
Database-Driven Concept Management:
Lessons Learned from using EJB Technologies

Daniela Pohl and Andreas Bollin

Software Engineering and Soft Computing, Klagenfurt University
Universitätsstrasse 65-67, Klagenfurt, Austria

Abstract. During software maintenance activities one needs tools that assist in
concept location and that provide fast access to already identified concepts. Thus,
this paper presents an approach that is able to cope with this situation by storing
concepts in a database. We demonstrate its applicability on formal Z specifica-
tions, where the huge number of concepts to be found emphasizes the use of an
efficient database system. The paper closes with lessons learned, as the standard
use of EJB-technologies redounds to more time-complexity than expected.

1 Introduction

As developers we are surrounded by complexity. Partly, this is because our applications
get more sophisticated. Partly, this is because also our objectives get more and more
complex. With it the related design documents explode in size and imply complica-
tions. This situation was already reflected by C.A.R. Hoare in the 1980s, who stated
that [..] there are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies and the other way is to make it so
complicated that there are no obvious deficiencies[1]. Small artifacts are rather excep-
tions, and locating deficiencies is a major business for a software personnel. The bad
news is that fixing deficiencies is impeded by the very mentioned problems of size and
complexity.

As scientists we are faced with the challenge to overcome at least parts of these
hurdles. First, we have to sustain the understanding of relevant parts of a system and its
related maintenance activities. Secondly, we have to ensure that the relevant parts (to
be changed) can be located easily. These tasks are supported by software comprehen-
sion environments [2–5], reverse engineering frameworks [6–10], and concept location
tools [11–13]. They focus i.a. on either data-gathering, exploration and visualization
of the code, and assist in knowledge organization. But concept location is not only re-
stricted to programming languages. There are also techniques for formal specifications
[14] or rule-based systems [15]. There, the approaches make use of the identification
of relationships and the reconstruction of concepts by means of slicing, chunking, and
clustering.

Despite these existing tools, concept location is still a laborious task. Over sev-
eral periods of time often the same or similar concepts have to be reconstructed again
and again, which is, additionally, a resource and time-consuming process. Therefore,

Pohl D. and Bollin A. (2009).
Database-Driven Concept Management: Lessons Learned from using EJB Technologies.
In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 227-238
DOI: 10.5220/0001954502270238
Copyright c© SciTePress



this contribution suggests a framework that persistently stores conceptual elements and
their dependencies in an SQL database. In 2008, a prototype has been implemented in
the course of the master thesis of Pohl [16], and this contribution aims at sharing our
experiences with the system and its evaluation.

This paper is structured as follows: Sec. 2 introduces the notion of concepts and
their detection, first in general, and then in formal Z specifications. Sec. 3 presents the
architecture of the framework and the related database model. Sec. 4 is dedicated to the
use of Enterprise Java Beans (EJB). Sec. 5 describes the evaluation steps and lessons
learned. Finally, Sec. 6 concludes this contribution with ashort summary.

2 Concepts and Concept Location

When trying to understand a system,conceptsare generally seen asperceived regulari-
ties in events or objects, or records of events or objects, designated by a label[17]. One
is looking for related parts and trying to assign a name/meaning to them. Additionally,
by aggregation, new (abstract) concepts can be built. The concepts we are looking for
are exactly those parts with dependencies within and acrossartifacts.

Concept Locationis rather intuitive. Experienced users manage to navigate quickly
around relevant parts but fail in explaining how they are excluding irrelevant parts.
When their experience does not suffice, they follow three different strategies which are
explained in more detail in [17]: (string) pattern matching, dynamic analysis, and static
analysis. The process of concept location is iterative. By starting with a domain-level
request, concept candidates are identified and evaluated with respect to their suitability
and then they are either rejected or form the basis for the next evaluation step.

In order to demonstrate generality, we decided to focus on artifacts that are at a
very high abstraction level and that are inherently complex: formal Z specifications
[18]. They seem to be most useful as they are semantically very compact and are of a
declarative nature. This implies that dependencies are definitely hard to identify, and the
assumption is that other artifacts (like program text) willnot complicate the situation.

