

EVALUATION OF CASE TOOL METHODS AND PROCESSES
An Analysis of Eight Open-source CASE Tools

Stefan Biffl, Christoph Ferstl, Christian Höllwieser and Thomas Moser
Institute of Software Technology and Interactive Systems

Vienna University of Technology, Favoritenstrasse 9-11/188, Vienna, Austria

Keywords: CASE Tools, Evaluation, Open source.

Abstract: There are many approaches for Computer-aided software engineering (CASE), often accomplished by ex-
pensive tools of market-leading companies. However, to minimize cost, system architects and software de-
signers look for less expensive, if not open-source, CASE tools. As there is often no common understanding
on functionality and application area, a general inspection of the open-source CASE tool market is needed.
The idea of this paper is to define a “status quo” of the functionality and the procedure models of open-
source CASE tools by evaluating these tools using a criteria catalogue for the areas: technology, modelling,
code generation, procedure model, and administration. Based on this criteria catalogue, 8 open-source
CASE tools were evaluated with 5 predefined scenarios. Major result is: there was no comprehensive open-
source CASE tool which assists and fits well to a broad set of developer tasks, especially since a small set of
the evaluated tools lack a solid implementation in several of the criteria evaluated. Some of the evaluated
tools show either just basic support of all evaluation criteria or high capabilities in a specific area, particu-
larly in code generation.

1 INTRODUCTION

Computer-aided software engineering (CASE) has
become an important element of software develop-
ment since the 1980s (Church and Matthews, 1995).
Many approaches for supporting the full life-cycle of
a software product rose up: modelling, database and
application definition, and code generation and veri-
fication. In industry most of the development proc-
esses were accomplished by often expensive tools of
market-leading companies, which were sometimes
too complex to handle for Subject Matter Experts
(SMEs) (Prather, 1993). Therefore the need surfaced
to look for less expensive tools on the market, like
open-source tools.

The target audience of this paper consists of sys-
tem architects, software designers and programmers.
These engineers need to decide which tool to use to
support their projects in an effective and efficient
way of software development. Beneath the assess-
ment of common software development environ-
ments, supporting tools like CASE tools, which
combine advantages of modelling and code genera-
tion in a single package, need to be considered.

Due to the fact that there is no common under-
standing on functionality and application in the
software engineering area, the selection and applica-
tion of a certain open-source CASE tool may miss
user expectations. To cope with this problem, a gen-
eral inspection of the open-source CASE tool market
is performed.

The idea of this work is to define a “status quo”
baseline of the functionality and the procedure mod-
els of these tools and to derive a “quo vadis” to give
for example system architects or software engineers
a baseline for decision making in questions concern-
ing the usage of a CASE tool. The expected results
of this work are “Best Practices” concerning func-
tionality and procedure models of currently available
and future CASE tools.

To get an overview of the current market situa-
tion a criteria catalogue for the evaluation of CASE
tools has been created. This criteria catalogue con-
sists of the following evaluation areas: Technical
criteria (Usability, Integration with IDEs, Multi-User
Support, Import/Export, Multi-Language Support,
Interfaces to other modelling tools,); Modelling cri-
teria (Modelling language, Data validation, Func-

 41
Biffl S., Ferstl C., Höllwieser C. and Moser T. (2009).
EVALUATION OF CASE TOOL METHODS AND PROCESSES - An Analysis of Eight Open-source CASE Tools.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages 41-48
DOI: 10.5220/0001865700410048
Copyright c© SciTePress

tionality for Analysis or Simulation of modelled
data); Code generation criteria (database, application
or presentation layers, Target language); Procedure
model criteria (Adaptability, End-to-End approach);
and Administration criteria (User management,
Model management).

Based on this evaluation criteria catalogue, 8
open-source CASE tools were evaluated with 5 pre-
defined scenarios. The results of this study were
analyzed and best practices derived.

According to this research approach, the paper is
structured as follows: section 2 identifies and de-
scribes related work about CASE and previous tool
evaluations. Section 3 pictures the evaluation
method. Section 4 defines the evaluation criteria and
scenarios, while Section 5 presents the results of the
evaluation. Section 6 discusses the evaluation results
and Section 7 concludes the paper.

