
OFLOSSC, AN ONTOLOGY FOR SUPPORTING OPEN SOURCE
DEVELOPMENT COMMUNITIES

Isabelle Mirbel
INRIA Sophia Antipolis, 2004 route des lucioles - BP 93, FR-06902 Sophia Antipolis, Cedex France

Laboratoire I3S, Route des Lucioles, BP 121, FR-06903 Sophia Antipolis, Cedex France

Keywords: Ontology, open-source development, Communities of practice.

Abstract: Open source development is a particular case of distributed software development having a volatile project
structure, without clearly-defined organization, where activity coordination is mostly based on the use of Web
technologies. The dynamic and free nature of this kind of project raises new challenges about knowledge
sharing. In this context, we propose a semantic Web approach to enhance coordination and knowledge sharing
inside this kind of community.
The purpose of this paper is to present OFLOSSC, the ontology we propose as the backbone of our approach.
It is dedicated to the annotation of the community members and resources to support knowledge management
services. While building OFLOSSC, our aim was twofold. On one hand, we wanted to reuse the ontologies on
open source provided in the literature. On the other hand, we adopted a community of practice point of view
to acquire the pertinent concepts for annotating resources of the open source development community. This
standpoint emphasizes the sharing dimensions in knowledge management services.

1 INTRODUCTION

According to (Hesse, 2005) and (Happel and Seedorf,
2006), applications of ontologies in software engi-
neering are manifold. They cover all phases of the
software development process, from requirement elic-
itation to software maintenance through implementa-
tion and deployment steps. As far as we understood
them, applications of ontologies in software engineer-
ing aim at supporting specific technical tasks of the
software development process. Indeed, existing ap-
plications of ontologies in software engineering focus
on a better exploitation of explicit knowledge during
the development process.

However, according to (Ntioudis and al., 2006),
the main kind of knowledge exchanged by actors all
along the software development process is tacit and
based on direct communication between colleagues.
Exchanges are possible when developments are made
by small team but become difficult when the team
size increases or when the team members are geo-
graphically dispersed. In these contexts, specific sup-
ports (as for instance wikis or instant messaging) are
used to share and exchange non structured knowl-
edge. This is particularly true in open source devel-
opment contexts, where team members work in geo-

graphically distinct places, rarely meet and coordinate
their activities mostly by using Web technologies.

In the context of open source development com-
munities, the objective of our work is to enhance coor-
dination and knowledge sharing through the develop-
ment of dedicated knowledge management services.
Knowledge management services aim at offering ef-
ficient and effective management of the community
knowledge resources, so as to improve access, sharing
and reuse of this knowledge, which can be tacit or ex-
plicit, individual or collective. A knowledge resource
can be a document (bug report, post in a forum, user
manual, etc.) materializing knowledge acquired and
shared through cooperation between the community
members, a service useful to the community mem-
bers or a person holding tacit knowledge. To achieve
efficient coordination and knowledge sharing through
the development of knowledge management services,
we rely on an ontology and on semantic annotations
of the community knowledge resources with regard to
this ontology. Such semantic annotations (for exam-
ple, on the profile, role and competencies of a com-
munity member or on the semantic content of a doc-
ument) can then be used by knowledge management
services such as knowledge search services, knowl-
edge visualization services and therefore support the

47
Mirbel I. (2009).
OFLOSSC, AN ONTOLOGY FOR SUPPORTING OPEN SOURCE DEVELOPMENT COMMUNITIES.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Software Agents and Internet Computing, pages 47-52
DOI: 10.5220/0001860900470052
Copyright c© SciTePress



coordination and sharing processes in the open source
development process.

The purpose of this paper is to describe OFLOSSC
(Ontology about Free/Libre Open source Software
Communities), the ontology we propose as the back-
bone of our approach. In the next section, we dis-
cus the way we consider open source development
community. Then, the following section describes the
content of OFLOSSC and our conclusions.

