
Agile Release Planning through Optimization

Ákos Szőke

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

Abstract. Agile software development represents a major approach to software
engineering. Agile processes offer numerous benefits to organizations including
quicker return on investment, higher product quality, and better customer satisfac-
tion. However, there is no sound methodological support of agile release planning
– contrary to the traditional, plan-based approaches. To address this situation, we
present an agile release planning model and a heuristic optimization algorithm as
a solution. Four real life data sets of its application and evaluation are drawn from
the lending sector. The experiment demonstrates that this approach can provide
more informed and established decisions and support easy optimized release plan
productions. Finally, the paper analyzes benefits and issues from the use of this
approach in system development projects.

1 Introduction

Development governance covers the steering of software development projects. Tradi-
tional governance usually applies command-and-control approaches which explicitly
direct development teams. Experiences with these approaches – such as Control Objec-
tives for Information-Related Technology (CobiT) [1], and the Organizational Project
Management Maturity Model (OPM) [2] – show that they are too heavy in practice
for many organizations, although they provide a wealth of advice [3]. As a reaction to
so-calledheavyweightmethodologies [4], many practitioners have adopted the ideas of
agility [5]. Agile approaches are quickly becoming the norm, probably because recent
surveys showed agile teams are more successful than traditional ones [6, 7]. Several
studies pointed out≈ 60% increase in productivity, quality and improved stakeholder
satisfaction [7, 8], and60% and40% reduction in pre-, and post-release defect rates [9].

In recent years, several agile methods have emerged. The most popular methods are
Extreme Programming (XP) [10](58%), Scrum [11](23%), and Feature Driven Devel-
opment (FDD) [12](5%) [13]. Despite variety of methods all of them share the common
principles and core values specified in theAgile Manifesto[5].

Release planning is an activity concerned with the implementation of the selected
requirements in the next version of the software. Agile release planning is usually based
on a prioritized list of requirements (typically User stories) and is made up of the fol-
lowing major steps: the team i) performs estimation on every requirement, ii) deter-
mines the number and the length of iterations using historical iteration velocity (i.e.
how much work can be done during each iteration), iii) distributes requirements into
iterations considering constraints (Figure 1).

Szõke Á. (2009).
Agile Release Planning through Optimization.
In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 149-160
DOI: 10.5220/0001865001490160
Copyright c© SciTePress

Fig. 1.Release planning in agile software development.

Problems. The essential aim of release planning is to determine anoptimal execu-
tion plan of development respect to scarcity of available resources and dependencies
between requirements. However, distributions of requirements are iteratively selected
and assignedmanuallyinto iterations (see Figure 1). As a consequence, the following
factors are managed implicitly:P1) precedences(temporal constraints between require-
ments),P2) resource capacities(resource demands during iterations), andP3) priorities
(importance of each requirement delivery). Therefore, optimality of plans (i.e. maximal
business value or minimal cost) is heavily based on the manager’s right senses – never-
theless optimized project plans are crucial issues from theeconomic considerations of
both customer and developer sides.

Objectives.Our proposed method intends to mitigate previous problems (P1-3) by i)
formulating release planning task as anoptimization modelthat considers all the previ-
ous factors and ii) providing a solution to this model by aheuristic algorithmto easily
produce release plans.

Outline. The rest of the paper arranged as follows: Sec. 2 presents common notions
of agile planning; Sec. 3 introduces our optimization modeland algorithm; Sec. 4 de-
scribes experiences; Sec. 5 discusses our solution; Sec. 6 focuses on related work; Sec. 7
concludes the paper.

2 Agile Release Planning

In this section, we introduce agile release planning to provide the necessary background
information for the proposed method.

2.1 Requirements Specification

Common to all software development processes in any projects is the need to capture
and share knowledge about the requirements and design of theproduct, the development
process, the business domain, and the project status. Contrary to the traditional methods
(e.g. waterfall), agile methods advocate ’just enough’ documentations where the fun-
damental issue is communication, not documentation [4, 11]. The agreed requirements
not only drive the development, but direct planning of projects, provide basis for ac-
ceptance testing, risk management, trade-off analysis andchange control [14]. In agile
methodsUser stories, Features, andUse cases(see XP [10], FDD [12]) are the primary
models of requirements and the source of effort estimation.