2 RELATED WORK

The requirements for software engineering steadily
increased over the last decades. Thus the need for
tools, which assist engineers in the complex soft-
ware development process, soon became evident
coining the term “computer-aided software engineer-
ing” (CASE). A good definition can be found in
(Fuggetta, 1993): “A CASE tool is a software com-
ponent supporting a specific task in the software-
production process”. Those tasks can be merged into
different classes like editing, programming, verifica-
tion and validation, configuration management, met-
rics and measurement, project management, and
miscellaneous tools. Fuggetta further makes a dis-
tinction between tools, workbenches, and environ-
ments which classifies the support of only one, a
few, or many tasks in the development process.

The trend nowadays towards open-source CASE
technology aims definitely at CASE workbenches
and environments. To gain high-quality software
products as a result of CASE tool output it is impor-
tant that these tools also provide high-quality tech-
niques. Evaluation therefore is challenging and prac-
tices have already been developed in the past.

A principal approach for selection and evaluation
is given by Le Blanc and Korn (Le Blanc and Korn,
1992). They suggest a 3-stage method with: 1)
screening of prospective candidates and develop-
ment of a short list of CASE software packages; 2)
selecting a CASE tool, if any, which best suits the
systems development requirements; 3) matching
user requirements to the features of the selected
CASE tool and describing how these requirements

will be satisfied. At each stage a comparison is made
against predefined criteria, whereas the focus lies on
functional requirements. The granularity of criteria
at each stage increases, so the result of every step is
a more precise list of final tools. For evaluation a
weighting and scoring model is proposed.

Church and Matthews provide a similar work
(Church and Matthews, 1995). Their evaluation fo-
cus lies on the following four topics: code genera-
tion, ease of use, consistency checking, and docu-
ment generation. The assessment is done through
ordinal scales of ordered attributes.

As mentioned above, CASE tool evaluation is
not a simple process. To assist in avoiding potential
failures in CASE tool evaluations and therefore poor
quality products as result, Prather (Prather, 1993)
gives some recommendations in the process itself,
necessary prerequisites, knowledge about the or-
ganization, technical factors, and the management of
unrealistic/unfulfilled expectations. He clearly rec-
ommends having in mind the scope of application,
because rarely one tool only can fulfil all require-
ments.

3 EVALUATION METHOD

The evaluation was performed in four steps. At the
beginning of our work we conducted expert talks
with software engineers and an internet research for
appropriate candidates of CASE tools in the open-
source sector. Looking on the described feature set
and a first general examination of those tools we did
a further selection which. Based on expertises of
software engineers as well as on their total number
of downloads from the internet, eight open-source
CASE tools were selected for evaluation. Table 1
gives an overview on the selected tools including
their versions and the release dates.

The next step was the definition of a criteria
catalogue, based on the expertises of software engi-
neers regarding basic functionality of CASE tools.
This basic definition was followed by installation
and first test of the tools to get a general overview of
the different functionalities provided.

After these first impressions, the basic criteria
catalogue for evaluation was extended by more de-
tails based on the first impression of the CASE tools
to be evaluated. This criteria catalogue focuses on
different scenarios supported by the overall func-
tionalities provided by the tools.

Those evaluation criteria define what we expect
from CASE tools and are reflected through our five
dimensions: Modelling in general, Definition of as-

ICEIS 2009 - International Conference on Enterprise Information Systems

42

pects on the database layer, Definition of aspects on
the application layer, Integration possibilities and
Usability. Based on those dimensions, we composed
a template of about 100 questions which represent
these criteria. The final evaluation was done through
a weighting and scoring process.

Table 1: Overview of selected tools for evaluation.

To provide adequate means for analysis we de-

veloped a Kiviat diagram (see Fig. 1). This Kiviat
diagram shows the evaluation of five scenarios, each
represented as an axis. The scenarios focus on dif-
ferent functionality: “Modelling in General”, “Defi-
nition of aspects on the database layer”, “Definition
of aspects on the application layer”, and “Integration
possibilities” and “Usability”. The evaluated score
on each individual axis is based on a calculation
schema for each scenario.

Questions addressing the capability of the sce-
narios have been used. Each of these questions has
been weighted and capability levels from 0 (not ap-
plicable) to 5 (high capability) have been defined.
The product of weighting and capability level results
in a score for a question. The sum of the single
scores is the calculated axis value. If a scenario was
too broad, sub scenarios were defined. In this case
the axis value represents the arithmetic mean of the
calculated scores of the sub scenarios. For each sce-
nario/sub scenario a score of up to 5 was reachable.

The following section gives a short introduction
of the five scenarios, a detailed listing of evaluation
questions including weighting and capability defini-
tions can be found in the appendix of (Biffl et al.,
2009).

