Database-Driven Concept Management:
Lessons Learned from using EJB Technologies

Daniela Pohl and Andreas Bollin

Software Engineering and Soft Computing, Klagenfurt University
Universitatsstrasse 65-67, Klagenfurt, Austria

Abstract. During software maintenance activities one needs tools that assist in
concept location and that provide fast access to already identified concepts. Thus,
this paper presents an approach that is able to cope with this situation by storing
concepts in a database. We demonstrate its applicability on formal Z specifica-
tions, where the huge number of concepts to be found emphasizes the use of an
efficient database system. The paper closes with lessons learned, as the standard
use of EJB-technologies redounds to more time-complexity than expected.

1 Introduction

As developers we are surrounded by complexity. Partly, this is because our applications
get more sophisticated. Partly, this is because also our objectives get more and more
complex. With it the related design documents explode in size and imply complica-
tions. This situation was already reflected by C.A.R. Hoare in the 1980s, who stated
that[..] there are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies and the other way is to make it so
complicated that there are no obvious deficien¢igsSmall artifacts are rather excep-
tions, and locating deficiencies is a major business for a software personnel. The bad
news is that fixing deficiencies is impeded by the very mentioned problems of size and
complexity.

As scientists we are faced with the challenge to overcome at least parts of these
hurdles. First, we have to sustain the understanding of relevant parts of a system and its
related maintenance activities. Secondly, we have to ensure that the relevant parts (to
be changed) can be located easily. These tasks are supported by software comprehen-
sion environments [2-5], reverse engineering frameworks [6—10], and concept location
tools [11-13]. They focus i.a. on either data-gathering, exploration and visualization
of the code, and assist in knowledge organization. But concept location is not only re-
stricted to programming languages. There are also techniques for formal specifications
[14] or rule-based systems [15]. There, the approaches make use of the identification
of relationships and the reconstruction of concepts by means of slicing, chunking, and
clustering.

Despite these existing tools, concept location is still a laborious task. Over sev-
eral periods of time often the same or similar concepts have to be reconstructed again
and again, which is, additionally, a resource and time-consuming process. Therefore,

Pohl D. and Bollin A. (2009).

Database-Driven Concept Management: Lessons Learned from using EJB Technologies.

In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 227-238

DOI: 10.5220/0001954502270238

Copyright © SciTePress

228

this contribution suggests a framework that persistentiszes conceptual elements and
their dependencies in an SQL database. In 2008, a protoagbden implemented in
the course of the master thesis of Pohl [16], and this cartidh aims at sharing our
experiences with the system and its evaluation.

This paper is structured as follows: Sec. 2 introduces thmmof concepts and
their detection, first in general, and then in formal Z speatfons. Sec. 3 presents the
architecture of the framework and the related database Infeele 4 is dedicated to the
use of Enterprise Java Beans (EJB). Sec. 5 describes theatwal steps and lessons
learned. Finally, Sec. 6 concludes this contribution widhart summary.

2 Concepts and Concept Location

When trying to understand a systetonceptsare generally seen g&rceived regulari-
ties in events or objects, or records of events or objecsigtated by a labd[L7]. One
is looking for related parts and trying to assign a name/nmegio them. Additionally,
by aggregation, new (abstract) concepts can be built. Theegs we are looking for
are exactly those parts with dependencies within and aerti§zcts.

Concept Locatiotis rather intuitive. Experienced users manage to navigaitekly
around relevant parts but fail in explaining how they arelwing irrelevant parts.
When their experience does not suffice, they follow threfedéht strategies which are
explained in more detail in [17]: (string) pattern matchidgnamic analysis, and static
analysis. The process of concept location is iterative. Byting with a domain-level
request, concept candidates are identified and evaluatedespect to their suitability
and then they are either rejected or form the basis for theewvetuation step.

In order to demonstrate generality, we decided to focus tfaets that are at a
very high abstraction level and that are inherently complexmal Z specifications
[18]. They seem to be most useful as they are semanticallyo@mpact and are of a
declarative nature. This implies that dependencies areitig§i hard to identify, and the
assumption is that other artifacts (like program text) wit complicate the situation.