2 OPEN SOURCE
DEVELOPMENT
COMMUNITIES

A FLOSS (Free/Libre Open Source systems)1 is a
software or a computer language which license allows
everybody to use, study, modify, duplicate, give and
sell it. According to (Ankolekar, 2005), communi-
ties developing FLOSSs are usually created from a
software or computer language developed by an indi-
vidual or an organization which source code, called
seed code, is then transferred to the open source do-
main. The activities of the individuals belonging
to the community built around the FLOSS consist
in maintaining and supporting evolution of the seed
code. Linux, Mozilla, Apache, OpenOffice.org ou
MySQL are well-known examples of FLOSS.

Members of FLOSS development communities
work in geographically distinct places, rarely meet
and coordinate their activities mostly by using Web
technologies (mails, forums, discussion lists, collabo-
rative work platform). According to (Ntioudis and al.,
2006), FLOSS development may be seen as a partic-
ular case of distributed development having a volatile
project structure, without clearly-defined organization
and assigned tasks for all of its members, requiring a
long term commitment and a common vision of the
participants. The dynamic and free nature of this
kind of project raises new challenges about knowl-
edge sharing.

Proposals have already been made to exploit se-
mantic Web techniques to improve knowledge sharing
in FLOSS development communities. A. Ankolekar
proposes a tool, Dhruv (Ankolekar, 2005), which ex-
ploits semantic Web models and techniques to support
bug resolution in FLOSS development communities.
G. Simmons (Simmons and Dillon, 2006) proposes
an ontology to support the development of semantic
portals dedicated to FLOSS development community.
The proposed ontology, OSDO (Open source Devel-
opment Ontology), mainly focuses on concepts de-

1http://en.wikipedia.org/wiki/FLOSS

scribing tasks and tools dedicated to software devel-
opment activity. It provides a detailed classification
of the different kinds of tools and tasks encountered in
FLOSS development communities, which let us think
that it is devoted to large FLOSS development com-
munities.

From our point of view, FLOSS development
communities may be considered as Communities of
Practice (CoP). According to (Wenger et al., 2002),
CoPs are ”groups of people who share a concern, a
set of problems, or a passion about a topic, and who
deepen their knowledge and expertise in this area by
interacting on an ongoing basis”. The members of a
CoP cooperate and exchange knowledge to create a
collective value useful to everyone. They share com-
mon resources (know-how, experiences, documents)
and collaborate in a collective learning process.

Web technologies encourage the emergence of vir-
tual CoP. The two main specificities of a virtual CoP
are to exist outside of any particular organization and,
because of this independence and the geographical
dispersion of its members, to be based on Web tech-
nologies (Zarb, 2006). FLOSS development commu-
nities belong to this category of CoP.

In this context, we consider FLOSS development
communities as virtual CoPs in order to emphasize
the collective and collaborative learning dimensions
of such communities, so as to support the enhance-
ment of coordination and knowledge sharing.

To model the FLOSS development concepts from
a CoP point of view, we started from O’CoP, an
ontology dedicated to CoPs which has been devel-
oped inside the framework of the PALETTE european
project2. The aim of O’CoP is to provide a full set of
concepts to describe any CoP (its actors, their compe-
tencies, their resources, their activities, etc.) in order
to allow the semantic annotation of the CoP resources
with regard to this ontology. Indeed, three ontological
levels are provided in O’CoP. The high level ontol-
ogy provides models in order to build the other layers
of the ontology. The middle layer provides concepts
common to all CoPs and the specific layer provides
concepts specific to each CoP. The high level ontology
and the middle layer(Tifous et al., 2007) have been the
starting point of our work. Our proposal can be seen
as part of the specific layer of the O’CoP ontology.