Concept identification within formal specifications depends on the notion of control
and data dependencies between their basic elements (also called primes). Their calcu-
lation is impeded by their declarative nature, but (with some limitations) they can be
reconstructed. Basically, this is done by regarding scope rules, looking at the primes’
identifiers, and, depending on their use, by assigning definition (D) declaration (T) and
use (U) tags to them. Primes that describe an after state (they contain at least one D-
tag) are said to be control dependent on primes that do not describe such an after state.
When taking a specific identifier within the primes into account, data dependencies can
be detected. For an in-depth discussion on dependencies andconcepts see [19].

Based on the identified dependencies, the following partialspecifications can be
defined: specification slices, chunks, and clusters. Slicesand chunks are generated by
looking at a starting set of primes and by following control and/or data dependencies.
Clusters are calculates by taking reachability considerations into account. These speci-
fication abstractions are hereinafter treated as concepts that are to be identifiedvia and
storedin the database. The following section introduces the architecture of the frame-
work and the related database schema.

228



Fig. 1.Architecture as implemented by the framework.

3 Architecture

The framework for identifying the different concepts in Z specifications is based on
the architecture as shown in Fig. 1. It is designed to easily cope with different types of
artifacts as the server is divided into three main parts:

1. Artifact Independent Layer: This layer represents the interface to the client and
the component-logger.

2. Artifact Depended Layer: Depending on the type of the artifact (in our example
Z specifications) this layer contains the control logic and the corresponding agents.

3. General Database Layer:This layer provides the necessary interface for manipu-
lating the database.

The framework implements a traditional client-server architecture pattern. The client is
responsible for visualizing the results and for triggeringthe concept extraction. On the
server side it is designed to handle different types of artifacts. TheArtifact-Component
Loggeris responsible for the registration of differentArtifact-Layers. Depending on the
document to be stored (or accessed), the logger identifies the responsible layer. In our
case (for a Z-Specification) theSpecification-Layeris contacted. The artifact layers are
responsible for implementing the necessary concept location functionality. Complex or
time-consuming tasks (e.g. the dependency calculation) can be delegated toAgentsthat
are synchronized by theArtifact Agent Scheduler.

Whenever a document is stored, different analysis tasks will have to be started to
extract concepts, and the findings will have to be stored in the database again. In our
prototypical implementation, every agent is responsible for one specific concept class.
E.g. theDependency Agentextracts data and control dependencies. TheCluster Agentis
then used to calculate all possible clusters within one document. As clusters are created
by looking at strongly-connected parts, this agent is scheduled not until theDependency

229



Agenthas finished its calculation. A more detailed description ofthe agents is given in
Sec. 3.2.

3.1 Database

The database schema (see Fig. 4 in the Appendix) can be divided into four parts: the
Management/Project Pane, theRepresentation Pane, theConcept Pane, and theView
Pane. Concept location can be treated as a multi-dimensional problem, and the dimen-
sions, explained in more detail in [16], are just mapped to the corresponding parts in
the schema. They are described hereinafter shortly:

During development and maintenance it is common to deal withdifferent types
and versions of documents, and theManagement/Project Panecovers this function-
ality. Therewith, it is possible to store differentArtifacts of the software engineering
process. They are related to a specificProjectandPhase(within they are generated).

An artifact consists of differentSyntaxElements. As introduced above, in Z we call
those elements primes. They form basic concepts of the artifact and are stored in the
(Syntactic) Representation Paneof the database. The underlying structure of the doc-
ument (and respectively of the elements) can be any simple orcomplex graph and is
expressed by a circularn-to-m relationship. For future processing steps it is possible to
annotate those elements. One type of annotation is the use ofidentifiers (e.g. T, D, or
U) within primes (as mentioned earlier in Sec. 2).

Based on these annotations, concepts are extracted. They are handled within the
Model Concept Pane. As there are different types ofConcepts(e.g. dependencies, slices,
cluster, and chunks) and as concepts can form hierarchies, again ann-to-m recursive
relationship has been chosen to allow for greater flexibility. Additionally, for every con-
cept, it is possible to storeConceptMetaDatainformation.