Concept identification within formal specifications depgod the notion of control
and data dependencies between their basic elements (dsb@@mes. Their calcu-
lation is impeded by their declarative nature, but (with edimitations) they can be
reconstructed. Basically, this is done by regarding scofesy looking at the primes’
identifiers, and, depending on their use, by assigning dieiin{D) declaration (T) and
use (U) tags to them. Primes that describe an after statg ¢th@ain at least one D-
tag) are said to be control dependent on primes that do notidesuch an after state.
When taking a specific identifier within the primes into aathdata dependencies can
be detected. For an in-depth discussion on dependencieDandpts see [19].

Based on the identified dependencies, the following paspiakcifications can be
defined: specification slices, chunks, and clusters. Sioeischunks are generated by
looking at a starting set of primes and by following controtifor data dependencies.
Clusters are calculates by taking reachability considamatinto account. These speci-
fication abstractions are hereinafter treated as condegtate to be identifiedia and
storedin the database. The following section introduces the arctoite of the frame-
work and the related database schema.

229

Client Server

Dependency
Agent

Specifi- Scope Agent

cation-

‘ Slice Agent

L

Cluster Agent

Specification
Agent

Layer Scheduler ‘ Chunk Agent

Distance
Agent

Logic

Artifact
Component Y

Logger General DB- Concept
Layer DB

<« »| Artifact | Artifact
Layer Tl _Agent ‘ 1 1 ¥

Scheduler

Agent, ‘ ‘ Agent; ‘ ‘ Agent, ‘

|
|
|
|
|
|
|
|
Client- <—>:
|
|
|
|
|
|
|
|
|
|
|
|

Fig. 1. Architecture as implemented by the framework.

3 Architecture

The framework for identifying the different concepts in Zespications is based on
the architecture as shown in Fig. 1. It is designed to easibeavith different types of
artifacts as the server is divided into three main parts:

1. Artifact Independent Layer: This layer represents the interface to the client and
the component-logger.

2. Artifact Depended Layer: Depending on the type of the artifact (in our example
Z specifications) this layer contains the control logic amel¢orresponding agents.

3. General Database LayerThis layer provides the necessary interface for manipu-
lating the database.

The framework implements a traditional client-server #ecture pattern. The clientis
responsible for visualizing the results and for triggetting concept extraction. On the
server side it is designed to handle different types ofastd. TheArtifact-Component
Loggeris responsible for the registration of differeftifact-Layers Depending on the
document to be stored (or accessed), the logger identieeiponsible layer. In our
case (for a Z-Specification) ti#pecification-Layeis contacted. The artifact layers are
responsible for implementing the necessary concept me#tinctionality. Complex or
time-consuming tasks (e.g. the dependency calculationpealelegated tAgentshat
are synchronized by th&rtifact Agent Scheduler

Whenever a document is stored, different analysis taskshaile to be started to
extract concepts, and the findings will have to be stored endiftabase again. In our
prototypical implementation, every agent is responsibteohe specific concept class.
E.g. theDependency Agemitracts data and control dependencies.Cluster Agenis
then used to calculate all possible clusters within one desu. As clusters are created
by looking at strongly-connected parts, this agent is sateethot until theDependency

230

Agenthas finished its calculation. A more detailed descriptiothefagents is given in
Sec. 3.2.

3.1 Database

The database schema (see Fig. 4 in the Appendix) can be diiittefour parts: the
Management/Project Panéhe Representation Pan¢he Concept Pangand theView
Pane Concept location can be treated as a multi-dimensiondleno, and the dimen-
sions, explained in more detail in [16], are just mapped ®dbrresponding parts in
the schema. They are described hereinafter shortly:

During development and maintenance it is common to deal difflerent types
and versions of documents, and thienagement/Project Paneovers this function-
ality. Therewith, it is possible to store differeattifacts of the software engineering
process. They are related to a sped#fiojectandPhase(within they are generated).

An artifact consists of differerfyntaxElement#\s introduced above, in Z we call
those elements primes. They form basic concepts of theetréind are stored in the
(Syntactic) Representation Panéthe database. The underlying structure of the doc-
ument (and respectively of the elements) can be any simptemplex graph and is
expressed by a circularto-mrelationship. For future processing steps it is possible to
annotate those elements. One type of annotation is the uderdffiers (e.g. T, D, or
U) within primes (as mentioned earlier in Sec. 2).

