
QUERY MELTING
A New Paradigm for GIS Multiple Query Optimization

Haifa Elsidani Elariss, Souheil Khaddaj and Darrel Greenhill
Faculty of Computing, Information Systems and Mathematics, Kingston University London

Kingston upon Thames, U.K.

Keywords: Query Optimization, Query Melting, Proximity Analysis, Dynamic Complex Queries, Large-scale GIS
Servers, Visual Query Languages and Mobile GIS.

Abstract: Recently, non-expert mobile-user applications have been developed to query Geographic Information
Systems (GIS) particularly Location Based Services where users ask questions related to their position
whether they are moving (dynamic) or not (static). A new Iconic Visual Query Language (IVQL) has been
developed to handle proximity analysis queries that find k-nearest-neighbours and objects within a buffer
area. Each operator in IVQL queries corresponds to an execution plan to be evaluated by the GIS server.
Since commonalities exist between the execution plans, the same operations are executed many times
leading to slow results. Hence, the need arises to develop a multi-user dynamic complex query optimizer
that handles commonalities and processes the queries faster especially with the large-scale of mobile-users.
We present a new query processor, a generic optimization framework for GIS and a middleware, which
employs the new Query Melting paradigm (QM) that is based on the sharing paradigm and push-down
optimization strategy. QM is implemented through a new Melting-Ruler strategy that works at the low-
level, melts repetitions in plans to share spatial areas, temporal intervals, objects, intermediate results, maps,
user locations, and functions, then re-orders them to get time-cost effective results, and is illustrated using a
sample tourist GIS system.

1 INTRODUCTION

During the last decades, computer applications have
been deployed to manage spatial data with
Geographic Information Systems. GIS are computer-
based tools mostly used to handle the geo-features of
the real world. They provide the capability to input,
store, manipulate, analyze, retrieve, transform, and
display geographical data related to earth surface
and its events as well as to measure aspects of
geographic phenomena and processes. With the
emergence of mobile technologies, the use of GIS
Geo-data by mobile devices becomes very common.
Mobile GIS is the combination of systems which
include mobile devices, Global Positioning Systems
(GPS), wireless communication, and GIS software.
In tracking systems, they provide the facility to track
employees and children in the backyards (Ladd,
2005; Kim, 2007). In road networks, they provide
the ability to organize public transportation
(Repenning, 2006), query moving objects (Guting,
2006), guide tourists (Beeharee, 2007), and exploit

photos (Beeharee, 2006). In data mining, they play a
major role in trajectory pattern recognition of
moving users (Gianotti, 2007; Andrienko, 2007).
Mobile GIS are typically used in tourist and
navigation systems for Proximity Analysis which
includes querying the k Nearest Neighbor (kNN) and
finding the facilities within a buffer area. The
existing Mobile GIS applications have textual or
menu-driven environment, do not provide a user
friendly environment, and in some applications they
are aimed at expert users. Moreover they allow the
user to formulate one query at a time only. Thus, a
new iconic visual query language (IVQL) has been
developed in (Elsidani Elariss, 2006a, 2006b) to
provide the mobile user with the facility to formulate
a visual query using expressive icons and send
complex queries, therefore reducing the overheads
significantly.

Query Optimization includes a list of tasks that
are executed in a particular order for processing a
simple query, which form an execution plan. Having
a complex query made up of a number of simple

82
Elsidani Elariss H., Khaddaj S. and Greenhill D. (2009).
QUERY MELTING - A New Paradigm for GIS Multiple Query Optimization.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages 82-90
DOI: 10.5220/0001960700820090
Copyright c© SciTePress

queries requires the Query Processor to execute a
number of corresponding plans, combine their result
in one map, and send the result map to the mobile
user. If one or more of the simple queries are
dynamic, the processor repeats the same steps for
every new time instance that corresponds to the
current user location. These repetitions raise the
need to develop a Query Processor for Dynamic
Complex Queries which aims to eliminate all
repetitions, share intermediate results, facilities,
spatial areas, time intervals, and generate one Global
Execution Plan for each dynamic complex query.

