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Abstract: Updating a schema is a very important activity which occurs naturally during the life cycle of database systems,
due to different causes. A challenging problem arising when a schema evolves is the change propagation
problem, i.e. the updating of the database ground instances to make them consistent with the evolved schema.
Spatial datasets, a stored representation of geographical areas, are VLDBs and so the change propagation
process, involving an enormous mass of data among geographical distributed nodes, is very expensive and call
for efficient processing. Moreover, the problem of designing languages and tools for spatial data sets change
propagation is relevant, for the shortage of tools for schema evolution, and, in particular, for the limitations
of those for spatial data sets. In this paper, we take in account both efficiency and limitations and we propose
an instance update language, based on the efficient and popular Map-Reduce Google programming paradigm,
which allows to perform in a parallel way a wide category of schema changes. A system embodying the
language has been implementing.

1 INTRODUCTION

Updating a schema is a very important activity which
occurs naturally during the life cycle of database sys-
tems, due to different causes, like, for example, the
evolution of the external world, the change of user
requirements, the presence of errors in the system.
When a schema evolves, there are many problems
to cope with, like the change propagation problem
(the problem of updating the ground instances of the
database after a schema change occurs) (Ram and
Shankaranarayanan, 2003). In the last years, the
amount of spatial data has increased, thanks to tech-
nologies to capture spatial data (GPS or the satel-
lites), so that systems using spatial data, like Geo-
graphic Information System, widening their applica-
tion areas, has risen the increasing interest of insti-
tutions. However, once a spatial dataset has been
designed and implemented, similarly to almost all
databases, it has to be maintained and this entails the
need to cope with schema changes. Therefore, spa-

tial datasets require tools of schema evolution like
all the other databases: in fact, even if some GIS
tools (like, for instance, ESRI utilities (Arctur and
Zeiler, 2004; Zeiler, 1999; Twumasi, 2002)) manage
some schema changes, database administrator are of-
ten compelled to work without using any tool. This
is due to the fact that existing tools manage only
the so called simple schema changes (Banerjee et al.,
1987) which often result insufficient to operate in real
situations, as many researchers of schema evolution
stressed (Lerner, 2000; Brèche, 1996). The lack of
complete tools can make db administrators working
directly on the geodatabase, making the changes di-
rectly on the physical database with a significant in-
crease of the risk of creating a displacement between
the conceptual model and the physical data. Design-
ing and building a tool for schema evolution in spatial
datasets is an important and challenging task, because
changes in geographic databases can provoke sig-
nificant effects: being geographic databases VLDBs
(Very Large DataBases), updating instances can in-
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volve the moving of an enormous mass of data among
geographical distributed nodes and their processing,
making the process of propagating changes to the in-
stances very expensive. As a consequence, db ad-
ministrators have to cope with the efficiency of the
change propagation process. The design of an evo-
lution language is the first step toward the realization
of a schema evolution tool and, according to Lagorce
et al. (Lagorce et al., 1997), the instance update
language (providing a set of instructions to update
data after a change to the schema occurred), is one
of its basic components. There are different practi-
cal update languages (Ferrandina et al., 1995; Lerner,
2000), but they do not allow the parallel processing of
distributed data. In this paper we address the prob-
lem of designing an instance update language suit-
able for distributed databases and aiming, on the one
hand, to widen the range of schema changes and, on
the other hand, to make both easier and more efficient
the work of spatial dataset administrators. We pro-
pose an instance update language based on the Map-
Reduce-Merge paradigm (chih Yang et al., 2007), a
recent extension of the MapReduce framework (Dean
and Ghemawat, 2004) for heterogeneous datasets.
MapReduce is the Google programming framework,
which, for its efficiency, has become more and more
popular, like it is proved by the many attempts to de-
velop MapReduce based frameworks in many fields
(chih Yang et al., 2007; Koufakou et al., 2007). The
supporting execution model is mostly inherited from
(Dean and Ghemawat, 2004; chih Yang et al., 2007)
and we have been implementing a software system.
The main results are the possibility of updating in-
stances for a wide category of schema changes and
of making this in an efficient way. The remaining of
the paper is organized as follows: after a short intro-
duction to spatial datasets (section 2), in section 3 the
problem of change propagation is introduced and its
features for spatial datasets are discussed. In section
4, after introducing the MapReduce frameworks, it is
shown how a version of Map-Reduce-Merge can be
used for change propagation in spatial datasets.