Based on these annotations, concepts are extracted. Tadaadled within the
Model Concept Pand\s there are different types Gonceptge.g. dependencies, slices,
cluster, and chunks) and as concepts can form hierarctgas ann-to-m recursive
relationship has been chosen to allow for greater flexyp#itlditionally, for every con-
cept, it is possible to stor@onceptMetaDatanformation.

Finally, differentViewsonto artifacts might exist. Those views cluster concepts of
the same type together (e.g. all control dependencies afdbement). Views are rep-
resented within théConcept) View Representation Pafidne set of all views can be
seen as a semantic snapshot of the whole document.

As mentioned above, every class of concepts is identifiedrbgssociated agent
which is also responsible for storing the concepts in theiresponding views. The
strength of the approach is its flexibility based on the use oélational database.
Agents just commit SQL queries to aggregate and store theseary information. They
are described in the following section.

3.2 Agents

Most of the work is done by agents. They are running indepethd&om the client
on the server side and interact with the database. It isipledsi extend the framework
by additional agents. The agents currently implementedérptototype are: thBcope
Agent theDependency Agenthe DistanceandCluster Agentthe Slice Agentand the
Chunk Agent

Data and control dependencies between primes can only eetdétvhen the scope
(where the elements are involved) is clear. Thus, first topedas to be extracted from
the syntactical structure of the artifact.

231

I_lsid(OConceptid:actconce pt<

(OconceptTypaame-"state ConceptTy pp
((GCOr\ceptid:actconcep‘N [sid # sid]
(O'ConceptTyp.e\am(t" Staté Conce ptTy pg nsid(o' AnnotationTypsame-"T" or
> SyntaXE | emenk AnnotationTypsame-"CorAnnotationTy p@ame-" D"
SyntaxElemenk ElementMetaData

> AnnotationTypge
(2)

In our system thé&cope Agenis responsible for that. In fact, what we informally call
"scope” has three facets in Z: ti&tate Scopavhich deals with schema and schema
inclusions within a specification document, t8ennectivity Scopehich merges all
primes of two or more schemata that are combined via scheraetigns, and the
Declaration Scopehat merges all primes that are necessary to keep it sycadlgti
correct.

When the scope is fixed, tlizependency Ageii started and identifies control and
data dependencies. Both, dependencies and scopes aik asocencepts within the
database. An example of ti&tate Scopean be found in Fig. 2 (out of the Birthday-
Book specification of [18]). Due to schema inclusion, ther@s of the "BB” state space
are combined with the primes of the "Add” operation schema.

The next two agents are ttizistanceand Cluster AgentsFor clustering formal Z
specifications, distances between primes (across depengdaths) are taken. So the
first agent calculates the distances between the primes ispibcification. The second
agent then calculates all potential clusters within oniésatt

Common abstractions with a clearly defined meaning aresshoel chunks. The
next two agents, th8lice and Chunk Agenare responsible for extracting them. They
look at every prime, take them as slicing/chunking critergmd, by following control
and/or data dependencies, they calculate these forms wéetisn.

Msid GAnnotationTypmame="D"

ElementMetaDatas AnnotationTypge
1)

3.3 Dependency Agent

The Dependency Ageris described hereinafter in more details as its functidyali
demonstrates the ease of working with the database. Basgdeeidentified scopes
(that are already stored as concepts in the database),asshbe to calculate depen-
dencies between syntactical elements.

To identify control dependencies within Z, some approxiora can be conducted [14]:
a syntactical element is control dependent upon anotheifbtigere is another element
that decides whether the prime is evaluated or not. By irntditheuseannotations (U)
it is possible to identify these dependencies with ease.ca@lmilation can be done by
small queries (demonstrating the elegance of the approable) queries (1) and (2)
above calculate the start and the end positions of the darependency arés

1 The different types of scope are explained in more detafl$6h
2 Theactidentifier holds the scope for which the current calculatoto be performed.

232

>

)
ControlDep(z)
-
O ControlDep1)

Fig. 2. Scope and resulting data/control dependency.

The dependency agent takes all results of the first query andects them with the
resulting elements of the second query. The same is donafard@pendencies. Addi-
tionally, the identified pairs of dependencies are storembasepts within the database.
For theAdd-Operatiorthe resulting dependencies are shown in Fig. 2.