We also started our work from the OSDO ontol-
ogy (Simmons and Dillon, 2006) and from the on-
tologies provided in Druhv (Ankolekar, 2005). From
Dhruv, we reuse the vocabulary suggested to describe
bug related resources (bug reports, discussions, posts,
etc.) and code related resources (files, packages, vari-
ables, etc.). We reuse few interaction classes. In-

2http://palette.ercim.org

ICEIS 2009 - International Conference on Enterprise Information Systems

48



deed, to model interactions, we prefer to rely on a
broader ontology proposed in the SIOC project3 aim-
ing at providing methods for interconnecting discus-
sion means such as blogs, forums and mailing lists
to each other. As we will discuss it in details in sec-
tion 3.3, we specialized the vocabulary provided in
the SIOC project with concepts from the Dhruv inter-
action ontology describing bug-related messages. We
do not reuse Dhruv community vocabulary. Indeed,
this vocabulary focuses on bugs only and we want to
provide a broader vocabulary. From the OSDO ontol-
ogy, we reuse a large set of classes about roles, activ-
ities and tools of the community.

Indeed, the ontologies provided in Dhruv are ded-
icated to FLOSS development community members
in charge of bug tracking and solving. On the other
side, the OSDO ontology provides concepts dedi-
cated to FLOSS development process management,
therefore describing in details roles, activities and
available tools. There is no intersection between
the two approaches and we propose to conciliate the
OSDO and Dhruv ontologies by looking at FLOSS
development communities as CoPs. In OFLOSSC,
we put our efforts on providing a vocabulary to de-
scribe aspects not covered neither by OSDO nor by
Dhruv (mainly implicit roles, implicit activities and
decision-making), by specializing the vocabulary pro-
vided in the O’COP middle layer. We also provide
relationships to link concepts from the different on-
tologies together.

From the methodological point of view, we
adopted a top-down approach to build OFLOSSC. We
started from the main concepts provided in O’CoP
and we specialize them to meet the specificities of
the semantic annotations suitable for FLOSS devel-
opment community resources. We also respected the
principles suggested by (Bachimont, 2000) and (Kas-
sel et al., 2000) and tried to reuse existing ontologies
about FLOSS development. OFLOSSC is formalized
in OWL DL. Because of space limitation, we will not
present its whole content in this paper. We focus on
the main concepts of actors and resources.

3 OFLOSSC

In this section we first give an overview of OFLOSSC.
Then we focus on concepts proposed to describe ac-
tors and resources.

3.1 Overview of OFLOSSC

A CoP is defined through the activities performed

3http://sioc-project.org

by its members as well as its practices and resources
which are exchanged and shared by the community
members. Resources and actors will be described in
details in the next sections. Figure 1 summarizes the
main concepts taken from O’CoP and describing an
open source development community.

Figure 1: Overview of OFLOSSC.

Concerning the activities, we rely on the generic
models proposed in the O’CoP high level ontology,
where four kinds of activities are distinguished: (i)
communication activities dedicated to information
transmission, (ii) interaction activities dedicated to
knowledge sharing and exchange, collaborative de-
sign, co-production, (iii) negotiation activities dedi-
cated to interactions to agree on ideas or make con-
sensus and (iv) learning activities dedicated to new
knowledge acquisition. Among the interactions activ-
ities, we distinguish support to newbies, maintenance
and discussion activities, which are the main activ-
ities of FLOSS development communities members
(Barcellini, 2005). Therefore we specialize the class
InteractionActivityfrom O’CoP intoSupportNewbies,
MaintainandDiscuss.

With regard to practices, we specialize the O’COP
generic classPracticefollowing the OSDO ontology
through the classProcedure, which represents any
established and well defined behaviour for the ac-
complishment on some activity (Simmons and Dillon,
2006).

Concerning the role notion and following the
O’CoP middle layer, we distinguish between gover-
nance role (GovernanceRole), aiming at supporting
community members through their interactions and
knowledge sharing, and peripheral roles (Peripheral-
Role), played by actors building and exploiting the
knowledge of the community. Facilitators or coor-
dinators are examples of governance roles. Periph-
eral roles doesn’t mean secondary role. These roles
cover most of the roles played by the members of the
community. They are strongly related to the activity
domain and therefore they are not further detailed in
the O’CoP middle layer. We refine the classPeriph-
eralRoleinto roles dedicated to FLOSS development

OFLOSSC, AN ONTOLOGY FOR SUPPORTING OPEN SOURCE DEVELOPMENT COMMUNITIES

49



community. We distinguish implicit roles (Implicit-
Role) from explicit ones (ExplicitRole). Explicit roles
are roles assigned to members of the community. Ex-
amples of explicit peripheral roles in FLOSS devel-
opment community are developers, administrators or
projet manager. Implicit roles reflect the implication
of actors in the community life, as for instance initia-
tion or participation to discussion threads.