Finally, differentViewsonto artifacts might exist. Those views cluster concepts of
the same type together (e.g. all control dependencies of thedocument). Views are rep-
resented within the(Concept) View Representation Pane. The set of all views can be
seen as a semantic snapshot of the whole document.

As mentioned above, every class of concepts is identified by an associated agent
which is also responsible for storing the concepts in their corresponding views. The
strength of the approach is its flexibility based on the use ofa relational database.
Agents just commit SQL queries to aggregate and store the necessary information. They
are described in the following section.

3.2 Agents

Most of the work is done by agents. They are running independently from the client
on the server side and interact with the database. It is possible to extend the framework
by additional agents. The agents currently implemented in the prototype are: theScope
Agent, theDependency Agent, theDistanceandCluster Agent, theSlice Agent, and the
Chunk Agent.

Data and control dependencies between primes can only be detected when the scope
(where the elements are involved) is clear. Thus, first the scope has to be extracted from
the syntactical structure of the artifact.

230



Πsid σAnnotationType.name=”D”

((σConcept.id=actConcept⊲⊳

(σConceptType.name=”State”ConceptType))

⊲⊳ SyntaxElement⊲⊳

ElementMetaData⊲⊳ AnnotationType)

(1)

Πsid(σConcept.id=actConcept⊲⊳

(σConceptType.name=”State”ConceptType))

[sid 6= sid]

Πsid(σ AnnotationType.name6=”T”or
AnnotationType.name6=”CorAnnotationType.name6=”D”

SyntaxElement⊲⊳ ElementMetaData

⊲⊳ AnnotationType)

(2)

In our system theScope Agentis responsible for that. In fact, what we informally call
”scope” has three facets in Z: theState Scopewhich deals with schema and schema
inclusions within a specification document, theConnectivity Scopewhich merges all
primes of two or more schemata that are combined via schema operations, and the
Declaration Scopethat merges all primes that are necessary to keep it syntactically
correct1.

When the scope is fixed, theDependency Agentis started and identifies control and
data dependencies. Both, dependencies and scopes are stored as concepts within the
database. An example of theState Scopecan be found in Fig. 2 (out of the Birthday-
Book specification of [18]). Due to schema inclusion, the primes of the ”BB” state space
are combined with the primes of the ”Add” operation schema.

The next two agents are theDistanceandCluster Agents. For clustering formal Z
specifications, distances between primes (across dependency paths) are taken. So the
first agent calculates the distances between the primes in the specification. The second
agent then calculates all potential clusters within one artifact.

Common abstractions with a clearly defined meaning are slices and chunks. The
next two agents, theSlice and Chunk Agent, are responsible for extracting them. They
look at every prime, take them as slicing/chunking criterion and, by following control
and/or data dependencies, they calculate these forms of abstraction.

3.3 Dependency Agent

The Dependency Agentis described hereinafter in more details as its functionality
demonstrates the ease of working with the database. Based onpre-identified scopes
(that are already stored as concepts in the database), it is possible to calculate depen-
dencies between syntactical elements.
To identify control dependencies within Z, some approximations can be conducted [14]:
a syntactical element is control dependent upon another one, iff there is another element
that decides whether the prime is evaluated or not. By utilizing theuse-annotations (U)
it is possible to identify these dependencies with ease. Thecalculation can be done by
small queries (demonstrating the elegance of the approach). The queries (1) and (2)
above calculate the start and the end positions of the control dependency arcs2.

1 The different types of scope are explained in more details in[16].
2 Theact identifier holds the scope for which the current calculationis to be performed.

231



Fig. 2.Scope and resulting data/control dependency.

The dependency agent takes all results of the first query and connects them with the
resulting elements of the second query. The same is done for data dependencies. Addi-
tionally, the identified pairs of dependencies are stored asconcepts within the database.
For theAdd-Operationthe resulting dependencies are shown in Fig. 2.

