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Abstract. In this paper a problem of 3D objects’ surfaces comparison is consid-
ered. Each spatial object is given as a set of schlicht surfaces that are described
by point clouds. This article discusses a proposed disparity measure to compare
such objects and an algorithm to compute it. A method for comparison of mesh
functions defined on different point sets is proposed. The theoretical base of the
proposed approach is the piecewise-linear approximation of surfaces using De-
launay triangulations for initial point clouds. The presented approach uses Delau-
nay triangulations of each point clouds, general Delaunay triangulation for both
clouds, function interpolation on basis of localization of triangulations in each
other and function comparison on single cells of general triangulation. Local-
ization is implemented on basis of minimum spanning trees. As the application
of the proposed methodology a problem of 3D face models comparison is con-
sidered. It was experimentally verified that the proposed method is numerically
efficient.

1 Introduction

In pattern recognition, along with k-nearest neighbors, estimate evaluation ([1]) and
other algorithms there is a method of pattern matching. A problem of metrics construc-
tion for comparison of a given object with the standard occurs in biometric identification
(e.g. by 3D face model) and various medical applications.

Any spatial object has a certain geometric shape. Objects’ shape can be considered
as a set of schlicht surfaces. In such a way a problem of object comparison reduces to a
problem of surface comparison.

A method of pointwise description is usually used for specification of complex
uneven surfaces. Then a surface is considered as a discrete nonregular ensemble of
points. One can receive such description using 3D scanning methods (e.g. http://artec-
group.com), topographic mapping and some other.

As the result of rapid progress in objects’ 3D scanning techniques problems con-
nected with received surfaces analysis and comparison occur.

Accurate and numerically efficient algorithms of computing disparity measure be-
tween surfaces are required in many applications of computer graphics. It is necessary
to compare surfaces solving problems of surface classification, surface reconstruction
by its separate fragments, etc.
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Known approaches to compare piecewise linear functiongtiealefined on differ-
ent discrete sets use hash functions [2]. They have quadmtiputational complexity
at worst and so are too computationally intensive.

Our method based on constructing of general Delaunay tlatigns for union of
two discrete sets. As the merging process can be implementiegtar time ([8]) then
the total time to compute the proposed measure is companathidime to construct
Delaunay triangulation, i.€2(N log N), whereN — the total amount of points in two
sets. Consequently, the proposed method allows to avoidrgtia search in surface
comparison that determines its advantage and novelty.

This paper is organized as follows. In section 2, we desaquifoblem definition
and introduce the proposed disparity measure. In sectiead) of stages of the pro-
posed algorithm for disparity measure calculation is dbedr. In section 4 we discuss
application of the proposed method for 3D face model corspatiThe results of com-
putational experiments are given in section 5.

2 Problem Definition and Basic Ideas

A finite point setG : {(z%,y%) € R?|i = 1,...,N}, N > 3 is called anonregular
two-dimensional mesh.

We consider the following problem definition.

Let Gy = {(z%,y))}Y, andGy = {(22,y?)}22 be nonregular 2D meshes. Sup-
poseF; andF;, are the mesh functions correspondedtoandG,, i.e.

B ={fi}imiN1, fi=F(2,y)); Fo={fitiziNo, fi= Fo(zh,yh).

It is required to introduce a metrics for comparison suchhrfesctions and to
design a numerically efficient algorithm to compute it.

Let R be a rectangle ifR?. Let u(z,y) be a function that defines weight of frag-
ments ofR in accordance with significance of function similarity orckedragment.

By & denote the set of nonregular 2D meshes containel iGonsider a sef of
single-valued functions on meshes fran

Now we introduce a proximity functiop over sefs.