2 SPATIAL DATA SETS:
BACKGROUND KNOWLEDGE

Spatial datasets are used to store a representation
of geographical objects. In this work we use the
ESRI UML geodatabase model schema (Zeiler, 1999;
Arctur and Zeiler, 2004; Twumasi, 2002), an UML
class-diagram representation used to design a concep-
tual model of a spatial dataset calledgeodatabase-
model. An example of ESRI UML schema of a spa-

tial database, representing routes of buses on a road
network, is shown in fig. 1. The basic elements of the

Figure 1: TheBus Services: a simple spatial dataset schema
using the ESRI geodatabase model notation.

ESRI geodatabase model notation are:feature classes
(collections of geographic features with the same ge-
ometry type, the same attributes, and the same spa-
tial reference, likeNetworkElement and theBusSta-
tion), object classes (classes of non spatial objects -
like the classBus), relationship classes (represents an
association between feature classes or object classes -
like theRouteRel relation between the classesRoute
andNetworkElement). There are many ways to store
the data of a spatial dataset, depending on the specific
spatial applications (Yeung and Hall, 2007). Many
authors have experimented optimal distributed spa-
tial data models related to typical spatial applications
(Balovnev et al., 2000; Gorawski and Malczok, 2003;
Yuhong and Jun, 2007). We suppose that the database
space covers a wide area, which is divided into tiles,
rectangular polygons that defines a rectangular cov-
erage of the analyzed geographical area (Malinowski
and Zimányi, 2006). The architecture we considers
is a multiple client/single server architecture (Özsu,
2003) where to each clientnode is associated a set of
contiguous tiles (see fig. 2). The data of the database
(i.e. the features) are spread across the nodes using
the horizontal fragmentation (Özsu, 2003), according
to some spatial criteria.

3 SPATIAL DATA SETS:
EVOLUTION

The problems ofsemantics of changes and the
change propagation are very important in the context
of schema evolution (Ram and Shankaranarayanan,
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Figure 2: The multiple client/single server architecture of a
spatial database.

2003). The first one refers to the way the changes are
performed and their effect on the schema itself, while
the second one deals with the effects on the data in-
stances. Considering the schema in fig. 1, an example
of simple change is the addition of the new string field
busType to the classBus. Changes to the schema can
be simple, like the addition of a class or a field (see,
for example, (Banerjee et al., 1987) for a taxonomy of
simple schema changes) andcompound, like merging
two relations, which are very important in practical
contexts (Brèche, 1996). There are different meth-
ods to realize the propagation of schema changes to
the instances (see, for example, (Lerner, 2000)); in
this paper we are interested in theconversion method,
where a schema change provokes the update of all
the objects affected by the change itself.Instance-
update languages (Lagorce et al., 1997) serve to write
programs to update instances after a schema change.
Two notable examples of instance-update languages
are those used in theO2 system (Zicari, 1991) and in
the TESS system (Lerner, 2000).

The ESRI package ArcGIS1 is the most popu-
lar tool GIS in the world and it is equipped with
many tools, among which there is ArcCatalog, which
can be used to change the geodatabase schema. The
main supported schema changes are: adding, mod-
ify or deleting attributes in a feature class or a class;
adding new feature classes or classes; adding, mod-
ify or deleting domains; deleting relationship classes.
One of the problem of this tool is its limitation, due to
the small set of schema changes supported.

It is easy to maintain through examples (which we
don’t list here for brevity) that schema changes in spa-
tial data sets have features which are not supported by
the ArcGIS tools. In fact, first, the following observa-
tion about the kind of changes can be made: interest-

1http://www.esri.com/software/arcgis

ing schema changes for spatial datasets schema evo-
lution are both simple and compound. According to
Özsu (̈Ozsu, 2003), the distribution of data, the com-
munication and the processing costs are the main fac-
tors influencing the efficiency of query processing in
distributed databases. As schema changes can be per-
formed by queries (Bertino, 1992), these factors also
influence the change propagation process: therefore,
we analyse the complexity of the process of change
propagation in their light and in that of the needed
operations to process data due to the schema changes.
For instance, changing an attribute type, with the sub-
sequent conversion of the data from a type to another
one, could be performed efficiently, if the data pro-
cessing were made locally by the nodes. In fact, in
order to modify the type of the attribute phoneNum-
ber in the feature class BusStation from integer to
string, the central server only needs to communi-
cate the schema change to perform to the local nodes
(which store the features of BusStation): each local
node could operate the change on its own data and,
at the end of the process, it could communicate ei-
ther the operation success or the failure to the central
server. Unfortunately, not all changes are so simple to
be performed independently by each local node, for
the need to perform operations involving data stored
across more nodes (like the computation of the aver-
age length of a route). The previous considerations
lead to the following observation about the cost: in
order to minimize the change propagation cost in spa-
tial datasets, it can be helpful to provide the instance
update mechanism with two kinds of processing: lo-
cal processing (in which an operation is executed on
single nodes using only data of the single nodes them-
selves) and distributed processing (in which an oper-
ation, involving distributed data, is parallelized). The
database administrator decides which kind of process-
ing to use and when.