As the framework is assumed to be extend, maintainability was an important re-
quirement during development. The choice dropped onto the EJB-Technology. The
evaluation of the prototype also reflects on EJB internals, so the following section dis-
cusses the most important issues. More information about EJB can be found in [20].

4 EJB and Implementation Details

EJB 3.0 (Enterprise Java Beans) is a server-side middlewarearchitecture of Sun Mi-
crosystems. The reason for choosing this technology was thenon-functional require-
mentmaintenancewe wanted to guarantee, and EJB facilitates this separationbetween
the application and the database logic. Additionally, it offers bean-objectsto handle
data easily and to map the relational data format to the object oriented paradigm re-
spectively. This fact could be understood as an abstractionof the relational database
schema in an object oriented presentation.

The EJB technology is implemented via corresponding Java classes on the server
which run in an EJB-Container. For the implementation of various functionalities dif-
ferent types of beans are provided. Special beans are neededfor the connection to the
database, the so-calledEntity Beans. One object of anEntity Beanclass holds one row
of the appropriate table. Thus beans are the results of the object-oriented mapping pro-
vided by this technology.
The concept management framework is realized viaJava 1.6, EJB 3.0and the Open-
Source database systemMySql. For the server side implementation the application
serverGlassfish3 from Sun was used. The development environment wasNetBeans
IDE 6.0.1. The ORM (Object-Rational-Mapping) is provided by theTopLink persis-
tence provider, developed byOracle.

The framework implements the architecture as described in Sec. 3. The client is
a stand-alone remote client and thus not executed in an EJB-Container. The server
3 For further information about Glassfish see: https://glassfish.dev.java.net/, Last visit:

Feb. 2009.

232



is implemented via EJB. The interface to the client (Artifact Component Logger) is
represented by a stateless session bean. The different artifact dependent layers (as the
Specification Layer) are also implemented as stateless session beans. Thereby,it is pos-
sible to serve more than one client at a time. This layer is also responsible to start the
Agent Scheduler. TheAgent Schedulerfor Z specifications is a traditional Java class,
which consults the agents as needed. TheAgentsare also traditional Java classes. For
the persistency of the identified concept they get the entitymanger from the current
session. The interface to the database is formed by entity beans which map the database
relations to the object oriented classes. Thus, these beansare contained as part in the
General DB-Layer.

5 Evaluation

The evaluation of the framework was carried out in two steps.First, the correctness
of the identified concepts were checked, and, secondly, the usefulness in respect to
performance explored. In fact, both steps also hearken backto results of an existing
framework calledViZ (for Visualization of formalZ specifications [19]).ViZ maps Z
specifications to a graph (primes become vertices, dependencies are stored as arcs) and
calculates dependencies based on reachability considerations.

5.1 Setting and Correctness

The first step was the validation of the concepts that have been identified by the agents
and stored in the database. The evaluation is based on wide-spread specifications of
raising sizes, known as Birthday Book [18], Petrol Station [14], and Elevator [21]. Ad-
ditionally, a student’s specification (called Cinema) was added to the set, too. Tab. 1
(left side) presents the complexities of the specificationsby exemplifying the number
of pages (when pretty-printed), primes, control- (CD), anddata dependencies (DD).

An in-depth description of the proof of correctness is out ofthe scope of this contri-
bution. However, by exporting the results to a structured file it was possible to compare
them with concepts described in literature and identified bytheViZ framework4. As
every dependency and concept has been detected correctly, we were also eager to see
whether the framework scales and improves operating speed.

Table 1.Complexity attributes and calculation time (in seconds) for experimental subjects.

SpecificationPages A4Primes CD DD ViZ(s) EJB-A [s] EJB-B [s]

BB 2 34 10 5 4.6 7.0 6.5
Cinema 4 74 121 43 75.3 43.2 30.7
Petrol 3 65 192 177 152.9 51.9 38.7

Elevator 6 185 1,628992 1,223.4 709.3 502.7

4 See [19] for more details on the meaning of specification clusters, slices, and chunks.

233



Table 2.Complexity, described by the number
of data (DD) and control dependencies (CD).

incl. overheadno overhead diff
in [s] in [s] (in %)

DD 139.2 93.3-32.97
CD 343.6 232.5-32.33

Table 3.Comparison of JDBC and EJB
access to the database.