2 RELATED WORK

To deal with the different types of queries, different
query optimization strategies have been considered.
In this section we briefly describe some of them
showing some of their advantages and limitations.

2.1 The Sharing Paradigm

The existing query optimization strategies that use
the sharing paradigm are concerned with processing
multiple queries in data analysis applications. An
example is the Virtual Microscope Processor
(Andrade, 2001, 2002c, 2002d, 2006; Afework,
1998). The runtime system was designed for shared-
memory multi-processors. It tackles queries that are
user-defined, allows the input data to be shared, and
the query results to be reused by other queries. It
aimed at optimizing query processing by (1)
maintaining intermediate data structures generated
by queries for intermediate results, (2) caching input
data in memory, and (3) providing support for multi-
threaded execution where each query is executed as
a thread. Caching methods are used to store query
results in the memory in the aim to speed up the
execution of queries (Andrade, 2002a, 2002b, 2002e,
2003). These results along with input data can be
used by other queries to produce new results. When
caching is implemented at the server side, multiple
clients can share the query results.

The experiment was conducted on an 8-processor
Symmetric Multiprocessing machine, running Linux
Kernel version 2.4.3. Two scenarios were considered
in order to examine the performance of the runtime
system and for each scenario two executions were
done; each considered as a case making a total of 4
cases. In the first scenario, 16 clients were emulated.
The calculated value of the overlap index was large
70% reflecting a high overlap among queries. In the
second scenario, 8 clients were emulated making a

relatively small overlap index of 59%. Two
executions were done for each scenario. In the first
one, the Data Store Manager was ON, hence
maintained intermediate results. In the second one, it
was OFF, hence did not maintain intermediate
results. The execution time in seconds of each case
was recorded. An evaluation of the performance was
conducted where results showed that a better
performance was obtained when maintaining
intermediate results. In the high overlap index case,
the execution time decreased by about 30% to 40%.
In the low one, it decreased by about 18%. Results
also reported that the query execution time
decreased as the number of threads increased and
that the query evaluation time decreased as the size
of the data store manager cache increased. The
execution time decreased by 38%.

2.2 The Push-down Strategy

The existing query optimization strategies that use
the push-down approach are concerned with
processing execution plans where the order of
execution of the operators affects the execution time
without affecting the output result of the query such
as having both the Selection and the Join operators
in the same execution plan. In some cases and
depending on the data records, the execution of one
the Selection operator before the Join operator
produces faster results than the execution of the Join
operator before the Selection operator, and vice
versa. The push-down strategy is based on swapping
operators in an execution plan in order to get faster
results. An example of the push-down paradigm is
described in (Elmongui, 2005, 2006) which deals
with the optimization of multiple predicate spatio-
temporal queries for applications such as to find in
which region of a continuously monitored city the
number of suspects is greater than the number of
police officers. The proposed idea is building a
uniform adaptive query optimization framework that
includes: selectivity estimation, cost estimation,
adaptive query optimization model, and an extension
of query optimization to cover multiple multi-
predicate spatio-temporal queries. The Spatio-
Temporal Histogram (ST-Histogram) was used to
estimate the selectivity of a continuous spatio-
temporal query operator that is sent from the query
executer to the histogram manager periodically in
form of statistics. An extension was proposed in
order to accommodate multiple feedbacks especially
the spatial relationship between queries. A data-to-
plan grid was proposed as a framework to prevent
executing the same query plan on all location

QUERY MELTING - A New Paradigm for GIS Multiple Query Optimization

83

updates. The data-to-plan grid directs each location
update to a relevant plan. A dynamic plan formation
mechanism is used to provide the facility to add,
remove, or reshuffle operators in the evaluation plan.
Also, an extension of query optimization to handle
multiple multi-predicate spatio-temporal queries was
proposed based on sharing sub-plans between
multiple multi-predicate queries.