4 EVALUATION CRITERIA AND
SCENARIOS

For evaluation criteria based on the functionalities
discovered in the first tests of the tools have been
enriched with assumptions and experiences of the
authors. The following basic descriptions of the five

scenarios depict an aggregation of the selected
evaluation criteria.

4.1 Modelling in General

Due to the fact, that modelling is part of the scenar-
ios “Definition of aspects on the database layer” and
“Definition of aspects on the application layer” the
more abstract topic “Modelling in general” is taken
into consideration. All criteria regarding modelling
are defined within this topic.

In comprehensive development projects a major
challenge is concurrent collaboration. It is important,
that not only a single person is able to design the
content in a serial manner. Hence the tool must offer
multi-user and parallel modelling support. It has to
be possible to install the tools in a client-server envi-
ronment and a proper user and rights administration
needs to be in place. The most important mecha-
nisms for this aspect are locking and synchronisation
of modelled content. Based on this collaboration
support, comprehensive mechanisms for change and
release management produce a great advantage and
must be in place.

Table 2: Evaluation Criteria for General Aspects.

Evaluation Criterion Weighting
Does the tool support a client

server installation?
0,25

Is it possible to define different
access rights on models and model
groups for users and user groups?

0,1

Is it possible to exchange data
between different installations?

0,1

Can models be locked? 0,15
Does the tool support synchronisa-

tion mechanisms?
0,15

Does the tool support mechanisms
for change and release manage-

ment?

0,1

Is it possible to assign different
status attributes to models?

0,15

Is it possible to adapt status attrib-
utes for personal needs?

0,15

Is it possible to define versions? 0,3
Is it possible to send notifications? 0,15
Does the tool offer multi-language

support?
0,2

Are languages for documentation
predefined and can they be ex-

tended or reduced?

0,1

Does the tool support the reuse of
modelling objects?

0,35

EVALUATION OF CASE TOOL METHODS AND PROCESSES - An Analysis of Eight Open-source CASE Tools

43

Further reusability is evaluated for two character-
istics: multi-language support and the reusability of
modelled content (i.e., the presence of “repository-
concepts”). Modelling always has the intention of
documenting artefacts in order to support the work
by giving an overview. In comprehensive develop-
ment projects also different languages are used.
Therefore it is essential to have the advantage of
documenting the same content in different languages
to ensure consistent understanding of all partici-
pants. An object repository, which stores all global
information of the objects, would make sense to en-
sure that the diagrams are kept consistent. Of course,
it must be possible to add specific information in
context of a diagram to the modelled objects.

Table 2 presents some of the evaluation criteria
used for the evaluation of the general modelling as-
pects of the analyzed CASE tools.

4.2 Definition of Aspects on the
Database Layer

Together with “Definition of aspects on the applica-
tion layer” this scenario defines the professional
criteria for CASE tools.

Table 3: Evaluation Criteria for Database Layer Aspects.

Evaluation Criteria Weighting
Is it possible to transform UML
diagrams (e.g. class diagrams) to

EER diagrams?

0,05

Is the meta model compliant to the
(E)ER notation in general?

0,15

Does the tool offer analysis
mechanism checking the basic

(E)ER notation?

0,3

Is it possible to evaluate a model
concerning the 1st, 2nd, 3rd and

Boyce-Codd normal form?

0,3

Does the tool support the genera-
tion of SQL code?

0,3

Is all modelled information trans-
formed into code?

0,15

Is it possible to generate automati-
cally a diagram out of a SQL

dump file?

0,15

Is it possible to change generated
models (from dump files) and

commit them back to the original
database without data loss?

0,1

Does the tool offer a procedure
model for designing a database?

0,1

Is it possible to define test cases? 0,3

Addressing modelling, a specific notation for the
database design must be in place of course. The
most famous notation in this context is the Entity
Relationship model (ERM) respectively the Ex-
tended Entity Relationship model (EERM).

After the definition of the database design, it
should be possible to perform several analysis
mechanisms. A basic analysis mechanism for exam-
ple is an automatic check whether a model is com-
pliant to modelling guidelines defined by the (E)ER
notation. A comprehensive analysis / optimization
mechanism would be a check for the normalization
of the defined database. Forward and reverse engi-
neering for the database layer should ensure the gen-
eration of SQL code and import of SQL dumps at
least.

The support of a database design process (also
referred to as “database lifecycle”) should be re-
flected in model types and functionalities of CASE
tools including the differentiation between database
views and e.g., the definition of requirements.