RunsJDBC [ms]EJB [ms]Factor

100 781 5,158 6.60
1000 7,784 51,767 6.65

10000 88,463 526,956 5.96

5.2 Performance Considerations

The ViZ framework provides additional features (such as browsing the specification
graphically), but the calculation of dependencies (and thereinafter slices or chunks) is
time-consuming. Tab. 1 (right side) presents the time needed to calculate all dependen-
cies, for the ViZ environment and the new framework (for two different settings, called
EJB-A and EJB-B). For our approach we wanted to see whether there are some im-
provements or not. So, the performance5 was explored thoroughly.

The reason for two settings was the inexplicable performance lack when working
with specifications of raising sizes. The experiences we gained are described here-
inafter. As most studies focus on the throughput of the system by varying the amount of
clients served by the EJB application [22, 23], this chapterapproach the subject from a
different angle (performance lacks due to database access of one client).

The performance of the system varied depending on the size ofthe specification,
which was expected. Complexity considerations showed thatthe runtime complexity6

is in O(cs∗ 2ns). Tab. 1 (right side) summarizes the time needed for the identifica-
tion/storage of all primes and dependencies. The most complex artifact is theElevator
specification7, and after about 10 minutes it was analyzed and stored persistently for
later use. On the same setting this is about two times faster than done byViZ [14]. But
we were eager to know why it took five minutes to store a bit morethan 2600 data-sets.

We investigated further into this issue and made two important observations:

– Too much time is lost due to the EJB’s synchronization between the database and
Java’s internal objects.

– There is very high execution time latency between EJB queries and their corre-
sponding JDBC queries.

The measured times vary due to the different complexities ofthe specifications. But,
performance is lost due to the overhead of the relational andobject-oriented mapping.
EJB can be seen as an additional layer between the DB and the implemented busi-
ness logic. Every synchronization contributes to an increase in processing time. To get
unique identifiers for objects (we usedauto increment ID), one has to flush/synchroni-
ze the objects with those in the database. That this flush is costly was clear, but we

5 We used the same measurement settings:Intel(R) CP T2600 2.16GHz, 1GB RAM, Windows
XP and ServicePack 2

6 Here,cs is the number of different scopes, andns is the number of prime elements.
7 There are 7,057 entries within thecombinesrelation of the database: 1,984 data dependency,

3,256 control dependency and 1,817 scope information (see Fig. 4).

234



Fig. 3. Time for storing primes, calculating scopes, and data and control dependencies.

wanted to know how much time is lost. We used the Elevator specification to measure
it, and found out that the overhead is about one-third of the time (see Tab. 2).

The second issue we were curious about was the difference between EJB and JDBC
when accessing the database. And indeed, we found a big time latency between EJB and
JDBC queries. Not surprising, JDBC was faster, but the differences were notable (see
Tab. 3). To measure it, we implemented the same requests withthe EJB query language
and with JDBC statements8,9. Then, both requests were issued up to 1000 times10. We
found out that JDBC scales with the factor of about six times better than EJB.

So, although EJB (with entity beans and annotations within the entity bean classes)
produces a more readable code, performance decreases when one has to store many
objects per transaction which are, then, needed in ongoing processing steps. In our
framework this is the case when we have to store an object and need the unique ID
for storing the intermediate relation between those objects. The flushing/synchronizing
mechanism is the only but very expensive way for getting it.

Additionally, the performance evaluation was accomplished with updated measure-
ment characteristics11. This shows that upgrading the system is one and often the easiest
way to achieve better performance results of EJB application. Tuning the operating sys-
tem and platform is one factor suggested by Sun [24, p.95]. The evaluation showed that
with improved CPU power and additional working memory the performance of EJB
yields better results, as shown in Fig. 3 and Tab. 1 (settingsA and B). However, inde-
pendently from the setting, the speed-up when accessing thedatabase (see Tab. 4) stays
within the range of 5 to 7. Also the influence of the overhead remains constant (see
Tab. 5) at about 30-40%.
An evaluation of an earlier draft of the EJB specification from Jordan [25] shows also
significant performance differences between JDBC and EJB. As JDBC has to deal less
with object oriented abstractions, it performs well with high database access rates. An-
other way to get higher performance is to de-normalize the database schema [26].Un-

8 The query tested for two equal identifiers at different primes and joined two times over the
SyntaxElement, theCombinationTypeentities, and thecombinesandemd annotatesSErela-
tion. The database contained 2620 entries in thecombinesrelation.