2.3 Both Sharing and Push-down

The existing query optimization strategies that use
the sharing paradigm and the push-down strategy are
concerned with processing scalable incremental
spatio-temporal queries. An example is in (Mokbel,
2003, 2004b, 2004c, 2005a, 2005b) which deals with
location-aware services. The proposed idea is
sharing the underlying space, operator, and objects.
The first type is sharing the underlying space by the
queries that find whether one or more objects, such
as cars, are located inside a spatial area. All the
queries have the same object but different areas. A
plan was illustrated as a decision tree cost model that
reflects the expected number of comparisons,
calculated as the product of the number of
comparisons and the probability of finding an object
in the region (area). Sharing the query operator is the
second type of sharing. The queries continuously
inform the user about a group of objects that are
located in different areas. All the queries share the
same table, but they search various regions. In order
to optimize the query execution, a new Shared
Global Plan was implemented and evaluated.
Sharing the objects of the same interest is the third
type of sharing. The queries continuously inform the
user about the number of objects that are located in
an area. Another new Shared Global Plan was
implemented and evaluated and the push-down
approach was applied by pushing the Selection
operator pushed below the Join operator. Three
different joining policies introduced in (Xiong,
2004) namely Clock-triggered Join Policy (CJP),
Incremental Join Policy (IJP), and Hot Join Policy
(HJP), were used in (Mokbel, 2004a). In the CJP, the
spatial Join is reevaluated every T seconds. The IJP
does not execute the spatial Join for the objects and
queries that did not change their location since the
last T interval of time. The HJP evaluates hot
objects, if their movement affects the result, at each
evaluation time. The results of the evaluation of the
policies showed that for “moving queries on
stationary objects” and “stationary queries on
moving objects”, the CJP policy had a constant
number of I/O regardless of the percentage of

moving queries. The IJP policy had a number of I/O
that was significantly smaller than CJP. The same
applied to the HJP policy when compared to IJP.
The IJP policy had a much lower CPU cost than CJP
and the HJP policy had a lower CPU cost than IJP.

2.4 Comparison of Strategies

The above described query optimization strategies
have demonstrated a considerable improvement in
the field of query optimization. However, the
Sharing Paradigm approaches the multiple single
predicate queries but not multiple queries with
multiple predicates. It discusses sharing of the
underlying space and object of interest for the type
of queries that deal with finding if an object is
located inside an area but does not consider the
queries that deal with proximity analysis and it alters
the cache memory size. The push-down strategy
approaches re-ordering the operators of a plan based
on the Selectivity and executes the updates in
queries instead of re-executing the whole queries
several times. However it alters the database schema
which is not feasible in real-life applications. In
order to address the limitations of the existing
strategies a new query optimization framework is
needed for multiple dynamic complex queries which
does not change the cache memory size or the
database schema. The proposed query optimization
framework employs the new Query Melting
paradigm (QM) that includes common sub-
expression elimination, sharing objects of interest,
spatial areas, time intervals, underlying space, and
intermediate results. QM is implemented by using
the new sliding ruler strategy.

3 QUERY MELTING

3.1 Commonality in GIS

A thorough examination of different GIS and
Location Based Services (LBS) applications, where
users ask questions related to their position whether
they are moving (dynamic) or not (static), shows that
they have in common some functionalities,
operations, and objects in execution plans. A
predicate is the operator used by the user while
formulating a query such as Find Within a buffer and
Find the k Nearest Facilities. There are two types of
operators namely the static and the dynamic. Each
operator is decomposed as per its own query
evaluation plan which is made up of a list of
functions / operations that are to be executed in the

ICEIS 2009 - International Conference on Enterprise Information Systems

84

Figure 1: The Global Evaluation Plan of Operator1.

Figure 2: The Global Evaluation Plan of Operator2.

Figure 3: The Global Evaluation Plan of Both.

proper sequence. When multiple dynamic complex
queries are formulated with multiple operators the
global evaluation plan of each operator might

include functions that can be reused by other global
evaluation plans. Figures, 1 and 2 show the two
plans of the two different operators Operator1 and
Operator2. The dots marked with arrows in Figure 2
are the same as in Operator1 plan so they can be
melted. The other dots of Operator2 are appended to
those of Operator1’s because they can not be melted
as shown in Figure 3. In this global execution plan
there are 3 categories of operators: (a) Those that are
executed once at the beginning only, (b) those that
are executed at every new time instance, and (c)
those that are executed for each query.