Estimating Effort. Agile teams focus on ’good enough’ estimates and try to optimize
their estimating efforts. A good estimation approach takesshort time, and can be used

150

for planning and monitoring progress [15]. Effort estimation models usually based on
size metrics: Story points [16], Feature points [12], and Use case points [17]. These met-
rics are abstract units, express the whole size of development and usually not directly
convertible to person hours/days/months.

User Stories and Story Points.The most popular requirements modeling technique
in agile methods is the User story technique [16]. User stories are usually materialized
on electronic or paper Story cards with the description of i)the feature demanded by
stakeholders, ii) the goal of the customers, and iii) the estimated size of the develop-
ment work is expressed by a Story point and interpreted as person day effort (usually
classified into Fibonacci-like effort sequence: 0.5, 1, 2, 3, 5, 8, 13) [15].

Dependencies.The complexity of scheduling arises from the interaction between re-
quirements (User stories) byimplicit andexplicit dependencies. While the previous is
given by the scarcity of resources, the latter one is emergedfrom different precedences
between tasks’ realizations [18, 19]:

i) Functional Implication(j demandsi to function),
ii) Cost-based Dependency(i influences the implementation cost ofj, so useful to

realizei earlier),
iii) Time-related Dependency(expresses technological and/or organizational demands).

3 Optimized Release Planning

In this section we point out release planning can be characterized as a special bin-
packing problem. Then we formulate a bin-packing-related optimization model for re-
lease planning, and present a solution to this model in the form of a heuristic algorithm.

3.1 Mapping to Bin-packing

Generally, a bin-packing problem instance is specified by a set of items and a standard
bin size. The objective is to pack every item in a set of bins while minimizing the total
number of bins used [20, 21]. The analogy between release planning and bin-packing
problem can be explained as follows.

The team’s resource capacity in an iteration stands for a binsize, while a require-
ment’s resource demand represents an item size. In the resource-constrained project
scheduling problem (RCPSP) context, we can view each iteration within release as a
bin into which we can pack different deliverable requirements. Without loss of gener-
ality, we can ensure that the resource demand of each requirement is less than team’s
resource capacity in an iteration. Then minimizing makespan (i.e. finding the minimum
time to completion) of this RCPSP is equivalent to minimizing the number of bins used
in the equivalent bin-packing problem [22].

We extend this ordinary bin-packing problem and interpretation with the following
elements to provide further computational capabilities for wide-ranging release plan-
ning situations (c.f.P1-3): i) precedences between items (requirements) (c.f. 2.1),ii)
varying capacities of bins (iterations), and iii) item priorities. From now on we call this
extended problem as bin-packing-related RCPSP (BPR-RCPSP).

151

3.2 Formulating BPR-RCPSP Model

Henceforth, without loss of generality, we focus on the Userstory technique to be more
concrete. Given a set of deliverable User storiesj (j ∈ A : |A| = n) with required ef-
fortswj , and iterationsn with differentcapacitiesci (i ∈ {1, 2, ..., n}) within a release.
Let assign each User story into one iteration so that the total required effort in iteration
i does not exceedci and the number of iteration used as a minimum while precedence
relation (matrix)Pj,j′ ∈ {0, 1} (wherePj,j′ = 1 if j precedesj′, otherwisePj,j′ = 0 –
c.f. 2.1) holds. A possible mathematical formulation is:

Minimize z =
n

∑

i=1

yi (1a)

subject to
n

∑

j=1

wjxi,j ≤ ciyi (1b)

i′ − i > Pj,j′ : xi′,j′ = xi,j = 1 (1c)
n

∑

i=1

xi,j = 1 (1d)

whereyi = 0 or 1, andxi,j = 0 or 1 (i, j ∈ N), and

xi,j =

{

1 if j is assigned to iterationi

0 otherwise
(2a)

yi =

{

1 if iteration i is used

0 otherwise
(2b)

The equations denote minimization of iteration count of release (1a), resource con-
straints (1b), temporal constraints (1c), and an itemj can be assigned to only one itera-
tion (1d). We will suppose, as is usual, that the effortswj are positive integers. Without
loss of generality, we will also assume that

ci is a positive integer (3a)

wj ≤ ci for ∀i, j ∈ N (3b)

If assumption (3a) is violated,ci can be replaced by⌊ci⌋. If an item violates assumption
(3b), then the instance is treated as trivially infeasible.For the sake of simplicity we
will also assume that, in any feasible solution, the lowest indexed iterations are used,
i.e.yi ≥ yi+1 for i = 1, 2, ..., n− 1.