9 This evaluation was performed with 150 entries within thecombinesrelation and 73 syntactical
elements (see Fig. 4).

10 Database internal optimizations, like cashes were, of course, disabled.
11 Measurement settings:Intel(R) Core(TM)2 CPU, T7200 @ 2.00GHz, 2 GB RAM

235



doubtedly, EJB yields advantages like transaction management, security mechanisms,
and scalability. It offers a comfortable way in implementing things. But this luxury does
not come for free.

Table 4.Comparison of JDBC and EJB
access to the database based on second
settings.

RunsJDBC [ms]EJB [ms]Factor

100 625 4,391 7.03
1000 6,315 43,485 6.89

10000 62,462 423,670 6.78

Table 5.Time (concept manifestation w/o
sync overhead) of setting two.

incl. overheadno overheaddiff (in %)
in [s] in [s] (in %)

DD 92.20 56.63 -38.58
CD 234.53 158.19 -32.55

6 Conclusions

Concept location is a challenging task which also holds for the identification of con-
cepts within formal Z specifications. Once detected, they should be stored for future
use to save time when analyzing the artifacts again. For thisreason a framework was
implemented that is able to identifyandstore concepts in a database. For its implemen-
tation the middleware technology EJB was utilized.

This paper introduces the architecture and evaluates the resulting framework. The
evaluation shows that it produces correct and useful results. However, the performance
of the framework was strongly influenced by EJB. We found out that the most im-
portant latency is due to the synchronization process between a bean objects and the
database. The comparison between JDBC and EJB shows a high factor of performance
loss. JDBC scales about six times better than EJB in terms of runtime. Additionally,
EJB implements an intermediate layer and, therefore, runs into performance latencies.

In a setting similar to our framework the evaluation shows that the use of EJB tech-
nologies is less suitable. EJB brings several maintenance advantages, but one has to
expect a performance loss that should not be neglected.

References

1. Hoare, C.A.R.: The emperor’s old clothes. Commun. ACM 24 (1981) 75–83
2. Nickel, U., Niere, J., Wadsack, J., Zündorf, A.: Roundtrip Engineering with FUJABA.

In Ebert, J., Kullbach, B., Lehner, F., eds.: Proceedings of2nd Workshop on Software-
Reengineering (WSR), Bad Honnef, Germany (2000)

3. Jouault, F.: Loosely Coupled Traceability for ATL. In: Proceedings of the European Confer-
ence on Model Driven Architecture (ECMDA 2005), Workshop onTraceability. (2005)

4. Borland: The Rational Homepage. http://www.borland.com/us/products/together (2008)
5. Eclipse: Generative Modeling Techn. Homepage. http://www.eclipse.org/gmt/ (2008)
6. Müller, H.A., Tilley, S.R., Wong, K.: Understanding Software Systems Using Reverse Engi-

neering Technology Perspectives from the Rigi Project. In:CASCON’93. (1993) 217–226
7. Burnstein, I., Roberson, K., Saner, F., Mirza, A., Tubaishat, A.: A Role for Chunking and

Fuzzy Reasoning in a Program Comprehension and Debugging Tool. In: TAI-97, 9th Inter-
national Conference on Tools with Artificial Intelligence,IEEE press (1997)

236



8. Ebert, J., Kullbach, B., Riediger, V., Winter, A.: GUPRO –Generic Understanding of Pro-
grams An Overview. Electronic Notes in Theoretical Computer Science 72 (2002)