3.2 Query Melting Paradigm

The Query Melting Paradigm (QMP) is a generic
optimized framework for GIS. It aims at building the
optimal global evaluation plan for GIS spatio-
temporal dynamic complex queries. Its main
objective is to produce the most cost effective query
processing in terms of execution time and memory
storage, thus, minimizing the queries execution time
cost. It is based on a combination of the Sharing
paradigm, Query Optimization, and Push-down
strategy. The Query Optimization that was applied
by (Kang, 1994; Andrade, 2001; Elmongui, 2006;
Mokbel, 2005a) is here extended to include “multi-
user spatio-temporal multi-predicate dynamic
complex queries”.

4 QUERY MELTING
PROCESSOR

Query Melting is implemented using the Query
Melting Processor QMP which is a middleware
software system located on the server. Its major
function is to input user queries, optimize them
based on the Query Melting Paradigm, generate
global execution plan and execute it, produce the
resulting maps, and send the output to the user.

4.1 QMP Components

The Query Melting Processor consists of a number
of components as shown in Figure 4. The
architecture shows the three major steps that
dynamic complex queries have to pass through in
order to produce a query global evaluation plan. The
Preprocessor takes as an input the dynamic complex
query, parses it into multiple simple queries, groups
them by category, and sorts them. Each simple query
is decomposed according to its operator template.

Q1 Q1 Q1 Q1 Q1 Q1

Time 0 Time n Time 1 …

OPERATOR 1 and OPERATOR 2

Qn Qn Qn Qn Qn Qn

OPERATOR 1

Q1… Qn Q1… Qn Q1… Qn

Time 0 Time 1 … Time n

OPERATOR 2

Q1 Qn Q1 Qn Q1 Qn

Time 0 Time 1 … Time n

QUERY MELTING - A New Paradigm for GIS Multiple Query Optimization

85

Two-dimensional arrays are used to store the
decompositions. The idea of using a Sliding ruler is
applied here to melt the repetitions that exist in
multiple plans. First, the Query Melting Ruler 1
melts the templates functions that are shared among
multiple simple queries in the aim to implement
common sub-expression elimination, sharing sub-
plans, and sharing the underlying space (map). The
Query Melting Ruler 1 works on a two-dimensional
plane, and its output is the Initial Evaluation Plan for
Time 0 of the whole dynamic complex query.
Second, the Query Melting Ruler 2 is responsible for
implementing sharing the space and areas, sharing
the time intervals, and sharing the object of interest.
Sharing the space and areas occurs when multiple
queries share the same spatial area or when an area
is included in another. The Query Melting Ruler 2
draws the buffer of an area only once and uses it
multiple times to clip or find the objects of other
multiple simple queries. It allows sharing an interval
of time if it is included or equal to the interval of
other multiple queries. Finally, sharing the object of
interest allows sharing the object of interest between
multiple simple queries by reading the object table
once and using it for many queries. The Query
Melting Ruler 2 works on the same two-dimensional
plane as the Query Melting Ruler 1, and its output is
the Final Global Evaluation Plan for Times 1…n.

Figure 4: The Components of the QMP.

4.2 System Mechanism

Before describing the mechanisms of the execution
plans, in the next few sections, we are describing
some abbreviation for the representation of the icons
of the IVQL which represent basically operators,
values, and objects. Also we are showing some
examples of simple as well as complex visual
queries. The smiley icons that represent operators
are listed in Table 1 along with their abbreviation
and explanation. The first six operators are used for
static queries, i.e. they ask about objects at the
current Time 0 only. The next six operators are used
for dynamic queries, i.e. they launch a continuous
query that lives n minutes. Every m minutes, they
update the user with the new results of the queries
based on his new location that is received through
the GPS and satellite systems. Table 2 shows some
of the icons that represent objects and facilities such
as restaurant, hospital, and gymnasium.