Table 3 lists some of the evaluation criteria used
for the evaluation of the database layer aspects of the
analyzed CASE tools.

4.3 Definition of Aspects on the
Application Layer

This scenario is very similar to the previous descrip-
tion of the database scenario. Thus, the requirements
are quite similar. For the application layer again sub-
topics for specific modelling issues, analysis mecha-
nisms, forward and reverse engineering and the pro-
cedure model are defined. In the development proc-
ess the modelling focus lies on OMG’s UML 2.0.
Further a rudimentary support for Business Process
Modelling (BPM) is desirable.

Analyzing features should be implemented to as-
sist in designing of a proper data model that meets
the specifications of the underlying design languages
and determining of code quality. The emphasis re-
garding code generation and reverse engineering lies
on the target/source languages Java and C++ and
definition or administration of design patterns.

Additionally the support of a basic development
process (e.g., Rational Unified Process (RUP) or the
waterfall model) is useful. Therefore mechanisms
for requirement management, specification, design,
implementation, quality management, integration
and delivery are needed.

Table 4 shows some of the evaluation criteria
used for the evaluation of the application layer as-
pects of the analyzed CASE tools.

ICEIS 2009 - International Conference on Enterprise Information Systems

44

4.5 Usability Table 4: Evaluation Criteria for Application Layer
Aspects.

The last topic which is taken into consideration con-
sists of usability aspects. A tool should always sup-
port a user in fulfilling a specific task in a comfort-
able way. Several of the prior defined functions
should not only be available, but should also fulfil
relevant usability aspects.

Evaluation Criterion Weighting
Is it possible to define business

processes (e.g., BPEL)?
0,15

Which model types of the UML
library are available?

0,2

Is it possible to merge between
UML data models?

0,05

Are UML Profiles supported? 0,05
Are there analyzing features for
achieving compliance with the

specifications in UML?

0,5

Are there facilities for determina-
tion of code quality and metrics?

0,3

Is there support for forward Java
Code generation?

0,2

Is there support for reverse Java
Code generation?

0,1

Does the tool offer a model for
designing the application layer?

0,1

Is it possible to define test cases? 0,25

First of all, an easy and assisted installation is
recommended for satisfying usage. Modelling as a
core activity within CASE tools should be made as
easy as possible for the users. The procedure of cre-
ating a model, creating an object and enriching the
object with information should be self-describing
and comfortable. Additionally adequate help func-
tionality must be in place, at least a forum.

Administration tasks within the tools also need to
be evaluated addressing usability. Two different
administration areas are taken under consideration,
administration of modelled content and administra-
tion of users, groups and access rights. The creation
of models and repository objects within definable
folders ensure an adequate structure of the content.

Another subtopic regarding usability deals with
the ability to adapt the tool for the user’s needs. In
detail the adaption of the meta model and the possi-
bilities for personalization are taken into considera-
tion.

4.4 Integration Possibilities

One important feature of a complex system like a
CASE tool is the communication with its environ-
ment. This allows flexible collaboration and docu-
mentation of the whole development process. In this
scenario the focus is on import and export of differ-
ent kinds of data. Another aspect is the assistance in
implemented interfaces or the possibility for integra-
tion with integrated development environments
(IDEs).

5 EVALUATION RESULTS

The general result of the evaluation is that none of
the selected CASE tools is an absolute winner. In
Figure 1 there is an illustration of the evaluation
result. A Kiviat diagram with 5 axes represents the 5
evaluation dimensions: Modelling, Database Layer,
Application Layer, Integration, and Usability. Each
axis is signed with the evaluation scale from 0 to 5.

Table 5 displays some of the evaluation criteria
used for the evaluation of the integration possibili-
ties of the analyzed CASE tools.

Table 5: Evaluation Criteria for Integration possibilities.

Evaluation Criterion Weighting
Is it possible to import data mod-

els in XMI format?
0,15

Is there an Import of BPEL for
Web Services (BPEL4WS) for
generation of BPMN diagrams?

0,1

Is it possible to import Java Code
from JAR-Class files and trans-

formed into diagrams?

0,05

Is there support for Interface defi-
nition language (IDL) import?

0,15

Is it possible to export in XMI? 0,15
Is it possible to export the models

into standard graphic formats?
0,05

Figure 1: Open-source Case tool evaluation result.

EVALUATION OF CASE TOOL METHODS AND PROCESSES - An Analysis of Eight Open-source CASE Tools

45

Figure 2: Open-source Case tool evaluation result “normalized”.