3.3 Solving the BPR-RCPS Problem

For the previously formulated optimization model we developed aBinschedulingalgo-
rithm (Algorithm 1). It is a constructive heuristic algorithm, which iteratively selects

152

Algorithm 1 : Binschedalgorithm with BF strategy.

Require:
wj ∈ N /* weights of each User storyj */
Pj,j′ ∈ 0, 1 ∧ Pj,j = 0 ∧ P is DAG /* precedences */
pj ∈ N, ci ∈ N /* priority values and capacity of each iteration */

Ensure: Xi,j ∈ 0, 1 ∧ ∀j∃!i Xi,j = 1
1: n ⇐ length(w) /* schedulable User stories */
2: X ⇐ [0]

n,n
/* assignment matrix initialization */

3: r ⇐ c /* residual capacities of each iteration */
4: rlist ⇐ ∅ /* ’ready list’ initialization */
5: slist ⇐ ∅ /* ’scheduled list’ initialization */
6: for fj = 0 to n do
7: pot ⇐ findNotPrecedentedItems (P)
8: rlist ⇐ pot \ slist /* construct ready list */
9: if rlist == ∅ then

10: print ’Infeasible schedule!’
11: return ∅
12: end if
13: j ⇐ min {pj} : j ∈ rlist

14: i ⇐ selectBestF ittingBin (wj , r)
15: Xi,j ⇐ 1 /* assign User storyj to iterationi */
16: ri ⇐ ri − wj /* decrease residual capacity */
17: slist ⇐ slist ∪ {j}
18: P{1,...,n},j = 0 /* delete scheduled User story */
19: end for
20: return X

and schedules an item (User story) into aniteration– where it fits best. In the program
listing lowercase and uppercase letters with indices denote vectors and matrices (e.g.
ci, Pj,j′). While bold-faced letters show concise (without indices) forms (e.g.c, P).

In the requiresection the preconditions are given. Eachwj is the weight (required
effort) for User storyj in Story point. Precedences between User stories can be repre-
sented by a precedence matrix wherePj,j′ = 1 means that User storyj precedes User
story j′, otherwisePj,j′ = 0. Both conditionsPj,j = 0 (no loop) andP is directed
acyclic graph (DAG) ensures that temporal constraints are not trivially unsatisfiable.
Prioritiespj express stakeholders’ demands and are used by the scheduler algorithm
as a rule when choosing between concurrent schedulable User stories. Capacities of
iterations are calculated by taking the historical values of iteration velocities into con-
sideration. Theensuresection prescribes the postcondition on the return value (X):
every User storyj has to be assigned to exactly one iterationi.

During scheduling steps, first the initial values are set (line1 − 5). The iteration
value (n) is equal to the number of User stories (line 1). The residual capacity denotes
the remained capacity of an iteration after a User story is assigned – so it is initially set
to capacity (line 3). The algorithm uses aready list(rlist) and ascheduled list(slist)
to keep track of schedulable and scheduled User stories.Potentiallyschedulable items
(pot) are unscheduled items from which the algorithm can choose in the current con-

153

trol step without violating any precedence constraint (line7). Previously assigned items
are extracted from potentially schedulable items to form the ready list (line8). As long
as the ready list contains schedulable items, the algorithmchooses items from that list
– otherwise the schedule is infeasible (line9). The minimum priority item is selected
from the ready-list to schedule (line13). To find the proper iteration term for the se-
lected item, thebest fit(i.e. having the smallest residual capacity) strategy (line 14) is
applied, and an itemj is assigned to iterationi (i.e.Xi,j = 1). As a consequence resid-
ual capacity of iterationi is decreased by item weightwj (line 16). Finally, scheduled
list (slist), is updated with scheduled item (lines17), and no longer valid precedence
relations are also deleted fromP after scheduling of the given item (lines18). Iteration
proceeds until all items are assigned to iterations (line 6-19).

After termination,X contains the User story assignments to iterations, where the
number of nonzero columns denotes the packed iterations (i.e.

z ⇐ length
(

nonZeros
(

∑n

j=1
wjxi,j

))

– c.f. (1a)).