Table 1: The Icons Used as Operators to Formulate
Dynamic Complex Queries.

 Icon Abbre
viation

Explanation

1
SW Find the facilities that are

within a certain buffer
2

SN Find the k nearest facilities

3
SP Find the shortest path

4
SNP Find the k nearest facilities

and their shortest paths
5

STL Find the time left to reach
the k nearest facilities

6
SDL Find the distance left to

reach the k nearest facilities
7

DW
Continuously find the
facilities that are within a
certain buffer

8
DN Continuously find the k

nearest facilities
9

DP Continuously find the
shortest path on my way

10
DNP Continuously find the k

nearest facilities and paths

11

DTL

For the next n minutes,
update me every m minutes
with the time left to reach
the k nearest facilities

12

DDL

For the next n minutes,
update me every m minutes
with the distance left to
reach the k nearest facilities

Dynamic
Complex Query

Operators
Templates and

PreProcessor
• Parsing, Grouping & Sorting Queries
• TCOP: Redirect Queries to GEP of Similar Ones
• Decomposition of Queries and Filling Arrays

Melting Ruler 1
• Melting Two-Dim Array Operator Templates
• Building Initial Evaluation Plan for Time 0

Initial Evaluation
Plan for Time 0

Melting Ruler 2
• Melting Queries, Values, Objects, Methods
• Appending Values and Objects to Methods
• Building Final Evaluation Plan for Times

Final Global Evaluation
Plan for Times 1…n

ICEIS 2009 - International Conference on Enterprise Information Systems

86

Table 2: The Icons Used as Objects.

 Icon Abbreviation Explanation
1

 R Restaurant

2

M Motel

3
 H Hospital

4
 U Tube / Metro

5

G Gymnasium

The AND operator is used to combine

multiple simple queries into a complex one. Some
examples of simple queries are:

[SN 1 M]: find nearest 1 motel
[SNP 5 M]: find 5 nearest motels with their paths
[SW 500 R]: find all restaurants that are within 500
meters from my location
[SW 1000 R]: find all restaurants that are within
1000 meters from my location
[DTL 60 10G]: continuously, find the Time Left to
reach the nearest gymnasium for the next 60
minutes. Keep on supplying me with an updated
result every 10 minutes. The result includes the
shortest path.

An example of a dynamic complex query is
shown in Table 3 summarizing a number of queries:
Find the nearest theatre and its shortest path. While I
am on my way, keep on supplying me with the 3
nearest motels and their shortest paths that are within
200 meters until I reach the theatre or 60 minutes
overlap. Update my map every 5 minutes.

Table 3: A Dynamic Complex Query with 3 Predicates.

[DTL 60 5 T] [DNP 3 M] [DW 200 M]

Each operator is decomposed into a set of steps

according to the operator’s template. The templates
of some of the static operators are shown in Table 4
where each static operator is performed once only
for Time 0. The steps of each operator are executed
in the order in which they appear in the template
following the top-down direction. The MakeLayer
function creates a new closest facility layer that is
used to find the nearest objects. The ReadXY
function reads the XY location of the user. The
AddXYIncident function adds the user’s location as

an incident to the layer. The Path is set to YES so as
to produce the shortest path and set to No if no path
is required. The NFacilities is the number of
facilities needed to look for. The Impedance is set to
Meters, Pedestrian-Time, or Drive-Time. The
AddFacilities function specifies the object database
table such as restaurants, motels, etc. The Solve
function finds the nearest facilities based on the
previous parameters. The AddToMap and SendMap
functions add the results to the map and send it to
the user. The DrawBuffer draws a circle around the
XY location of the user and the ClipBufFac finds the
facilities that are located in this buffer. The
templates of the dynamic operators are shown in
Table 5. Each of the dynamic operators has two
templates. The first is applied for Time 0 when the
query is launched and the second is applied for each
of the consequent time instances Times 1…n. The
NewWatcher waits for new XY Locations to arrive
then launches triggers to read the data and continue
execution accordingly. The NewTimer launches the
query life time which triggers a timer that lasts as
long as required by the user. The KillQueryIfX is
used to terminate the query if it is expired, the user
reaches his destination, the user issues a cancellation
order, or he gets disconnected. The rest of the
functions operate the same as the static operators.