4 THE LANGUAGE FOR
CHANGE PROPAGATION

4.1 MapReduce Frameworks

MapReduce is a programming model (Dean and Ghe-
mawat, 2004) originally developed by Google to
support parallel computations over vast amounts of
data on large clusters of machines. The MapReduce
framework is based on the two user defined functions
map andreduce and its programming model is com-
posed of many small computations using these two
functions. In general, theMapReduce execution pro-
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cess (see (Dean and Ghemawat, 2004) for details)
considers one of the copies of the user program call-
ing map-reduce functions as special (it is called the
master), while the rest are workers (there are M map-
pers and R reducers) the master assigns work to.

The MapReduce programming framework was
born in the context of data retrieval, but its efficiency
has made it more and more used in various applica-
tions, where distributed data and parallel processing
are necessary (Chu et al., 2006; Koufakou et al., 2007;
chih Yang et al., 2007). In this paper we are inter-
ested in the extension of the MapReduce to the case of
heterogeneous data by the Map-Reduce-Merge model
(chih Yang et al., 2007). This framework is based on
three user defined functions (map, reduce and merge)
with the following signatures (see (chih Yang et al.,
2007) for details):

map :(k1,v1)α → [(k2,v2)]α (1)

reduce :(k2, [v2])α → (k2, [v3])α (2)

merge :((k2, [v3])α,(k3, [v4])β) → [(k4,v5)]γ (3)

The meaning of each function is: a call to a map
function processes a key/value pair(k1,v1) and it re-
turns a list of intermediate key/value pairs[(k2,v2)];
a call to a reduce function aggregates the list of val-
ues [v2] with key k2 returning a list of values[v3]
always with the same key; a call to a merge func-
tion, using the keysk2 andk3, combines them into a
list of key/value[(k4,v5)] (see the subsection 4.2 for
programming examples). Notice that a merge is exe-
cuted on the two intermediate outputs ((k2, [v3]) and
(k3, [v4])) produced by two map-reduce executions.

4.2 Map-Reduce-Merge for Change
Propagation

The use of the Map-Reduce-Merge programming
framework as the core of an instance update language
has its theoretical justification in the fact that, being
able to perform relational algebra operations on dis-
tributed data (chih Yang et al., 2007), Map-Reduce-
Merge allows to ask queries, and, as a consequence
(Bertino, 1992), it results also adequate to simulate
changes. In order to use the Map-Reduce-Merge
framework as an instance update language exploiting
the features of the evolution of spatial data sets seen
in the section 3, it is necessary to enrich it with:

• the possibility of choosing the processing mode;
This is made introducing the instruction of pro-
cessing mode selection:

processing mode = local|distributed

• the possibility of explicitly referring to the tables
to be used.

This is made introducing the instruction:

use input|out put 〈table name〉

The input parameter serves the programmer to
specify the classes to be used (and the master to
locate the node of the mappers - see afterwards);
the output parameter of the instruction is used to
combine the data in the specified table.

Moreover, as the instance update language has to have
fragmentation capability (see sect. 2), our framework
also provides the instruction:

divide 〈table name〉

Consider the schema in figure 1, the following
simple example shows the use of map and reduce to
compute the total number of elements for each route.
The result is the table of route length (routeID, Route-
Lenght). Notice that, in map, reduce, and merge func-
tions, users have to group the attributes to be used in
two subsets, the key part and the value part (for in-
stance, routeID and elemID are, respectively, the key
part and the value part in the next map function).

processing mode = distributed;
use input RouteRel;
map(const Key& key,

const Value&, value){
routeID = key;
elemID = value;

output_key = (routeID);
output_value = (elemID);
Emit(output_key, output_value);

/*This map retrieves the pairs (routeID,elemID),
and buffers them ordered by routeID.
There is no user function.*/

}
sort by routeID; /*see afterwards*/
reduce(const Key& key,

const ValueIterator& value){
int RouteLenght = 0;
for each (k in key)

RouteLenght += 1;
Emit(key, (RouteLenght);

/*This reduce, using an iterator, reads the
buffered pairs (routeID,elemID) and, for each
unique intermediate key (routeID), it computes
the length of the route.*/
}

In the model we propose, changes to the geo-
database schema are performed only by the central
server. Like in (Dean and Ghemawat, 2004), a pro-
gram with map-reduce-merge calls, when executed,
generates copies of itself. One of the copies is the
master (also coordinator in (chih Yang et al., 2007)),
the other ones are theworkers. The master coor-
dinates all the processing operations and, therefore,
it also manages the processing modes. Afterwards,
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the execution process is illustrated, which is inherited
from (Dean and Ghemawat, 2004; chih Yang et al.,
2007), except for some minor differences due to the
presence of the local mode and the management of
the merge iterators.