As the framework is assumed to be extend, maintainability &= important re-
guirement during development. The choice dropped onto tH&-Fechnology. The
evaluation of the prototype also reflects on EJB internalshs following section dis-
cusses the most important issues. More information abddicBd be found in [20].

4 EJB and Implementation Details

EJB 3.0 (Enterprise Java Beans) is a server-side middleavatgtecture of Sun Mi-
crosystems. The reason for choosing this technology wasdhefunctional require-
mentmaintenanceve wanted to guarantee, and EJB facilitates this separbétween
the application and the database logic. Additionally, fers bean-objectdo handle
data easily and to map the relational data format to the bbjeéented paradigm re-
spectively. This fact could be understood as an abstractidhe relational database
schema in an object oriented presentation.

The EJB technology is implemented via corresponding Jaagsek on the server
which run in an EJB-Container. For the implementation ofoas functionalities dif-
ferent types of beans are provided. Special beans are néadibeé connection to the
database, the so-call&ahtity BeansOne object of afEntity Beanclass holds one row
of the appropriate table. Thus beans are the results of tleetetriented mapping pro-
vided by this technology.

The concept management framework is realizedJaiga 1.6 EJB 3.0and the Open-
Source database systeMySql For the server side implementation the application
serverGlassfisf from Sun was used. The development environment MetBeans
IDE 6.0.1 The ORM (Object-Rational-Mapping) is provided by thepLink persis-
tence provider, developed @yracle

The framework implements the architecture as describecen 8. The client is
a stand-alone remote client and thus not executed in an BiBader. The server

3 For further information about Glassfish see: https://disisslev.java.net/, Last visit:
Feb. 2009.

233

is implemented via EJB. The interface to the clieAttifact Component Logggris
represented by a stateless session bean. The differdatadependent layers (as the
Specification Laygrare also implemented as stateless session beans. Theigpgs-
sible to serve more than one client at a time. This layer is gdsponsible to start the
Agent ScheduleiThe Agent Schedulefor Z specifications is a traditional Java class,
which consults the agents as needed. Abentsare also traditional Java classes. For
the persistency of the identified concept they get the entiyger from the current
session. The interface to the database is formed by engtyd&hich map the database
relations to the object oriented classes. Thus, these laarsontained as part in the
General DB-Layer

5 Evaluation

The evaluation of the framework was carried out in two stéjist, the correctness
of the identified concepts were checked, and, secondly, skélmess in respect to
performance explored. In fact, both steps also hearken tmaodsults of an existing
framework calledViZ (for Visualization of formak specifications [19])ViZ maps Z
specifications to a graph (primes become vertices, depeiaseare stored as arcs) and
calculates dependencies based on reachability consmiesat

5.1 Setting and Correctness

The first step was the validation of the concepts that have lkmtified by the agents
and stored in the database. The evaluation is based on widaesspecifications of
raising sizes, known as Birthday Book [18], Petrol Statib4][and Elevator [21]. Ad-
ditionally, a student’s specification (called Cinema) wdded to the set, too. Tab. 1
(left side) presents the complexities of the specificatimmexemplifying the number
of pages (when pretty-printed), primes, control- (CD), dath dependencies (DD).

An in-depth description of the proof of correctness is ouhefscope of this contri-
bution. However, by exporting the results to a structuregifivas possible to compare
them with concepts described in literature and identifiedH®VizZ framework. As
every dependency and concept has been detected correetlyere also eager to see
whether the framework scales and improves operating speed.

Table 1. Complexity attributes and calculation time (in seconds)efiperimental subjects.

|SpecificatiofiPages AfPrimeg CD |DD]| ViZ(s)[[EJB-A[S]EJB-B [s]

BB 2 34/ 10 5 4.6 7.0 6.5
Cinema 4 74/ 121 43| 75.3 43.2 30.7
Petrol 3 65| 192177 152.9 51.9 38.7
Elevator 6 185/1,628992|1,223.4 709.3 502.7

4 See [19] for more details on the meaning of specificationtetssslices, and chunks.

234

Table 2. Complexity, described by the numbeFable 3. Comparison of JDBC and EJB
of data (DD) and control dependencies (CD)access to the database.

incl. overheafho overheall diff | RungJDBC [ms]|EJB [ms]Factof

in [s] in [s]| (in %) 100 781 5,158 6.60

DD 139.2 93.3-32.97 100 7,784 51,761 6.65
CD 343.6 232.5-32.33 1000d¢ 88,463 526,956 5.96

5.2 Performance Considerations

The ViZ framework provides additional features (such asmsing the specification

graphically), but the calculation of dependencies (andeinafter slices or chunks) is
time-consuming. Tab. 1 (right side) presents the time net&alealculate all dependen-
cies, for the ViZ environment and the new framework (for tvifbedent settings, called

EJB-A and EJB-B). For our approach we wanted to see whetleee tre some im-

provements or not. So, the performahags explored thoroughly.