The Query Melting process is performed by the
query melting rulers. If an element of the template
ends with a star *, the corresponding elements in the
arrays are filled with objects, such as AddFacilities*
leads to AddRestaurant, AddHospital, etc., as shown
in Step 9 of Table 6. If an element ends with two
starts **, the corresponding elements are
increasingly numbered starting with 1, such as
Solve** leads to Solve1, Solve2, and so on. If an
element ends with ***, the corresponding elements
are increased by 1 for every new time instance, such
as ReadXY*** leads ReadXY1 for Time 0 and
ReadXY2 for Times 1…n. Using ** at the end of an
element means that this particular element is
repeated and executed for each simple query
whether static or dynamic, whether for Time 0 or
Times 1…n. The Melting Ruler follows the top down
direction. It eliminates all the repetitions of an
element each row at a time. The result of the Melting
Ruler is a list of functions that are to be executed,
the Global Evaluation Plan.

QUERY MELTING - A New Paradigm for GIS Multiple Query Optimization

87

Table 4: The Templates of Static Operators.

Table 5: The Templates of Dynamic Operators.

Table 6: Multiple Queries with One Static Operator during Query Melting.

Figure 5: The User Interfa

onds in the box called Cost of
MP. During execution, the queries are displayed in

their relative boxes.

ce before Melting.

4.3 Implementation

The QMP is implemented using the Microsoft
Visual Basic.NET. The underlying experimental
environment consists of a 1.8 GHz Intel Centrino
Duo PC with 1 GB RAM running Microsoft
Windows XP Home Edition. The User Interface of
QMP is divided into sections as shown in Figures 5
and 6. Each Operator such as “Time Left” and
“Distance Left” has its own section that is made up

of two boxes, the first for the dynamic queries and
the second for static. Each box contains six columns,
the first for the template and the next for queries.
Each row corresponds to a function. The two long
list boxes are the global evaluation plans. After
processing a complex query, the execution time is

isplayed in nanosec

d
Q

ICEIS 2009 - International Conference on Enterprise Information Systems

88

Figure 6: The User Interface after Melting.

5 EVALUATION

For the evaluation of the Query Melting Processor
(QMP) the ‘time’ quality characteristic is quantified
and cost is estimated using the Big-Oh notation
which reflects how the cost of computation grows as
a function the input size by considering the
computation cost to be the running time in terms of
the size, thus indicating an approximation to the
number of steps taken by a process. Therefore, the
computational cost of Melting the Templates is O(Ns
× (Nt-1)) where Ns is the number of steps, Nt is the
number of templates and the steps correspond to the
row index numbers of each template. Since the
computational cost of processing Ns steps is O(Ns)
where for each step the rest Nt-1 templates that are
numbered from two to the last one are processed in
reverse order and since the computational cost of
processing Nt-1 templates is O(Nt-1), thus the
computational cost of both these dimensions is O(Ns
× (Nt-1)). The computational cost of Melting the
Values is O(Nq-1) where all the queries are
processed starting from the first one until the last
one, Melting the Objects is O(Nq-1) same as Values,
Filling and Appending the Methods with Values and
Objects is O(Ns × Nq) where all the queries are
processed for all the steps, and Generating the
Global Execution Plans is O(Nq × Ns) where all the
multi-dimensional array elements are traversed.
Hence, it can be concluded that the total time cost of
the Query Melting Processor is the sum of the time
costs of all its processes and is calculated as follows:

O(QMP) = O(Ns × (Nt-1))+ O(Nt × Nqti ×)+

O(Nq-1)+ O(Nq-1)+ O(Ns × Nq) + O(Ns × Nq)

∑
−

=

1

1

qk

n

n

The second quality characteristic that is

quantified in order to evaluate the efficiency of the
Query Melting Processor is the memory space. This
is done by evaluating the array that stores the

templates of the operators and the functions of the
queries. Since the name of each function does not
exceed 20 characters and each character occupies 2
Bytes in RAM (some systems 1 Byte) the name
occupies maximum 40 Bytes. The total space
occupied in the RAM is 40B/Function/Operator. In
other words, it is equal to the product of the number
of operators, the number of functions of each
operator, and 40 Bytes, which is quantified as Space
Cost = 40 Bytes × Number of Functions × Number
of Operators. Hence, the space cost is considered
minimal.