Table 6: Open-source Case tool evaluation result table.

What can be seen at first sight is that none of the
tools is getting beyond level 3 at any scenario. This
reflects that some of the CASE tools have their
strengths in some of the dimensions but neither of
them has a consistently good result for all dimen-
sions. In Figure 2 the axes are shortened in scale
from 0 to 3 for a better view of the several CASE
tools. Based on these results some of the tools can be
categorized as better than others. These tools are
marked bold in the diagram, namely ArgoUML,
StarUML and Topcased. In these cases high values

have been reached only in single dimensions. Ar-
goUML is a good candidate for an overall winner
cause of its broad approach but only average results
have been reached within the dimensions. StarUML
and Topcased fulfilled the stated requirements apart
from the scenario “Definition of aspects on the data-
base layer” best.

In Table 6 an overall view of the evaluation re-
sults for all the CASE tools is presented. The col-
umns represent the calculated score values.

ICEIS 2009 - International Conference on Enterprise Information Systems

46

6 DISCUSSION

Beside the above stated results of the evaluation,
which represent pure figures, some findings con-
cerning general impressions and soft facts are dis-
cussed in this section. Although evaluations reflect
to some extent the evaluators’ views, some griev-
ances cannot be denied.

Business-IT Alignment – a famous and too of-
ten used phrase within IT Management – craves for
the orientation of IT towards business needs and
value creation. These constitutional ideas of a com-
pany also need to be considered within software
processes. A good approach would be to integrate
these value creation processes into the documenta-
tion of software and link these two “layers” by given
requirements. Such a construction would help to
give a glance how software collaborates in the crea-
tion of value and would also bridge the gap between
the business and the technical points of view. Unfor-
tunately, none of the evaluated tools touches with
these issues.

The issue of missing process model support
needs to be raised. While a full integration of estab-
lished software engineering process models like the
RUP or the V-Model is not always required, some
initial approaches like the definition of tests for dif-
ferent artefacts and feedback mechanisms would be
very helpful in many project contexts but are insuf-
ficiently supported by the evaluated tools.

Since a process model comes with the concept of
roles, a minimum set of collaboration support fea-
tures (e.g., the usage of the same data within a client
server environment) is required. Adequate user and
rights management should also be available, sup-
porting a clear definition of responsibilities leading
to quality improvement of the results.

Many of the evaluated tools focus on the appli-
cation layer. By integrating a few further diagram
types like EER Diagram, respectively DB Schema
Diagram, and by providing export possibilities of
SQL code significant additional benefit could easily
be achieved. In an ideal case, it should be possible to
integrate the documentation of the application and
the database layer to ensure easy analysis of change
and incident impacts and to support the project plan-
ning by pinpointing dependencies.

Because almost every company uses a large
number of different tools within the software engi-
neering process, integration possibilities are impor-
tant that avoid work needing to be done twice.
Therefore some standard interfaces for example

via XML need to exist but also possibilities for the
definition of proprietary interfaces must be imple-
mented. These interfaces have to provide functional-
ity for both importing and exporting data without
loss of information. Also a lack within this area
needs to be stated.

The last general impression, before focussing on
soft facts, is missing functionality for the adaption
and administration of the software. None of the
tools provides a really good solution for structuring
and administrating diagrams and objects including a
prior mentioned user and rights management. Con-
cerning adaption some functionality, e.g., the crea-
tion of additional attributes or modelling classes,
basic changes of the code generation or even the
customization of the graphical representation, would
help users to design some kind of “personal” CASE
tool, which exactly, or at least better, could fit their
needs.

Additionally, it needs to be considered that some
facts have not been taken into account for the
evaluation results. These soft facts like numerous
crashes of the software or higher effort for installa-
tion and incorporation due to lack of documentation
and presumed skill levels are of course also a crucial
factor for the selection of a tool. These factors are
reflected in the time it took for the evaluation. This
time varied between 6 hours and 36 hours for one
tool. In summary, we can state that many of the
evaluated approaches lead in the right direction, but
high potential for improvements exists.

7 CONCLUSIONS

Increasingly complex software engineering projects
need the best possible support with professional
CASE tools. In this paper we conducted a market
evaluation of representative open-source CASE tools
to get an impression what level of tool support is
available for free. We set up a criteria catalogue that
reflects the needs of professional software develop-
ers and evaluated these with 8 open-source CASE
tools.