The reason for two settings was the inexplicable perforradack when working
with specifications of raising sizes. The experiences waaghiare described here-
inafter. As most studies focus on the throughput of the syte varying the amount of
clients served by the EJB application [22, 23], this chappgroach the subject from a
different angle (performance lacks due to database ac€esealient).

The performance of the system varied depending on the siteeadpecification,
which was expected. Complexity considerations showedtttgatuntime complexity
is in O(cs* 2ns). Tab. 1 (right side) summarizes the time needed for the ififeant
tion/storage of all primes and dependencies. The most eogptifact is theElevator
specificatiorl, and after about 10 minutes it was analyzed and stored parsisfor
later use. On the same setting this is about two times fast@rdone byiZ [14]. But
we were eager to know why it took five minutes to store a bit ntioa@ 2600 data-sets.

We investigated further into this issue and made two immbiaservations:

— Too much time is lost due to the EJB’s synchronization betwtbe database and
Java’s internal objects.

— There is very high execution time latency between EJB qaeaie their corre-
sponding JDBC queries.

The measured times vary due to the different complexitiehefspecifications. But,
performance is lost due to the overhead of the relationaldjett-oriented mapping.
EJB can be seen as an additional layer between the DB and tilenvented busi-
ness logic. Every synchronization contributes to an irggeéa processing time. To get
uniqgue identifiers for objects (we usadtaincrement 1D, one has to flush/synchroni-
ze the objects with those in the database. That this flushslycaas clear, but we

5 We used the same measurement settigsi(R) CP T2600 2.16GHz, 1GB RAM, Windows
XP and ServicePack 2

6 Here,csis the number of different scopes, amglis the number of prime elements.

" There are 7,057 entries within titembinegelation of the database: 1,984 data dependency,
3,256 control dependency and 1,817 scope information (seé)

235

Performance (Petrol, Cinema, BB) Performance (Elevator)
(Settings A and B) in [s] (Settings A and B) in [s]
Store Scope CcD DD

B W Store
= Scope Setting A
CcD

= DD

J ‘ M Store
j M Scope
=
mDD
7
A

0 10 20 30 40 50 60 0 100 200 300 400

Petrol

Cinema

Setting B

BB

Fig. 3. Time for storing primes, calculating scopes, and data anttalodependencies.

wanted to know how much time is lost. We used the Elevatoripation to measure
it, and found out that the overhead is about one-third ofithe {see Tab. 2).

The second issue we were curious about was the differenaebetEJB and JDBC
when accessing the database. And indeed, we found a bigdterecly between EJB and
JDBC queries. Not surprising, JDBC was faster, but the wiffees were notable (see
Tab. 3). To measure it, we implemented the same requestsheithIB query language
and with JDBC statemeritS. Then, both requests were issued up to 1000 tfhase
found out that JDBC scales with the factor of about six timettdy than EJB.

So, although EJB (with entity beans and annotations withgneintity bean classes)
produces a more readable code, performance decreases whdra® to store many
objects per transaction which are, then, needed in ongaiogepsing steps. In our
framework this is the case when we have to store an object aed the unique ID
for storing the intermediate relation between those objédte flushing/synchronizing
mechanism is the only but very expensive way for getting it.

Additionally, the performance evaluation was accomplisiveh updated measure-
ment characteristié$. This shows that upgrading the system is one and often theseas
way to achieve better performance results of EJB applicaiioning the operating sys-
tem and platform is one factor suggested by Sun [24, p.95 €Maluation showed that
with improved CPU power and additional working memory thefgenance of EJB
yields better results, as shown in Fig. 3 and Tab. 1 (set#ngad B). However, inde-
pendently from the setting, the speed-up when accessirdpthbase (see Tab. 4) stays
within the range of 5 to 7. Also the influence of the overheadaias constant (see
Tab. 5) at about 30-40%.