By Conu(@) denote the convex hull af. ConsiderFy, F;, € 3. Let F; andF; be
continuous functions defined @fonuv(G1) N Conuv(Gs) such thatF, = F; onG; and
Fy = F, on Go. By T' denote the Delaunay triangulation of mesh U G,. We will
say that this mesh is trgeneral mesh and’” is thegeneral Delaunay triangulation. Let
A, B, C be points of the general mesh. By definition, put

VAB.CFLE) = [[ | Ay - By | uloy) dody. @)
ANABC
The value of” indicates a weighted volume between two surfaces definedriny f
tions F; and F; over triangleA ABC.
We are interested in case wh€anv(G1) NConv(Ga) # 0. Otherwise two objects
should be reduced to such coordinate system that allowstilvéescomparable.
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Then we introduce a proximity functignas

p(F1, Fp) = Z V(A,B,C, F1, F»). 2
AABCET

So we compute disparity measure for two surfaces summingesaif volume be-
tween them over all triangle& ABC of general triangulatioff’.

We introduce disparity measure between two surfaces ascaaspalume between
the corresponding functions. It is also allowed to use "W&d” volume. In this case
similarity of some surface patches will have weight gretiitan similarity of others.

Let us remark that two functions; and F; are defined omlifferent meshes. The
basic idea of the proposed approach is to fill values of eacttiions at points of the
other mesh using construction of two triangulations and thealization in each other.

3 Methods

The following stages will be performed to compute the digpaneasure 2 between
two surfaces given by function’s, and Fs.

1. Delaunay triangulation for each of the meshgs G is constructed;

. each of two meshes;, G- is located in the triangulation for the other mesh;

3. each of two functiong?, F5 is interpolated on the mesh that the other function is
defined on;

4. the general triangulation of both mesliésU G4 is constructed on basis of unsep-
arated triangulation merging;

5. afterthatin each point of the general mesh valuésofunctions are known, and it
is possible to make comparison operation on particulas céfthe general triangu-
lation, analyzing positional relationship of the spatidngles given by functions.

N

Let’s consider each of steps in detail.

3.1 Delaunay Triangulation Construction

A triangulationT for a setG is called Delaunay triangulation if the following conditio
holds: there is no point ity is inside the circumcircle of any triangle i (see Figure).

The used triangulation construction algorithm based om#radigm of recursive
decomposition ("divide-and-conquer strategy”): divisiaf initial set into two approxi-
mately equal subsets, recursive triangulation constinaf these subsets and merging
of two divided triangulations. The data structure "nodethwieighbors”, described in
[3], can be used.

Computational complexity of this algorithm (N log N).
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3.2 Point Location in Triangulation

To locate pointQ) in a Delaunay triangulatiofi’ means to declare the triangle of
containing this point. In cases of (i) coincidence of pajhtand one of triangulation
vertices; (ii) belonging of poind) to one of triangulation edges, it is possible to declare
any of triangles incident to the specified vertex or to thecHjwal edge. In case of point
Q oversteps the boundariesBfit is possible to declare certain infinite triangle or the
nearest triangle to this point.

Fig. 1. Point location in triangulation. Fig. 2. PointC of triangulation belongs to seg-
ment[M Q).

Let point M be a point that location in the triangulation is known (etgedn be
the center of the inscribed circle of any triangle). The idéalgorithm solving point
location in triangulation problem consists in gradual sison from M to @ along the
straight line(M Q). During each transition step changing on adjacent (neighpdy
side) triangle is implemented. Case of belonging of a cenaint of 7" to segment
[MQ] is a case of a special interest (see Figure 2). A similar @hgarwas described
in [4].

Thus, after point location stage is finished, there is a patisisting of triangulation
triangles, each of them (except the initial one) is adjaeettt previous. We say that it
is location path. On Figures 1 and 2 triangles of location path are outlined.

Complexity of one point location depends on quantity ofrtgies located along
segmenfM Q] and isO(y/N) on the average and(N) at worst.

3.3 Mesh Location in Triangulation

To locate a two-dimensional mesghin a triangulatiori” means to locate all points of
G in this triangulation.

We propose a mesh location algorithm that uses spannindaregaphT’. In this
case location paths will pass along edges of spanning tree.

As spanning tree for gragh does not contain cycles and passes through all points
of the meslG, the algorithm will work correctly: it will not loop and pesfms location
of absolutely all points of mesh.