Major results are: a) No open-source CASE tool
exceeded level 3 of a 6-level scale on any of the
evaluation criteria, which seems surprisingly low. b)
None of the tools is a champion in many of the
evaluation dimensions. c) Some of the evaluated
tools show either just basic support of all evaluation
criteria or high capabilities in a specific area, par-
ticularly in code generation.

EVALUATION OF CASE TOOL METHODS AND PROCESSES - An Analysis of Eight Open-source CASE Tools

47

The results show that there is no comprehensive
CASE tool which assists and fits well to a broad set
of developer tasks. Some of the tools have a very
weak implementation in some of the dimensions
especially in modelling of the database layer and in
integration possibilities. Therefore, it is necessary to
make a distinction between a global or specific ap-
proach. A candidate for a global approach is Ar-
goUML which has coverage on all dimensions but
with rather low values.

On the other side some CASE tools have specific
specialization capability particularly in code genera-
tion. Those tools are Topcased as well as StarUML.
It should be said that Topcased and EclipseUML can
benefit from the integration into the Eclipse Platform
and can therefore make use of the Eclipse Plug-In
Technology where for example Model Transforma-
tion with QVT is already supported. Disadvantage is
that Eclipse related tools are highly concentrated on
Java programming language.

The results of the evaluation seem rather unsatis-
factory regarding the original evaluation criteria
dimensions. We can not be disappointed because the
sector where we have done our research is in the
open-source field. A general important remark is
that it was never the intention of the authors to sin-
gle out any specific tool, but provide an overview of
functionality and give some situational recommen-
dations. In the open-source sector one should always
keep in mind that work is done from developers un-
der enthusiastic circumstances often without any
reward.

A real problem seems to be that there exists a
wide range of commercial CASE tool software, for
which less information is available about the quality
of those products. Thus we wanted to achieve pri-
marily the definition of an evaluation template and
further to give an objective selection as possible of
available CASE tools.

As the focus of this research was on open-source
CASE tools only; future should compare open-
source and commercial CASE tools, eventually with
an adapted criteria catalogue. The result should be a
cost-benefit analysis of the rich feature set of com-
mercial CASE tools and the reduced features of
open-source CASE tools.

REFERENCES

ArgoUML Homepage, http://argouml.tigris.org/, Novem-
ber 2008.

BIFFL, S., FERSTL, C., HÖLLWIESER, C. & MOSER,
T. (2009) Evaluation of Case Tools Methods and

Processes: A Case Study Analysis of eight Open-
source CASE Tools. Technical Report. Available on-
line at: http://www.ifs.tuwien.ac.at/files/TR_Case_
Tools_Eval.pdf.

BOUML, Homepage: http://bouml.free.fr/, November
2008.

CHURCH, T. & MATTHEWS, P. (1995) An evaluation
of object-oriented CASE tools: the Newbridge experi-
ence. Seventh International Workshop on Computer-
Aided Software Engineering. Toronto, Canada.d'zine
Homepage: http://samparkh.com/dzine/index.html,
Nov 2008.

EclipseUML, Omondo, Inc. Homepage:
http://www.eclipsedownload.com/, November 2008.

FUGGETTA, A. (1993) A classification of CASE tech-
nology. Computer, 26, 25-38.

Fujaba Homepage, Fujaba Tool Suite Developer Team,
http://www.fujaba.de/downloads/index.html, Nov 08.

HIDS CASE UD - UML CASE Tool Homepage:
http://sourceforge.net/projects/hidscaseud, Nov 2008.

LE BLANC, L. A. & KORN, W. M. (1992) A structured
approach to the evaluation and selection of CASE
tools. 1992 ACM/SIGAPP symposium on Applied
computing: technological challenges of the 1990's.
Kansas City, Missouri, United States, ACM.

PRATHER, B. (1993) Critical failure points of CASE tool
evaluation and selection. Sixth International Workshop
on Computer-Aided Software Engineering (CASE
'93).

StarUML Homepage: http://staruml.sourceforge.net/en/,
November 2008.

Topcased Homepage: http://topcased.gforge.enseeiht.fr/,
November 2008.

ICEIS 2009 - International Conference on Enterprise Information Systems

48

http://argouml.tigris.org/
http://bouml.free.fr/
http://samparkh.com/dzine/index.html
http://www.eclipsedownload.com/
http://www.fujaba.de/downloads/index.html
http://sourceforge.net/projects/hidscaseud
http://staruml.sourceforge.net/en/
http://topcased.gforge.enseeiht.fr/