By modeling explicit roles, our aim is to sup-
port materialization of knowledge held by community
members and in particular their profile. As we are
also concerned with tacit knowledge, we also provide
concepts to materialize implicit roles in the commu-
nity. By looking at the authors of posts in discussion
threads, it is possible to understand when community
members play the role of discussion initiator or dis-
cussion animator for instance. This knowledge may
be useful to better understand who is doing what in
the community. It contributes to support the collective
and collaborative dimensions of FLOSS development
communities.

We will now discuss in details actor and resource
related concepts.

3.2 FLOSS Actors

In the O’CoP middle layer, different actors (Actor)
are distinguished: community members (Member),
of course, but also individuals participating in some
of the community activities (Individual) or contribut-
ing to the community life (Contributor) without being
members. Actors may also be legal entities (LegalEn-
tity) behaving as project partners. Among legal enti-
ties O’CoP distinguishes between professional orga-
nizations (ProfessionalOrganization), partners (Part-
ner) and institutions (Institution). The classMem-
ber is also specialized in order to distinguish for-
mer members (FormerMember) from current mem-
bers (CurrentMember). This last class is again spe-
cialized into the classNewMember.

In addition to concepts selected in the O’CoP
middle layer, we introduce, among actors of FLOSS
development communities, three specific actors pre-
sented in the following.

• Newbies (Barcellini, 2005) are new users of the
FLOSS provided by the community.Newby is
introduced as subclass ofNewMemberbecause it
is distinguished fromNewMember(generic to all
CoPs) by the fact that, in FLOSS development
communities, new members can only play the role
of FLOSS users.

• The individual at the root of the FLOSS devel-
opment (or his successor) is a particular mem-
ber of the community, not considered as former

or current member. His surnames are ”benevolent
dictator for life” (Barcellini, 2005) or ”visionary”
(Rahtz, 2005). We introducedVisionaryas sub-
class ofMember. We choose to representVision-
ary as a subclass ofMemberbecause the visionary
is the only one to play the role of project manager.

• Some partners only contribute to the FLOSS de-
velopment community as distributor (Distribu-
tor), supporting the FLOSS dissemination. We in-
troducedDistributor as a subclass ofPartnerbe-
cause in FLOSS development communities, dis-
tributors are distinguished by the fact that they
only play the role of FLOSS disseminator.

By refining the O’COP middle layer vocabulary
with concepts describing FLOSS development com-
munity actors specificities, our aim is to support the
improvement of knowledge sharing concerning who
is who and who does what in the community, espe-
cially for newbies.

Figure 2 summarizes the vocabulary dedicated to
FLOSS actor specification. The relationships be-
tween actors and roles are formalized through thehas-
role property whose domain isActorand whose range
is Role. For subclasses ofActor, the range ofhas-role
is restricted to sublasses ofRole. Classes, properties
and restrictions are summarized in figure 3.

Figure 2: OFLOSSC Actors.

Figure 3: Roles on Actors in OFLOSSC.

3.3 Resource Related Concepts

Concerning the resources of the community, we
started from concepts provided by the O’CoP middle
layer in which tools are distinguished from interac-
tions and documents (the classResourceis special-

ICEIS 2009 - International Conference on Enterprise Information Systems

50



ized into Tool, Documentand InteractionResource).
And we add to the classification proposed in O’CoP a
fourth kind of resource dedicated to the knowledge of
the community we are dealing with, that is the code
of the FLOSS. We rely on Dhruv ontology for code
related artifacts. The connection is supported bySoft-
wareObjectwhich is a subclass ofResource.