There can be used several strategies (e.g.FirstFit, BestFit) to find the appropriate
release plan, but we used only one (thebest fit) for simple demonstration (line14). This
greedy strategy makes a series of local decisions, selecting at each point the best step
without backtracking or lookahead. As a consequence, localdecisions miss the global
optimal solution, but produce quick (time complexity is clearly O(nlogn)) and usually
sufficient results for practical applications [21].

Figure 2 illustrates the packing concept. This example shows the post-mortem re-
lease planning result of a real life development situation using the previous algorithm.

Schedulable User stories (i). User story assignments. (Xi,j)

Fig. 2. Release plan applying the BPR-RCPSP approach.

Figure 3.3 demonstrates the histogram of schedulable User stories. Thex-axis enumer-
ates Story point categories (weights), whiley-axis shows how many User stories fall
into these categories. Figure 3.3 depicts planning resultsproduced byBinschedalgo-

154

rithm in stacked bar chart form: the schedulable User stories are packed into four iter-
ations (x-axis) with capacities30, 30, 29, and28 (y-axis). Bar colors on the Figure 3.3
point out how Story points are distributed on Figure 3.3.

4 Experimentation

To obtain a proof-of-concept we implemented a prototype as ascheduling toolbox in
Matlab [23]. Four past release data sets – extracted from thebacklog of IRIS application
developed by Multilogic Ltd [24] – were compared against theresults of simulations
applying the same inputs [25].

4.1 Context and Methodology

IRIS is a client risk management system (approx. 2 million SLOC) for credit institutions
for analyzing the non-payment risk of clients. It has been continual evolution since
its first release in the middle of 90s. The system was written in Visual Basic and C#
the applied methodology was a custom agile process. The release planning process
were made up of the following steps. First, the project manager used intuitive rule for
selecting User stories from the backlog into a release. Thenthe team estimated on every
User story and determined the number and the length of iterations within the release
– based on iteration velocity. Finally, the team distributed User stories into iterations
considering priorities and precedences.

4.2 Data Collection and Results

Four data sets (Collateral evaluation, Risk assumption, Ukrainian deal flow I/II – re-
spectivelyRA − RD) were selected to make a comparison between the algorithmic
method and the manual release planning carried out previously at Multilogic. TheRA

data set is used to present the concept in the previous example (Figure 2). All the re-
leases had same project members (6 developers), iteration length (2 weeks), iteration
velocity (30 Story point), domain, customer, and development methodology, but they
were characterized by different User story counts (USC), Iteration counts (IC), Buffer
per releases (BpR) (for contingencies), and delivered Story point per iteration (SPi).
Table 1 summarizes the variables ofRA −RD collected from the company’s Microsoft
SharePoint-based backlog.

To determine the usefulness of our proposed method, we used historical data as in-
put of the Binsched algorithm (Algorithm 1). This method made it possible to compare
performance of the algorithmic (optimized) approach against the manual one. Com-
puted values (R∗

A − R∗

D) are shown in Table 2 (sinceUSC, IC, BpR were the same
as Table 1 they are not shown).

155

Table 1.Historical release plan values (RA − RD).

USC IC BpR SP1 SP2 SP3 SP4 SP5

∑

5

1
SPi

RA 33 4 3.0 28.0 35.0 24.0 30.0 0.0 117.0
RB 25 3 4.5 33.0 34.5 18.0 0.0 0.0 85.5
RC 27 5 12.5 31.5 33.0 23.0 26.0 24.0 137.5
RD 27 4 3.5 29.5 33.0 27.0 27.0 0.0 116.5

Table 2.Optimized release plan values (R∗
A − R∗

D).

SP∗

1
SP∗

2
SP∗

3
SP∗

4
SP∗

5

R∗

A
30.0 30.0 29.0 28.0 0.0

R∗

B
30.0 28.5 27.0 0.0 0.0

R∗

C
29.5 30.0 30.0 29.0 19.0

R∗

D
29.5 30.0 30.0 27.0 0.0

4.3 Analysis

The analysis goal was to compare the manual and the optimizedapproaches using the
sameinput variables. The following key questions were addressed:Q1: What are the
staffing requirements over time?; Q2: How many iterations do we need per release?;
andQ3: How buffers for contingencies are allocated?