9. Ferenc, R., Beszedes, A., Tarkiainen, M., Gyimothy, T.: Columbus – Reverse Engineering
Tool and Schema for C++. In: IEEE International Conference on Software Maintenance,
Montreal, Canada (2002) 172–181

10. Korshunova, E., Petkovic, M., van den Brand, M.G.J., Mousavi, M.R.: CPP2XMI: Reverse
Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source Code (Tool
Paper). In: Working Conference on Reverse Engineering (WCRE’06), Benevento, Italy
(2006)

11. Chen, K., Rajlich, V.: RIPPLES: Tool for Change in LegacySoftware. In: IEEE International
Conference on Software Maintenance, Los Alamitos, CA, USA,IEEE Computer Society
(2001) 230

12. Xie, X., Poshyvanyk, D., Marcus, A.: 3D Visualization for Concept Location in Source
Code. In: Proceedings of 28th IEEE/ACM International Conference on Software Engineer-
ing (ICSE’06). (2006) 839–842

13. Poshyvanyk, D., Marcus, A.: Combining Formal Concept Analysis with Information Re-
trieval for Concept Location in Source Code. In: Proceedings of the 15th IEEE International
Conference on Program Comprehension (ICPC2007). (2007) 37–48

14. Bollin, A.: Specification Comprehension Reducing the Complexity of Specifications. PhD
thesis, Institute for Informatics-Systems, University ofKlagenfurt (2004)

15. Wakounig, D.: Reverse Engineering of Typed Rulebased Systems – Dependency Analysis
and Comprehension Aspects. PhD thesis, University of Klagenfurt (2008)

16. Pohl, D.: Specification Comprehension – Konzeptverwaltung am Beispiel zustandsbasierter
Spezifikationen (in German). Master’s thesis, University of Klagenfurt, Software Engineer-
ing and Soft Computing (2008)

17. Rajlich, V., Wilde, N.: The Role of Concepts in Program Comprehension. In: International
Workshop on Program Comprehension, IEEE Computer Society (2002) 271–278

18. Spivey, J.: The Z Notation. C.A.R. Hoare Series. Prentice Hall (1989)
19. Bollin, A.: Concept Location in Formal Specifications. Journal of Software Maintenance

and Evolution: Research and Practice 20 (2008) 77–104
20. Burke, B., Monson-Haefel, R.: Enterprise JavaBeans 3.0. O’Reilly (2006)
21. Chang, J., Richardson, D.: Static and Dynamic Specification Slicing. In: In Proceedings of

the Fourth Irvine Software Symposium, Irvine, CA. (1994)
22. Zhang, Y., Liu, A., Qu, W.: Comparing industry benchmarks for J2EE application server:

IBM’s trade2 vs Sun’s ECperf. In: ACSC ’03: Proceedings of the 26th Australasian computer
science conference, Darlinghurst, Australia, Australia,Australian Computer Society, Inc.
(2003) 199–206

23. Leff, A., Rayfield, J.T.: Improving Application Throughput With Enterprise JavaBeans
Caching. Distributed Computing Systems, International Conference on 0 (2003) 244

24. Microsystems, S.: Sun Java System Application Server 9.1 Performance Tuning Guide. EJB
Performance Tuning. In: http://docs.sun.com/app/docs/doc/819-3681/6n5srlhkj?a=view, Inc.
4150 Network Circle Santa Clara, CA 95054 U.S.A., Sun Microsystems Documentation
(2007)

25. Jordan, M.: A Comparative Study of Persistence Mechanisms for the Java Platform. In:
http://research.sun.com/techrep/2004/smlitr-2004-136.pdf, Inc. 4150 Network Circle Santa
Clara, CA 95054 U.S.A., Sun Microsystems Documentation (2004)

26. Yao, S.S., Hiriart, R., Barg, I., Warner, P., Gasson, D.:A case Study of Applying Object-
Relational Persistence in Astronomy Data Archiving. In Shopbell, P., Britton, M., Ebert, R.,
eds.: Astronomical Data Analysis Software and Systems XIV.Volume 347 of Astronomical
Society of the Pacific Conference Series. (2005) 694ff

237



Fig. 4.The four different panes of the database model.

238