Regarding tools, we reuse the classification pro-
posed in OSDO. The OSDO ontology distinguishes
configuration management systems, content manage-
ment systems, defect management systems, asyn-
chronous and synchronous communication tools,
backup systems and test framework. We introduce
these concepts as subclasses ofTool.

For documents, we also partially reuse the OSDO
ontology. We distinguish between help documents
(FAQs, how-tos and tutorials) and release documents
(administrator manuals, API documentations, defect
lists, developer manuals, release notes and user man-
uals). Therefore the classHelpDocumentis special-
ized into FAQ, Howto and Tutorial; and the class
ReleaseDocumentis specialized intoAdministrator-
Manual, APIDocumentation, DefectList, Developer-
Manual, ReleaseNoteandUserManual.

With regard to interaction resources, that is to say
resources dedicated to knowledge sharing and knowl-
edge exchange, as blog or forum posts for instance,
we rely on the ontology provided in the SIOC project.
More precisely, we reuse classesPostand Item sup-
porting annotation of blogs, forums and mailing lists.
Postis a specialization ofItemandItem is connected
to our ontology as subclass ofInteractionResource.

We also reuse the distinction between messages
initiating discussion threads (OpenMessage) and mes-
sages animating the discussion (CommentMessage)
from Dhruv ontologies. These concepts are also con-
nected to our ontology as subclasses ofPost.

The relationships between roles and messages are
formalized through thewrite property whose domain
is ImplicitRole and whose range isPost. For sub-
classes ofImplicitRole, the range ofPostis restricted
to sublasses ofPost. Figure 4 summarizes the dif-
ferent classes, properties and restrictions required to
model posts, together with their associated roles.

Among the discussion activities (introduced in
section 3.1), we distinguish between discussions
about changes, bugs and improvements. Therefore,
the classDiscussis specialized intoDiscussChange,
DiscussBugandDiscussSolution. We also specialize
the classPostwith regard to the kinds of discussion
specific to FLOSS development communities. This
specialization matches the one we provide to model
the interaction activities of the community. The class
Postis specialized into posts dedicated to FLOSS evo-

Figure 4: OFLOSSC Resources and Associated Roles.

lution (ChangeMessage), posts dedicated to bug reso-
lution (BugMessage) and posts dedicated to code im-
provement (SolutionMessage).

We also reuse the Dhruv classCommit to refer
to messages about commits which can be present in
any kind of post (solution, bug or change).Commitis
therefore connected to OFLOSSC as a direct special-
ization ofPost.

The relationships between discussion activities
and posts are formalized through thedealWithprop-
erty whose domain isDiscussand whose range is
Post. For subclasses ofDiscuss(DiscussSolution,
DiscussChangeandDiscussBug), the range ofPostis
restricted to sublasses ofPost(respectivelySolution-
Message, ChangeMessageandBugMessage). Figure
5 summarizes the different classes, properties and re-
strictions required to model discussion-related posts.

Figure 5: OFLOSSC Discussion Related Resources.

In OFLOSSC, we currently propose 46 core
classes and 8 core properties. These artifacts focus
on CoP related aspects (implicit roles, implicit activ-
ities and decision making). We also provide binding
with Dhruv, OSDO, SIOC and O’COP ontologies. 10
classes participate to bindings with Dhruv, 38 with
OSDO and 46 with O’COP. 2 properties have been de-
fined with Dhruv classes and 4 with O’COP classes.
OFLOSSC current core concepts as well as bindings
with O’COP, Dhruv, OSDO and SIOC ontologies are
available at http://ns.inria.fr/oflossc/.

OFLOSSC, AN ONTOLOGY FOR SUPPORTING OPEN SOURCE DEVELOPMENT COMMUNITIES

51



4 CONCLUSIONS

Our work aims at facilitating the exchange and shar-
ing of tacit and explicit knowledge inside FLOSS
development communities. This particular case of
distributed software development having a volatile
project structure, without clearly-defined organization
and assigned tasks for all of its members, requiring
a long term commitment as well as a common vi-
sion of the participants, where activity coordination is
mostly based on the use of Web technologies, raises
new challenges in terms of knowledge management.