6 CONCLUSIONS

In this paper a query melting approach to processing
dynamic complex queries was introduced. The
approach aims at designing and implementing QMP,
a query melting processor that is a generic
optimization framework for GIS. A critical
evaluation of the existing query optimization
strategies proposed in the literature has been carried
out in order to build the presented approach upon the
current strategies. An investigation has been
conducted to examine the commonalities that exist
between the execution plans of different operators
by studying the static operators alone, the dynamic
ones alone, and a combination of both. The proposed
QMP has been introduced, its components
explained, and its mechanism described. The
mechanism is based on the new query melting ruler
strategy that is responsible for implementing the
query melting paradigm through sharing spatial
areas, time intervals, objects, functions, underlying
space (map), user locations, and intermediate results.
The proposed QMP implementation and user
interface have been described using a tourist GIS
system for proximity analysis. Finally, a theoretical
evaluation has been carried out in order to quantify
the time cost effectiveness of the approach.

QUERY MELTING - A New Paradigm for GIS Multiple Query Optimization

89

REFERENCES

Afework A., Beynon M. D., Bustamante F., Demarzo A.,
Ferreira R., Miller R., Silberman M., Saltz J., Sussman
A., and Tsang H., 1998. Digital Dynamic
Telepathology – The Virtual Microscope, In AMIA 98,
American Medical Informatics Association, 1998.

Andrade H., Kurc T., Sussman A., and Saltz J., 2001.
Efficient Execution of Multiple Query Workloads in
Data Analysis Applications. Proceedings of SC2001,
Denver, USA.

Andrade H., Kurc T., Sussman A., Borovikov E., and Saltz
J., 2002a. On Cache Replacement Policies for
Servicing Mixed Data Intensive Query Workload.
Proceedings of the 2nd Workshop on Caching,
Coherence, and Consistency, 2002.

Andrade H., Kurc T., Sussman A., and Saltz J., 2002b,
Scheduling Multiple Data Visualization Query
Workloads on a Shared Memory Machine,
Proceedings of the 2002 International Parallel and
Distributed Processing, 2002.

Andrade H., Kurc T., Sussman A., and Saltz J., 2002c,
Multiple Query Optimization for Data Analysis
Applications on Clusters of SMPs, In Proceedings of
the 2nd International Symposium on Cluster
Computing and the Grid, 2002.

Andrade H., Kurc T., Sussman A., and Saltz J., 2002d,
Active Proxy-G: Optimizing the Query Execution
Process in the Grid, Proceedings of the 2002
ACM/IEEE Supercomputing Conference, 2002.

Andrade H., Kurc T., Sussman A., and Saltz J., 2002e,
Processing Large-Scale Multi-dimensional Data in
Parallel and Distributed Environments, Parallel
Computing, 28(5), 827-859, 2002.

Andrade H., Aryangat S., Kurc T., Slatz J., and Sussman
A., 2003, Efficient Execution of Multi-Query Data
Analysis Batches Using Compiler Optimization
Strategies, Proceedings of the 16th International
Workshop on Compilers for Computing, LCPC, 2003.

Andrade H., Kurc T., Sussman A., and Beomseok N.,
2006, Data Management and Query – Multiple Range
Query Optimization with Distributed Cache Indexing,
SIGMOD Conference, 2006.

Andrienko G., Andrienko N., and Wrobel S., 2007, Visual
Analytics tools for Analysis of Movement Data, In
Proceedings of ACM SIGKDD Explorations
Newsletter, Vol. (9) 2, ACM.