To answer to these questions, 1) we carried out Exploratory Data Analysis (EDA) [26,
27] to gaining insight into the data sets, then 2) we performed descriptive statistical
analysis to compare the main properties of the two approaches.

Qualitative Analysis. The following EDA techniques (called 4P EDA) are simple,
efficient, and powerful for the routine testing of underlying assumptions [26]:

1. run sequence plot(Yi versus iterationi)
2. lag plot (Yi versusYi − 1)
3. histogram(counts versus subgroups ofY)
4. normal probability plot(orderedY versus theoretical orderedY)

whereYi ,
∑n

j=1
wjxi,j (i.e. sum of assigned Story point of each iteration (c.f. 1b)

were identified asresult variablesto test or questions (Q1-3).
The four EDA plots are juxtaposed for a quick look at the characteristics of the data

(Figure 3). The assumptions are addressed by the graphics:

A1: The run sequence plots indicate that the data do not have any significant shifts in
location but have significant differences in variation overtime.

A2: The upper histogram depicts that the data are skewed to the left, there do not ap-
pear to be significant outliers in the tails, and it is reasonable to assume the data are
from approximately a normal distribution. Contrary, lowerone shows asymmetric-
ity (skewed to the left heavily), data are more peaked than the normal distribution.
Additionally, there is a limit in the data (30) that can be explained by the subject of
the optimization (c.f. 1b).

A3: The lag plots do not indicate any systematic behavior pattern in the data.

156

Fig. 3. 4P of historical (upper) and optimized (lower) plans

A4: The normal probability plot in upper approximately followsstraight lines through
the first and third quartiles of the samples, indicating normal distributions. On the
contrary, normality assumption is in fact not reasonable onthe right.

From the above plots, we conclude that there is no correlation among the data (A3),
the historical data follow approximately a normal distribution (A4), and the optimized
approach yields more smooth release padding and less variance (A1,A2).

Quantitative Analysis. Due to A3 data sets could be analyzed with summary (de-
scriptive) statistics (Table 3), and hypothesis test. Table 3 shows important differences
between the historical and optimized data:

D1: in the optimized case sample standard deviation is approximately halved, which
supportsA1,

D2: despite of the fact that iteration velocity was30 Story points the release plan pre-
scribed35 in the historical case which resulted17% resource overload (c.f.A2),

D3: relatively large skewness of the optimized case (histogramin Figure 3) can be in-
terpreted by the capacity constraints of the optimization (see 1b),

D4: relatively large kurtosis of the optimized case (histogramin Figure 3) can be ex-
plained by the subject of the optimization (see 1a).

After statistical analysis, Lilliefors test is carried outto quantify the test of normality
(c.f.A4) atα = 95% significance level: historical data comes from a normal distribution
(H0 : F (Yi) = Θ(Yi)), against the alternative hypothesis (H1 : F (Yi) 6= Θ(Yi)).

157

Table 3.Comparison with descriptive statistics.

Mean Min Max Std.dev. Skewness Kurtosis
RA−B 28.53 18.0 35.0 4.78 -0.48 2.50
R∗

A−B
28.53 19.0 30.0 2.75 -2.82 10.35

The result yieldedp-value =0.5 (observed significance level). Asp-value> (1 − α)
so historical data follow normal distribution (soH0 was accepted at95% significance
level). Since the sample was relatively small, the Lilliefors test was adequate [26].

Finally, maximum likelihood estimation (MLE) procedure was accomplished to find
the value ofµ (expected value) andσ (standard deviation) parameters of the normal dis-
tribution. The estimation resultedµ = 28.53 andσ = 4.63 values [27].

As a consequence, in the optimized case: staffing requirements (c.f. Q1) showed
more smooth release padding, with less variance and an upperlimit, therefore consti-
tuted less risk level regarding resource overload; iteration counts per releases (c.f.Q2)
did not exhibit any differences contrary to the historical data; finally release buffers (c.f.
Q3) were moved from the end of iterations to the end of releases which more advisable
to mitigate risks [28].