We choose a semantic Web approach relying on
OFLOSSC which allows the annotation of the com-
munity resources in order to enhance the exploitation
of these resources through dedicated knowledge man-
agement services.

This paper focused on OFLOSSC which is the
backbone of our approach. While building this on-
tology, our aim was twofold. On one hand, we reused
the ontologies about FLOSS provided in the literature
(Dhruv and OSDO) as well as the ontology provided
in the SIOC project. On the other hand, we tried to
represent pertinent concepts of FLOSS development
community resources from the community of prac-
tice point of view and we therefore started from the
O’CoP generic ontology provided inside the frame-
work of the PALETTE European project.

We plan to work on annotation mechanisms. We
will start from SEMFAQ (Makni et al., 2008), which
aim is to build a FAQ by extracting knowledge from
emails in an automated way. We intend to reuse this
approach to annotate FLOSS development commu-
nity messages (which look similar to emails) and to
extract tacit knowledge about implicit roles of com-
munity members from email headers.

We also plan to enlarge the scope of OFLOSSC to
also support the annotation of resources not belong-
ing to the community (external resources), in order
to allow FLOSS development community members
to take advantage of resources and services provided
over the Web in an integrated manner.

ACKNOWLEDGEMENTS

The author would like to thanks Catherine Faron-
Zucker and Fabien Gandon for discussions and com-
ments on this work.

REFERENCES

Ankolekar, A. (2005).Towards a semantic web of commu-
nity, content and interactions. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pitts-
burgh.

Bachimont, B. (2000). Ingnierie des connaissances, vo-
lutions rcentes et nouveaux dfis, chapter Engagement
smantique et engagement ontologique : conception et
ralisation d’ontologies en Ingnierie des connaissances.
Eyrolles.

Barcellini, F. (2005). Les discussions en ligne en conception
de logiciels libres: analyse des traces d’un processus
asynchrone de conception distance. Master’s thesis,
Conservatoire National des Arts et Mtiers.

Happel, H. and Seedorf, S. (2006). Applications of ontolo-
gies in software engineering. InInternational Work-
shop on Semantic Web Enabled Software Engineering
(SWESE’06), Athens, USA.

Hesse, W. (2005). Ontologies in the software engineering
process. InWorkshop on Enterprise Application Inte-
gration.

Kassel, G., Abel, M.-H., Barry, C., Boulitreau, P., Irastorza,
C., and Perpette, S. (2000). Construction et exploita-
tion d’une ontologie pour la gestion des connaissances
d’une quipe de recherche. InJournes francophones
d’Ingnierie des connaissances.

Makni, B., Khelif, K., Cherfi, H., and R., D.-K. (2008).
Utilisation du web smantique pour la gestion d’une
liste de diffusion d’une cop. In8ime journe franco-
phone Extraction et Gestion des Connaissances.

Ntioudis, S. and al. (2006). Report describing state-of-the-
art km in software engineering. Technical Report D1,
TEAM IST Project 35111.

Rahtz, S. (2005). What is an open source software com-
munity? http://www.oss-watch.ac.uk/events/2005-07-
04/index.pdf.

Simmons, G. and Dillon, T. (2006). Towards an ontology
for open source software development. InIFIP Work-
ing Group 2.13 Foundation on Open Source Software,
pages 65–75.

Tifous, A., El Ghali, A., Dieng-Kuntz, R., Giboin, A., Evan-
gelou, C., and Vidou, G. (2007). An ontology for
supporting communities of practice. InInternational
Conference On Knowledge Capture, K-CAP’07, pages
39–46.

Wenger, E., McDermott, R., and Snyder, W. (2002).Cul-
tivating communities of practice. Harvard Business
School Press.

Zarb, M. (2006). Modelling participation in virtual com-
munities of practice. Master’s thesis, Information Sys-
tems Department at the London School of Economics,
London, UK.

ICEIS 2009 - International Conference on Enterprise Information Systems

52