An evaluation of an earlier draft of the EJB specificatiomirdordan [25] shows also
significant performance differences between JDBC and E3BRIDBC has to deal less
with object oriented abstractions, it performs well witiglhidatabase access rates. An-
other way to get higher performance is to de-normalize thabdse schema [26].Un-

8 The query tested for two equal identifiers at different psmaad joined two times over the
SyntaxElementheCombinationTypentities, and theombinesandemdannotatesSErela-
tion. The database contained 2620 entries irctrabinegelation.

9 This evaluation was performed with 150 entries withintbebineselation and 73 syntactical
elements (see Fig. 4).

10 patabase internal optimizations, like cashes were, ofssufisabled.
11 Measurement settingbtel(R) Core(TM)2 CPU, T7200 @ 2.00GHz, 2 GB RAM

236

doubtedly, EJB yields advantages like transaction managemecurity mechanisms,
and scalability. It offers a comfortable way in implementthings. But this luxury does
not come for free.

Table 4. Comparison of JDBC and EJB Table 5. Time (concept manifestation w/o
access to the database based on second sync overhead) of setting two.
settings.

incl. overheatho overheagliff (in %)

| RungJDBC [ms]EJB [ms]Facto} in[s] in[s]] (in %)
100 625 4,391 7.03 DD 92.2Q 56.63 -38.58
1000 6,315 43,485 6.89 CD 2345 158.19 -32.55

10000 62,462 423,670 6.78

6 Conclusions

Concept location is a challenging task which also holds fieritientification of con-
cepts within formal Z specifications. Once detected, theyukhbe stored for future
use to save time when analyzing the artifacts again. Foréaison a framework was
implemented that is able to identindstore concepts in a database. For its implemen-
tation the middleware technology EJB was utilized.

This paper introduces the architecture and evaluates Hudtirey framework. The
evaluation shows that it produces correct and useful reddtiwever, the performance
of the framework was strongly influenced by EJB. We found ®at the most im-
portant latency is due to the synchronization process letveebean objects and the
database. The comparison between JDBC and EJB shows a bighdaperformance
loss. JDBC scales about six times better than EJB in termardime. Additionally,
EJB implements an intermediate layer and, therefore, mtogerformance latencies.

In a setting similar to our framework the evaluation shovet the use of EJB tech-
nologies is less suitable. EJB brings several maintenadeanéages, but one has to
expect a performance loss that should not be neglected.

References

=

Hoare, C.A.R.: The emperor’s old clothes. Commun. ACMI®B() 75-83

Nickel, U., Niere, J., Wadsack, J., Zundorf, A.: RouitEngineering with FUJABA.

In Ebert, J., Kullbach, B., Lehner, F., eds.: Proceeding2raf Workshop on Software-

Reengineering (WSR), Bad Honnef, Germany (2000)

3. Jouault, F.: Loosely Coupled Traceability for ATL. Indeeedings of the European Confer-
ence on Model Driven Architecture (ECMDA 2005), WorkshopTaaceability. (2005)

4. Borland: The Rational Homepage. http://www.borlanthags/products/together (2008)

Eclipse: Generative Modeling Techn. Homepage. httpuiveclipse.org/gmt/ (2008)

Muller, H.A., Tilley, S.R., Wong, K.: Understanding $ofre Systems Using Reverse Engi-

neering Technology Perspectives from the Rigi ProjectCIWSCON’93. (1993) 217-226

7. Burnstein, I., Roberson, K., Saner, F., Mirza, A., TubatsA.: A Role for Chunking and

Fuzzy Reasoning in a Program Comprehension and Debuggilg Ifo TAI-97, 97 Inter-

national Conference on Tools with Artificial Intelligend&EE press (1997)

n

oo

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

237

. Ebert, J., Kullbach, B., Riediger, V., Winter, A.: GUPR@eneric Understanding of Pro-

grams An Overview. Electronic Notes in Theoretical Comp&teience 72 (2002)

. Ferenc, R., Beszedes, A., Tarkiainen, M., Gyimothy, ToluBibus — Reverse Engineering