• Map task
When a map is encountered, the master assigns
the map tasks to the M workers (mappers). In the
previous example, the master, using the fragmen-
tation information, locates the nodes storing the
RouteRel data and on them launches the mappers.
A map task consists in reading data from the input
locations, passing them to the user map function
and, then, storing them, sorted by the output key,
at some locations on some nodes. In the previous
example, map tasks store the intermediate data at
some locations according to some criterion on the
key routeID. There is no difference between local
and distributed mode for the map task.

• Reduce task
The master passes the locations where the map-
pers have stored the intermediate data to the R
reduce workers (reducers) which are assigned to
some nodes. The reducers, using an iterator, for
each unique intermediate key (e.g. each value of
routeID), pass both the key itself and the corre-
sponding list of values (e.g. the list ofelemID) to
the users reduce function (e.g. the computation of
the length). The result of the user reduce function
is stored on some nodes. In local mode, the num-
ber of reducers is equal to the number of mappers,
as they are located on the same nodes of the map-
pers.

• Merge task
When the user program contains a merge call, the
master launches the merge workers (mergers) on
a cluster of nodes. In (chih Yang et al., 2007),
mergers take data, to be passed to the user merge
function, from two sources (the locations where
reducers stored them) using both a partition se-
lector and a configurable iterator. In order to
avoid the users to manage iterators in some cases,
we introduce the instructionssort by〈names〉 and
match〈name1〉with〈name2〉. The first one sorts
the reduce output by the keys indicated bynames,
while the second one guarantees that the output of
the two reduce functions is stored in buckets us-
ing the same range of values (matchable values).
In local mode, the merge function is executed on
the local nodes involved in the processing and on
the related reduce locations.

To continue the previous example, using the
merge function, it is possible to perform the addition

of the new fieldRouteLength in the classRoute:

use input route;
map(const Key& key,

const Value&, value){
routeID = key;
location = value.location;
Emit((routeID),(location));

}
sort by routeID;
match routeID with routeID;
reduce(const Key& key,

const Value& value){
Emit(key, value}

}
merge(const LeftKey& leftKey,

const LeftValue& leftValue,
const RightKey& rightKey,
const RightValue& rightValue)

if (leftKey == rightKey){
Emit(leftKey,rightKey);}
/*The merge joins on routeID.*/

use output route; /*The class route is*/
divide route; /*fragmented.*/
}

Considering the schema in fig. 1, the follow-
ing example shows how to perform a compound
change: the creation of the new classNewBus ob-
tained projecting the classBus on routeID andbus-
company, projecting the classRoute on routeID and
location, and, finally, merging the results on the at-
tributerouteID.

processing mode = distributed;
use input Bus;
map(const Key& key,

const Value&, value){
routeID = key;
buscompany = value.buscompany;

output_key = (routeID);
output_value = (buscompany);
Emit(output_key, output_value);

/*The map emits pairs routeID and buscompany.*/
}
sort by routeID;
reduce(const Key& key,

const Value& value){
Emit(key, value}

}
use input route;
map(const Key& key,

const Value&, value){
routeID = key;
location = value.location;

Emit((routeID),(location));
/*The map emits pairs routeID and location.*/

}
sort by routeID;
match routeID with routeID;
reduce(const Key& key,

const Value& value){
Emit(key, value}

A MAPREDUCE FRAMEWORK FOR CHANGE PROPAGATION IN GEOGRAPHIC DATABASES

35



}
merge(const LeftKey& leftKey,

const LeftValue& leftValue,
const RightKey& rightKey,
const RightValue& rightValue)

if (leftKey == rightKey){
Emit(leftKey,RightKey);}
/*The merge joins on routeID.*/

}
use output NewBus;/*The class NewBus is*/
divide NewBUs; /*fragmented.*/

5 CONCLUSIONS AND FURTHER
WORK

A language for change propagation in spatial datasets,
extending the capability of existing tools, has been
presented. The system (under development) uses Ar-
cGIS 9.3 software, the ESRI SDE package, the ESRI
ArcObjects on Java platform and the RDBMS ORA-
CLE 10g. We have also planned to design and imple-
ment both a visual language for schema changes and
the mechanism for the semi/automatic generation of
map-reduce-merge routines to propagate changes.
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