5 Discussion and Related Work

Without loss of generality, we have selected User story as the most popular agile re-
quirements modeling technique as a subject of release planning. User stories have many
advantages including i) comprehensible to both customers and the developers, ii) em-
phasize verbal rather than written communication, iii) represent a discrete piece of func-
tionality, iv) work for iterative development, and finally v) right sized for estimating (i.e.
Story points [16]) and planning [10, 15].

We applied the popular Story point method to estimate realization duration of each
User story. Up to now, several case studies reported that theStory point is a reliable
method to estimate the required effort at the release planning phase [6, 7, 16].

Then we formulated release planning as BPR-RCPSP to providealgorithmic User
story distribution considering i) team’s resource capacity in an iteration and ii) mini-
mizing the number of iteration used scheduling objective. Our proposed BP-RCPSP is
an extension of bin-packing optimization model to cover wide-ranging release planning
situations with the expression of: i) precedences between requirements (c.f. 2.1), ii)
varying capacities of iterations, and iii) requirements priorities (c.f.P1-3). This inter-
pretation makes it possible to adapt extremely successful heuristic algorithms applied to
solving bin-packing situations. Generally, bin-packing problems are combinatorial NP-
hard problems to which a variety approximation and only a fewexact algorithms are
proposed. The most popular heuristics in approximation algorithms areFirst-Fit (FF),
Next-Fit Decreasing (NFD), First-Fit Decreasing (FFD), where the time complexity is
O(nlogn) – considering the worst-case performance ratio of the algorithm [21].

We developed a bin-packing algorithm (Binsched) for the BP-RCPSP model which
illustrated the iteration capacities are filled more smoothly (c.f. Q1) and release buffers
are adjusted to the end of the last iterations (c.f.Q3) to prevent slippage of schedule
by the optimal usage of buffers [28]. Metrics indicated thatthe algorithmic approach

158

balanced the workload by halved the dispersion (coefficientof variation (cv = σ/µ):
chist
v = 0.17 > coptm

v = 0.09) therefore provided less risky release plans besides satis-
fying the same constraints. Moreover, the easy and fast computation allows the user to
generate alternative selections and what-if analysis to tailor the best plan for the specific
project context and considering the stakeholders’ feedbacks by altering constraints, ca-
pacities and priorities.

The growing pressure to reduce costs, time-to-market and toimprove quality cat-
alyzes transitions to more automated methods and tools in software engineering to sup-
port project planning, scheduling and decisions [14]. Scheduling requirements into the
upcoming release version is complex and mainly manual process. In order to deal with
this optimization problem some method have been proposed. Compared to the exten-
sive research on requirements priorization [29, 30], interdependencies [19, 18], and es-
timation [17], only few researches performed requirementsrelease planning. In [19]
release planning was formulated as Integer Linear Programming (ILP) problem, where
requirement dependencies were treated as precedence constraints. The ILP technique is
extended with stakeholders’ opinions in [31], and with somemanagerial steering mech-
anism that enabled what-if analysis [32]. In [33] a case study showed that integration
of requirements and planning how significantly (> 50%) can accelerate UML-based
release planning. Furthermore, all the previous methods relate to the traditional RCPSP.

6 Conclusions

Up to our best knowledge, the proposed optimized model formulation of agile release
planning is novel in the field. Although, there are some tenets to manual planning [6, 15]
algorithmic solution could not be found. To evaluate our model a simulation was carried
out that demonstrated the method could easily cope with the previously manually man-
aged planning factors i.e. precedences, resource constraints and priorities (c.f.P1-3)
besides providing optimized plans. Additionally, this approach provides more informed
and established decisions with application of what-if analysis, and mitigates risks with
more smooth and limited requirements allocation and with moving buffers to the end
of releases. We believe the results are even more impressivein more complex (more of
constraints, user stories etc.) situations.

We think that our proposed method is a plain combination of the present theories
and methods, that is demonstrated by the empirical investigation and the prototype. It
lead us to generalize our findings beyond the presented experiments.

References

1. Information Systems Audit and Control Association: Control objectives for IT and related
technology. http://www.isaca.org/ (2008) Accessed on 28 May 2008.

2. Project Management Institute: Organizational pm maturity model.
http://msdn2.microsoft.com (2003) Accessed on 28 May 2008.

3. et al., S.A.: Best practices for lean development governance. The Rational Edge (2007)
4. Chau, T., Maurer, F., Melnik, G.: Knowledge sharing: Agile methods vs. tayloristic methods.