Tool and Schema for C++. In: IEEE International ConferenneSoftware Maintenance,
Montreal, Canada (2002) 172-181

Korshunova, E., Petkovic, M., van den Brand, M.G.J., 8&mj M.R.: CPP2XMI: Reverse
Engineering of UML Class, Sequence, and Activity Diagramsi C++ Source Code (Tool
Paper). In: Working Conference on Reverse Engineering (&G®&, Benevento, Italy
(2006)

Chen, K., Rajlich, V.: RIPPLES: Tool for Change in Leg&oftware. In: IEEE International
Conference on Software Maintenance, Los Alamitos, CA, UBREE Computer Society
(2001) 230

Xie, X., Poshyvanyk, D., Marcus, A.: 3D Visualizatiorr f6oncept Location in Source
Code. In: Proceedings of 28th IEEE/ACM International Coafiee on Software Engineer-
ing (ICSE’06). (2006) 839-842

Poshyvanyk, D., Marcus, A.: Combining Formal Concepaljsis with Information Re-
trieval for Concept Location in Source Code. In: Proceeslioighe 15th IEEE International
Conference on Program Comprehension (ICPC2007). (2064337

Bollin, A.: Specification Comprehension Reducing thenpkexity of Specifications. PhD
thesis, Institute for Informatics-Systems, Universityddgenfurt (2004)

Wakounig, D.: Reverse Engineering of Typed Rulebasettie8ys — Dependency Analysis
and Comprehension Aspects. PhD thesis, University of Kiage (2008)

Pohl, D.: Specification Comprehension — Konzeptvergitam Beispiel zustandsbasierter
Spezifikationen (in German). Master’s thesis, UniversftiKlagenfurt, Software Engineer-
ing and Soft Computing (2008)

Rajlich, V., Wilde, N.: The Role of Concepts in Programm@uehension. In: International
Workshop on Program Comprehension, IEEE Computer So@e§2) 271-278

Spivey, J.: The Z Notation. C.A.R. Hoare Series. Preritiall (1989)

Bollin, A.: Concept Location in Formal Specification®uthal of Software Maintenance
and Evolution: Research and Practice 20 (2008) 77-104

Burke, B., Monson-Haefel, R.: Enterprise JavaBeans@'Reilly (2006)

Chang, J., Richardson, D.: Static and Dynamic Spediit&licing. In: In Proceedings of
the Fourth Irvine Software Symposium, Irvine, CA. (1994)

Zhang, Y., Liu, A., Qu, W.: Comparing industry benchnsaftir J2EE application server:
IBM’s trade2 vs Sun’s ECperf. In: ACSC '03: Proceedings & #6th Australasian computer
science conference, Darlinghurst, Australia, Austrafiastralian Computer Society, Inc.
(2003) 199-206

Leff, A., Rayfield, J.T.: Improving Application Throught With Enterprise JavaBeans
Caching. Distributed Computing Systems, Internationaif€e@nce on 0 (2003) 244
Microsystems, S.: Sun Java System Application SenteP8rformance Tuning Guide. EJB
Performance Tuning. In: http://docs.sun.com/app/decsBi 9-3681/6n5srlhkj?a=view, Inc.
4150 Network Circle Santa Clara, CA 95054 U.S.A., Sun Migstems Documentation
(2007)

Jordan, M.: A Comparative Study of Persistence Mechani®r the Java Platform. In:
http://research.sun.com/techrep/2004/stmR004-136.pdf, Inc. 4150 Network Circle Santa
Clara, CA 95054 U.S.A., Sun Microsystems Documentatio®420

Yao, S.S., Hiriart, R., Barg, I., Warner, P., Gasson, B .case Study of Applying Object-
Relational Persistence in Astronomy Data Archiving. In@bell, P., Britton, M., Ebert, R.,
eds.: Astronomical Data Analysis Software and Systems Xolume 347 of Astronomical
Society of the Pacific Conference Series. (2005) 694ff

adAjuoneuiquon adAjuswalg
|
(" 5

piue-

adA1jdasuon i

. f

|
= [
Bums : oweu-| Lﬁﬁ:cm sey™o I .
1

Buwyg : uonduosap-|
phwo- Buing : anjea-| s)deouod
adAisey Ul plwo-| ("Jysuoo-uou) |esonas