The proposed method for comparison of schlicht surfaces tiigegeneral triangu-
lation of two meshes constructed by merger method on oneeo$ibsequent stages.
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This method uses minimum spanning trees (MST) of both meSedt is justified
to use exactlyminimum spanning trees for mesh location. Then location paths ill b
optimal (see Fig. 3, 4).

Fig. 3. Minimum spanning tree for Delaunay Fig. 4. Mesh location in triangulation.
graph.

It is known, that it is possible to construct minimum spaigtiree for a se from
Delaunay triangulation fo€7 in linear time. Linear time is reached owing to clean-
up operation proposed by Cheriton and Tarjan in [5], and ta daucture "fibonacci
heap”, defined by Fredman and Tarjan in [6], [7].

It was experimentally verified that computational comperf mesh location stage
isO(N).

By means of the described algorithm each of the me€heend(G,, is located in the
triangulation for the other mesh, and it is possible to cdesa problem of interpolation
for function given on one mesh at points of the other mesh.

3.4 Function Interpolation

Let pointVy(xo, yo) be located in a certain triangle(Vy (x1, y1), Va(x2, y2), Va(zs, y3)):
such thatF'(z1,y1) = f1, F(22,y2) = fa, F(x3,y3) = f3. For interpolation of func-
tion F' value at the point} linear interpolation and barycentric coordinates can used
fo = )\1f1 + )\2f2 + )\3f3, hereh; A; A3 > 0 and

To = Ax1 + Aaxa + A3x3;
Yo = A1y + A2y2 + A3ys;
1 =X+ A+ A

Results of the described method are shown on Figures 5 - 8riihgulated surface
defined by functionf; on grid G, is represented by (1) (on the top), the triangulated
surface defined by functioR, on gridG- is represented by (2) (at the bottom of Figure
5) and the surface received after interpolation of funcfigron grid G, is represented
by (3) (at the bottom). As shown on Figures, two triangulagioepresented by (2) and
(3) define the same surface (the bottom one).

Computational complexity of mesh interpolation stag@{sV).
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Fig.5. Linear interpolation,N; = N, = Fig.6. Linear interpolation,N; = N> =
1000. 10 000.

Fig. 7. Linear interpolation,N1 = N
10000. 15000.

Fig.8. Linear interpolation,N; = N, =

By means of the described method values of functignare interpolated at all
points of mesh, and values of functiot;, are interpolated at points of meéh.

3.5 Function Comparison at Cells of General Triangulation

After interpolation stage values tfio functions are known at each point of the general
meshG = G U Ga: one of them has been given, and the second one is received by
interpolation.

Let’s construct the general Delaunay triangulatiofor general meslk-. As loca-
tions for points of the meshé&s, andG,, in triangles of triangulations fak, andG are
known usage of the triangulation merge algorithm proposed.bestetkiy, E.Tsarik
in [8] is the most efficient here.
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Fig. 9. Comparison of functions given at three points:¢ax 0,b > 0,¢ > 0; (b)a = 0,b =0,
¢c>0;()a=0,=0,c>0;(d)a=0,b<0,¢>0;(€)a>0,b<0,c> 0; (f) wedge
volume as sum of volumes of triangular or quadrangular pidam

Let AAyByCy be a triangle of the general triangulatidghand letAABC and
ANA'B'C’ be spatial triangles corresponding to functidiisand F». As a disparity
measure of surfaces we will use the sum of volumes of difieedmetween prisms
AgBoCoABC and AqgByCy A’ B’C" over all trianglesA AqByCy, of the general tri-
angulation".

Leta, b, c be differences of coordinates of axiz of pointsA’ andA, B’ andB, C’
andC respectively. We analyze positional relationships of {hetial trianglesA\ ABC
andA A’ B’C’ and consider all possible cases (see Fig. 9). For computivgume of
difference between prisms it is necessary to calculatawelof a pyramid — triangular
or quadrangular (see Fig. 9a-c), or total volume of two gidar pyramids (see Fig. 9d),
or total volume of a triangular pyramid and a wedge (see Fywhere wedge volume
is searched as the sum of volumes of quadrangular and ttemgygramids (see Fig.
of).