Beeharee A., and Steed A., 2006, A Natural Wayfinding
Exploiting Photos in Pedestrian Navigation Systems,
In Proceedings on Human-computer Interaction with
Mobile Devices and Services, MobileHCI’06.

Beeharee A., and Steed A., 2007, Exploiting Real World
Knowledge in Ubiquitous Applications, Personal and
Ubiquitous Computing.

Elmongui H., Mokbel M., and Aref W., 2005, Spatio-
temporal Histograms, Proceedings of SSTD, 2005.

Elmongui H., Ouzzani M., and Aref W., 2006, Challenges
in Spatio-temporal Stream Query Optimization.
Proceedings of MobiDE 2006, Chicago.

Elsidani Elariss H., Khaddaj S., and Haraty R., 2006a,
Towards a New Visual Query Language for GIS.
IASTED Databases and Applications 2006, 195-202,
Austria 2006.

Elsidani Elariss H., Khaddaj S., and Haraty R., 2006b, An
Evaluation of a Visual Query Language for
Information Systems. ICEIS (5) 2006, 51-58, Paphos.

Gianotti F., Nanni M., Pinelli F., and Pedreschi D., 2007,
Trajectory Pattern Mining, In Proceedings of the 13th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD’07.

Guting H., De Almeida T., and Ding Z., 2006, Modeling
and Querying Moving Objects in Networks, VLDB
Journal – The International Journal on Very Large
Databases, Vol. (15) 2.

Kang M., Dietz H., and Bhargava B., 1994, Multiple-
Query Optimization at Algorithm-Level. Proceedings
of SSDI 1994, Data Engineering 14, 57-75.

Kim S., Diverdi S., Chang J., Kang T., Iltis R., and
Hollerer T., 2007, Implicit 3D Modeling and Tracking
for Anywhere Augmentation, VRST 2007, Newport
Beach, California, November 5-7, 2007.

Ladd A., Bekris K., Rudys A., Kavraki L., and Wallach
D., 2005, Robotics-Based Location Sensing Using
Wireless Ethernet, Proceedings of the 8th ACM
International Conference on Mobile Computing and
Networking, MOBICOM, Sep. 2002, Atlanta, GA.

Mokbel M.F., Aref W.G., Hambrush S.E., and Prabhakar
S., 2003, Towards Scalable Location-Aware Services:
Requirements and Reseach Issues. In Proceedings of
the ACM Symposium on Advances in Geographical
Information Systems, ACM GIS.

Mokbel M.F., Xiong X., Aref W.G., Hambrush S.E., and
Prabhakar S., Hammad M., , 2004a, PLACE: A Query
Processor for Handling Real-Time Spatio-temporal
Data Streams. In Proceedings of the VLDB.

Mokbel M.F., Xiong X., and Aref W.G., 2004b, SINA:
Scalable Incremental Processing of Continuous
Queries In Spatio-temporal Databases. In Proceedings
of the SIGMOD.

Mokbel M.F., 2004c, Continuous Query Processing in
Spatio-temporal Databases. In Proceedings of the
ICDE/EDBT PhD Workshop.

Mokbel M.F., Xiong X., Hammad M., and Aref W.G.,
2005a, Continuous Query Processing of Spatio-
temporal Data Streams in PLACE. GeoInformatica,
9(4), 343-365, 2005.

Mokbel M.F., and Aref W.G., 2005b, GPAC: Generic and
Progressive Processing of Mobile Queries over Mobile
Data. In Proceedings of the MDM, Aya Napa, Cyprus.

Repenning A., and Ioannidou A., 2006, Mobility Agents:
Guiding and Tracking Public Transportation Users,
Proceedings of the Working Conference on Advanced
Visual Interfaces, AVI’06.

Xiong X., Mokbel M.F., Aref W.G., and Prabhakar S.,
2004, Scalable Spatio-temporal Continuous Query
Processing for Location Aware Services. In
Proceedings of the International Conference on
Scientific and Statistical Database Management.

ICEIS 2009 - International Conference on Enterprise Information Systems

90