(2003) 302–307
5. Manifesto, A.: Manifesto for agile software development. URL: www.agilemanifesto.org

(2001) Accessed on 27 Feb 2008.

159

6. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic re-
view. Information and Software Technology 50 (2008) 833–859

7. Ambler, S.W.: Survey says: Agile works in practice. Dr. Dobb’s Journal (2006)
8. Layman, L., Williams, L., Cunningham, L.: Motivations and measurements in an agile case

study. Journal of Systems Architecture 52 (2006) 654–667
9. Layman, L., Williams, L., Cunningham, L.: Exploring extreme programming in context: An

industrial case study. ADC ’04: Proceedings of the Agile Development Conf. (2004) 32–41
10. Beck, K., Andres, C.: Extreme Programming Explained : Embrace Change (2nd Edition).

Addison-Wesley Professional (2004)
11. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR,

Upper Saddle River, NJ, USA (2001)
12. Palmer, S.R., Felsing, M.: A Practical Guide to Feature-Driven Development. Pearson

Education (2001)
13. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software projects.

Journal of System and Software 81 (2008) 961–971
14. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE - Future of

SE Track. (2000) 35–46
15. Cohn, M.: Agile Estimating and Planning. Prentice Hall PTR, NJ, USA (2005)
16. Cohn, M.: User Stories Applied For Agile Software Development. Addison-Wesley (2004)
17. Anda, B., Dreiem, H., Sjøberg, D.I.K., Jørgensen, M.: Estimating software development

effort based on use cases - experiences from industry. In: 4th International Conference on
the UML. Lecture Notes in Computer Science, Springer (2001)487–502

18. Li, C., van den Akker, J.M., Brinkkemper, S., Diepen, G.:Integrated requirement selection
and scheduling for the release planning of a software product. In: REFSQ. Volume 4542 of
Lecture Notes in Computer Science., Springer (2007) 93–108

19. et al., P.C.: An industrial survey of requirements interdependencies in software product
release planning. (2001) 84

20. Hartmann, S.: Packing problems and project scheduling models: an integrating perspective.
Journal of the Operational Research Society 51 (1 September2000) 1083–1092(10)

21. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. John
Wiley & Sons, Inc., New York, NY, USA (1990)

22. Schwindt, C.: Resource Allocation in Project Management. Springer-Verlag Berlin and
Heidelberg GmbH & Co. K (2005)

23. Mathworks: Matlab homepage. (2008) Accessed on 28 May 2008.
24. Multilogic: Multilogic homepage. URL: http://www.multilogic.hu (2008)
25. Kellner, M., Madachy, R., Raffo, D.: Software process simulation modeling: Why? what?

how? Journal of Systems and Software 46 (1999) 91–105
26. Martinez, W.L.: Exploratory Data Analysis with MATLAB (Computer Science and Data

Analysis). Chapman & Hall/CRC (2004)
27. Shao, J.: Mathematical Statistics: Exercises and Solutions. Springer (2005)
28. Tukel, O.I., Rom, W.O., Eksioglu, S.D.: An investigation of buffer sizing techniques in

critical chain scheduling. European Journal of Operational Research 172 (2006) 401–416
29. Berander, P., Andrews, A.: Requirements Prioritization. In: Engineering and Managing

Software Requirements. Springer-Verlag, Inc., Secaucus,NJ, USA (2005) pp.69–94
30. Karlsson, L., Thelin, T., Regnell, B., Berander, P., Wohlin, C.: Pair-wise comparisons versus

planning game partitioning–experiments on requirements prioritisation techniques. Empiri-
cal Software Engineering 12 (2007) 3–33

31. Ruhe, G., Saliu, M.: The art and science of software release planning. Software, IEEE 22
(Nov.-Dec. 2005) 47–53

32. Marjan van den Akker, Sjaak Brinkemper, G.D.J.V.: Software product release planning
through optimization and what-if analysis. Technical Report UU-CS-2006-063 (2006)

33. Szoke, A.: A proposed method for release planning from use case-based requirements. In:
Proceedings of the 34th Euromicro Conference. Euromicro SEAA, Parma, Italy, IEEE Com-
puter Society (2008) 449–456 ISBN: 978-0-7695-3276-9.

160