Summing over all triangles of general triangulation valfidifierence volume, we
obtain the difference measure 2 between the given surfaces.

4 Comparison of Human Face Surfaces

As the application of the proposed methodology we have densd a problem of com-
parison of 3D face models (see Fig. 10).

Using elementary manipulations of one model (shifts anatiats by small angles)
it is possible to improve the received result consideralgyto find such model position
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that two models constitute a maximum matching so that theesponding disparity
measure will be minimal (see Fig. 11).

Fig. 10.Comparison of 3D face models, disparFig- 11.Comparison of 3D face models, dispar-
ity measure i9 234, 254. ity measure 120 238, 8.

In [9] the author considered a problem of quantitative eatiom of facial asymme-
try in 3D models. To solve this problem reflection of the @mlithodel is constructed and
two models are compared using the presented approach. ddiead disparity measure
is called initial quantitative estimation of asymmetryeRithe correction stage of facial
asymmetry plane is performed and a final value of estimatioadeived.

5 Computing Experiments

The proposed method of surface comparison was implemeartddhere also has been
made multiple computing experiments for all stages of aigor.

As experimental estimations have shown, each of stagepestge of triangula-
tion constructions is implemented for linear time in numbemesh points. The stage
of triangulation construction is implemented for tirf@¢ N log V), which defines com-
putational complexity of the proposed approach.

Running time for different stages of algorithm during sagaomparison are ad-
duced in tables (1)-(3). The three-dimensional portraitssisting approximately from
3000 points were used here. Computing experiments were cartiédising AMD
Athlon 2 600+ processor and12 Mb operative memory.

Let us remark that in case one of two models is stored in a datafverification
problem) then the total running time will cut in half becaesastruction of Delaunay
triangulation and minimum spanning tree for stored modeltmaimplemented during
preprocessing stage.

In addition, we have performed computing experiments on &t fdatabase that
estimate approximation accuracy of scanned surfaceseThgeriments have showed
how much surfaces can be simplified without loss of accuracgisparity measure (2)
by comparing initial triangular meshes and their simplifiedresentation. The problem
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Table 1. Running time for different stages of algorithm. Comparisbfiace surfaces consisting
of about3 000 points.

Stage of algorithm Time (sec)
Construction of two triangulations 0,124
Construction of two MSTs 0,203
Location of triangulations 0,015
Function interpolation < 0,001
Construction of general triangulation 0,031
Computing disparity measurfe\ - F ] 0,031

Total time 0,405

Table 2. Time for minimum spanning tree construction for graph ofddelay triangulation using
Cheriton and Tarjan algorithm.

Number of points 20 000 40 000 60 000 80000 100 000
Time (sec) 0,906 1,812 2,562 3,531 4,468

Table 3. Time for location of one mesh in triangles of the triangwatfor the other mesh.

Number of points in the mesfi; 10000 25 000 50 000 75 000 100 000
Time (sec) 0,031 0,093 0,171 0,234 0,312

Table 4. Running time of linear interpolation of both functions.

Number of points in both meshé$, andG2 50 000 100 000 150 000 200 000
Time (sec) 0,015 0,031 0,046 0,062

of measuring error on simplified surfaces were consideretitail by F.Cignoni et al
in [10].

6 Conclusions

A new approach to 3D objects’ surface comparison is proposdais paper. A new
disparity measure between two surfaces is introduced. pheoach is based on the
piecewise-linear approximation of surfaces using Delgumangulations for initial
point clouds.

The proposed method has the following advantages: nunheffa@ency, possibil-
ity of paralleling. Besides, the described approach pessesome universality in com-
parison with others as it is suitable for comparison of anglel®given by functions on
discrete sets. The proposed measure can be adapted foraarbte application, for
example, by means of introducing measure on a surface. Smtigéddered methodol-
ogy gives mathematical apparatus for construction of comama specific metrics for
surface comparison.
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