adAjuonejouuy adAisey

*

Bus : anjea-

“(surejuoo “6'a) adA) oyioads e Jo s8bpa pUB | = — — —— — BulS : SWEU- _ JOEjlJE BY) OJUO SMIIA
(‘1o "deou09) sepou Jo sisisuod ydeub sy [P it N I poo- ‘,uoneaibbe, ‘,uonejussaid, ‘,Jusjuoo, |en}douos Jayjo || 1o} Alesssoau
wabwwm; S — ‘Juawow sy} je pauyep ale ¢ ‘sadAy SI)Yons sy "o Jiinq sI joejie ay}
adA 1 juiensuo) 1 3 adAjjurensuod Juaiaylp 0} sBuo|aq JUBWS|IXBIUAS sjuswie|@ [eoRoRIUAS BY) sjuesaidey
’ 1
_ _
e . odA | juswalg Juswa|Ixejuis
uonese nOw.HM.uwmm_“ |eyuased]jdaouos| ﬁ
I f . 3 " : -
pinoo sopuewog || BUAIS : soluEucs woog bl | |
‘awllid-H J0 awld - t.__ - pio- i Jup m:_‘_”‘_m . Wcr“MM” bulyg : m.:._mc. Bug : sweu-|
Jayye si adAy sy L ydasuon — jur: P i - pie Vi Buws : uonduosep-| |
L]

adAejegejapydasuon seliquiod adfisey adAisey

apnjoul JyBIW MaIA v/

APPENDIX

238

3 ejeqgejapyidasuo) wmxlw JeloutESpwe
aued 1aadu0) [8pPOoN T SoqpUs, N P/ ejegejajuawalg
~
sulejupo * Ul s SodHess-
. : I pis-|
pauyep-iasn BuLS : o1ep-| v syuswale [eJaAas 0) Buojeq
10 pajeloush ‘wone aq ued sMaIA | _ _ 1 Buug : adAr JuswidlIXeIuAS i Aew pue padAj aie suoljejouuy
I : pIwA-|
BlegeisAMaIN N . ssjejouue
ﬁ ejeq 4 juased sey es i

(maln J8ysni)
© 10} SoUBN-3d

aued uonejussaiday (0110BUAS)

,|4 l
| ojulejawsey

‘6'9) senjeA oyoads
196 ueo main Auy (— * L = " — awn e e
- . joog : Auip- ojulejewsey I
Bus enen . | syuespidal L PalO}s aie SUOISIaA
wippA T Bulyg : uonduosap: y
ejegMaIA - Pl saquosap i pin- Z Ajuo yuswow ayy
ejegmaip 1y “Aousjsisuod Jo
L MIIA Suoseal 10} 8pod
Bug : sweu-| Buis : TYAUSEH-|_| -ysey e os[e saI0}g
. " * L - sjeq :)vpajes.to-| *BuluoISIaA 10} pas()
ul : pIPA « Iuo
jul 2 php. - l adfjfiobejeosey sdfmbinsey BuLyS : Jojesio- 4
adA L ejRgM: 5 . 01520p- %E:m.“ UOISIOA-| elegela\Ioeuy
Buins - ioBareo] Buls : sweNadA1main- I mEmeE_tm. :Emu. R
S wrpaa| " = — —=
3ur [eusexg (+ Ul 2 pROA Sk 1mor 1o)UY ejeqgels\IoeluY o
'1deou0D OWUBWAS (+ | adA) A10Bajemaln LMSIA
‘S|opojy onuwess (+ 4 V2 3

Ao)siy”_sey pwe

,:o_«muzww.wumwmh.ﬂ 7 ¢ T 201n0s 8y} G)sbuojag o
: S910)s pue
*sauoba)eo oyoads sal0Ba)es pauyepaid o) Buojeq op sadA} asay | sweu e MmI Bums - swenaseud] 2 buis : pmd-|
0} Bojaq op sm: ‘(adoog ‘e21ig ‘Jeysn|) “B'8) padA) ale smalp IS - w__ X _za. Buing : aweNjoaloid-|
ey 1A sey 1 : pid|
fioBajepmalp adA maIpn aseyd ooloid

aued uonejuasaiday mai (3deouo)) aued josloidauswabeue|y

— sjoensq [

Fig. 4. The four different panes of the database model.

