 
(see line 16). In line 18, we remove all those virtual 
nodes, which cannot be resolved. Each of such 
virtual nodes leads to splitting of a chain into two 
chains.  

Note that removing a transit virtual node will not 
increase the number of chains. Also, resolving a 
non-transit virtual node using a node disjoint path 
does not lead to a chain splitting. So the number of 
increased chains during the virtual node resolution 
process is minimum since the number of node 
disjoint paths is maximum. 

3 TIME COMPLEXITY 

Now we analyze the computational complexities of 
our algorithm. The cost of the whole process can be 
divided into three parts: 
- cost1: the time for stratifying a DAG. 
- cost2: the time for generating disjoint chains, 

which may contain virtual nodes. 
- cost3: the time for resolving virtual nodes. 

As shown in (Chen and Chen, 2008), cost1 is 
bounded by O(n + e). 

cost2 mainly contains two parts. One part: cost21 
is the time for finding a maximum matching of every 
G(Vi, Vi-1’; Ci) (i = 1, ..., h - 1; V0’ = V0). The other 
part: cost22 is the time for checking whether, for each 
actual free node appearing in Vi-1’, there exists an 
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edge (v1, v2) covered by Mi such that v1 and v are 
connected through an alternating path relative to Mi. 
The time for finding a maximum matching of G(Vi, 
Vi-1’; Ci) is bounded by 
 O( '1−+ ii VV · | Ci’|). (see Chen et al., 2008) 

Therefore, cost21 is bounded by 

O(∑
−

=
− ⋅+

1

1
1 |'|||

h

i
ii VV |Ci’|) 

≤ O( ∑
−

=

⋅
1

1
||

h

i
iVbb ) = O(b b n).     

cost22 can be analyzed as follows. We construct a 
small boolean ni × mi matrix Ai, where ni is the 
number of free actual nodes in Vi-1 and mi is the 
number of all the covered actual nodes in Vi. Each 
entry ajk = 1 in Ai indicates that there exists an 
alternating path (relative to Mi) connects node j and 
k. Using the algorithm discussed in (Coppersmith et 
al., 1990) for matrix multiplication, cost22 can be 
estimated by 

 Ο(∑
−

=
− +

1

1

376.2
1 |)||(|

h

i
ii VV ) 

 = Ο( 376.0
1

1

1

2
1

2
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i
iiii VVVVVV +++ −

−

=
−−∑ ) 

 ≤ O( ∑
−

=

⋅
1

1

||
h

i
iVbb ) = O(b b n). 

During the virtual-resolution process, the virtual 
nodes are resolved level by level. At each level, the 
number of the nodes in iG  ⊕ 

1−iG  is bounded by 
O(|Vi+1| + 2|Vi’| + |Vi-1’|); and the number of its edge 
is O(|Ci| + |Ci-1|). So, the time for finding a maximal 
set of node-disjoint paths in iG  ⊕ 

1−iG   is bounded 
by O( |'||'|2| 11 −+ ++ iii VVV (|Ci| + |Ci-1|)). So the 
total cost of the virtual node resolution is in the 
order of 

 ∑
−

=
−+ ++

1

2
11 |'||'|2|'|

h

i
iii VVV · (|Ci| + |Ci-1|). 

 = O( ∑
−

=

⋅
1

1

||
h

i
iVbb ) = O(b b n).    

From the above analysis, we get the following 
proposition. 

Proposition 1. The time complexity of the whole 
process to decompose a DAG into a minimized set 
of disjoint chains is bounded by O(bn b ).  
The space complexity of the whole process is 
bounded by O(e + bn) since the number of the newly 
added edges in each bipartite graph G(Vi, Vi-1’; Ci’) 

is bounded by O(b|Vi-1|), and the size of each matrix 
Ai is bounded by O(|Vi-1|2).  

4 CONCLUSIONS 

In this paper, a new algorithm for resolving virtual 
nodes is discussed, which is a critic step in an 
algorithm proposed by Chen et al. (Chen and Chen, 
2008) to decompose a DAG into a set of disjoint 
chains. In addition, the virtual node resolution 
process of Chen’s algorithm is analyzed, showing 
that in some cases Chen’s algorithm fails to find a 
minimal set of disjoint chains. The main idea of our 
algorithm is the construction of alternating graphs. 
By finding a maximal set of node disjoint paths in 
such a graph to resolve virtual nodes, we are able to 
guarantee that at each step of virtual node resolution, 
the number of increased chains is minimum. 
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