
Identification of Software Product Line
Component Services

Martin Assmann1, Gregor Engels1
Thomas von der Massen2 and Andreas Wübbeke1,2

1 Dept. of Computer Science, University of Paderborn
Warburger Straße 100, 33098 Paderborn, Germany

2 DC Application Development, arvato services
An der Autobahn 33310 Gütersloh, Germany

Abstract. Software Product Line (SPL) approaches do not centrally improve
the maintenance of software products of a SPL. This paper presents an ap-
proach for reducing maintenance costs of SPL products by using the concept
Software as a Service (SaaS). The SPL-SaaS approach was developed with the
experiences of arvato services integrating the SPL concept since years. It shows
up the advantageous and disadvantageous characteristics of components that
play a role for the concept combination. The main goal is to enable an IT-
architect to identify adequate components. Therefore criteria for the identifica-
tion of software components suitable for the approach are derived from these
characteristics. Furthermore the requirements of the potential service users are
examined and categorized concerning their effects on the system architecture.
Special requirements of customers often lead to architectural constraints that
are not compatible with the approach. If both, the criteria are met and the archi-
tectural constraints are compatible, the SPL-SaaS approach can be applied to a
component. The whole approach is applied on an example of arvato services.

1 Introduction

SPLs were becoming an important development paradigm over the past years. The
idea is to develop similar software products on a common basis, called platform. This
paper presents the idea to extend the SPL development process with the maintenance
process and illustrates this with the example of an address validation service. The
goal is to reduce costs for maintaining software products by using the concepts of
Service-oriented Computing (SoC) and SaaS.

The domain we are developing software for, deals with customer specific solutions
in heterogeneous system and user landscapes. We learned from it, that it is hardly
possible to satisfy the different customer needs and at the same time convert our SPL
approach to a completely service oriented SPL. Often the customers are against giv-
ing away the sovereignty of their systems. Further on, things like non functional re-
quirements (e. g. performance and security) and the increased complexity of the sys-
tems and their infrastructure impede the realization of a fully service oriented ap-

Assmann M., Engels G., von der Massen T. and Wübbeke A. (2009).
Identification of Software Product Line Component Services.
In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 45-56
DOI: 10.5220/0001961300450056
Copyright c© SciTePress

proach. Although we try to identify single (functional) components, which can be
exposed as a service without provoking the above mentioned problems.

At first, this contribution presents the idea of reducing maintenance costs by dep-
loying common software components as central services that are used for different
software products at the same time. We point out the important characteristics of
software components, which make them reusable in the way our approach proposes.

The remainder of this paper is structured as follows: In the 2nd section foundations
on SPLs and the concept SaaS are introduced. In the 3rd section the potential of ex-
tending the SPL development process is described. In the 4th section the characteris-
tics of our approach with its advantages and disadvantages are figured out. In section
5 we present an exemplary address validation service focusing its basic architecture.
Related to the characteristics from section 4 and with the experience from the address
validation service we present criteria to find fitting software components for our SPL-
SaaS approach in section 6. Section 7 provides the related work in this area. The last
section summarizes the results and points out further research topics in this field.

2 SPL, SoC and SaaS

The SPL approach deals with the development of similar Software Products based on
a common platform. Thereby in all phases of the development process reuse of differ-
ent artifacts is the main aim. In this context the platform provides different types of
artifacts: Artifacts can be common to all or to some products developed within the
SPL. The SPL development process proposed in literature (compare [2] and [3]) con-
tains the phases requirements engineering, design, implementation (realization) and
testing. In these phases different techniques (e. g. variability modeling) provide the
possibility of reuse parts of the platform in different products of the SPL.

The second major concept that is part of this paper is SoC. A relatively similar
concept is SaaS. Both utilize the service notion and both relate to software that is
offered as a service. The vision of SaaS is to change the basic paradigm for develop-
ment and maintenance of software systems, which is discussed in detail in [4] by
Turner. He proposes to deliver software as a service rather than a licensed product.
The main idea of the service is that it is not deployed where it is used but somewhere
centrally. Users bind services needed at compile time or as preferred by Turner at
runtime. Therefore the software services must have adequate descriptions, must be
discoverable and should be composable, i.e. services can be created by combining
other services. Service-oriented Computing, as described by Papazoglou in [5] and
[6], builds the foundation for Service Oriented Architectures (SOA).

While SaaS aims on providing complete applications as services, SoC wants to
provide business functions of finer granularity. Though, both approaches aim at ad-
vantages like lowered maintenance costs, higher degree of reuse as well as a different
business model. It allows paying software per usage instead of buying licenses inflict-
ing high fix costs. In the following we will point out how the software product line
approach can benefit from these advantages.

46

3 Exploiting Potentials in the SPL Development Process

Regarding to software development processes like the Rational Unified Process
(RUP) or the waterfall model the software lifecycle usually contains a phase for
maintenance and operations. Within the RUP this phase is called transition [7]. SPL
covers mainly the first three phases of the RUP. We believe that there are potential
cost savings in the maintenance and operations phase being not utilized.

The SPL approach primarily decreases the development effort for software prod-
ucts but hardly addresses reduction of their maintenance and operation costs. Deploy-
ing and maintaining products separately at customer sites, makes it hard to exploit
commonalities of the products. This means that the common components of a plat-
form are only reused until software product assembly. Afterwards, deployed common
components exist in separate system environments and are maintained individually.
Therefore their maintenance is as expensive as the maintenance of single software
products. As similarities between components exist but are not exploited at all regard-
ing maintenance we think that there is a high cost saving potential in the transition
phase. However, SPL domains that do not allow remote communication within their
software components cannot benefit from our idea, for example SPLs for embedded
systems like cell phone software.

Domain
Maintenance and

Operations

Application
Maintenance and

Operations

remote usage

Fig. 1. Extension of the SPL development process modified from [2].

Fig. 1 shows the extension of Pohl’s SPL development process [2] by a new pair of
sub-processes called domain maintenance and operations, and application mainten-
ance and operations. As the figure illustrates, the common components are held on
the domain level (maintained and operated by the SPL platform provider). Only the
product specific components are maintained and operated by the customer. The com-
munication between the two levels is realized remotely. As shown the lifecycle
process is extended to the maintenance sub-processes, because change requests con-
cerning the components take effect on the maintenance.

Fig. 2 illustrates the changes from the usual situation in SPL architectures (upper
part) to the situation that our approach suggests (lower part). The upper part of the

47

picture depicts the architecture of two customers with individual applications. In the
realization phase both have been assigned a bonus system component and a customer
management component. The blue background of the bonus system component indi-
cates that this is a custom component that usually has some customer specific modifi-
cations. The customer management component is deployed with little or no modifica-
tions.

Client BClient A

Bonus
System A

SPL Platform
Provider

Customer
Mgmt. A

Customer
Mgmt.

Bonus
System

Bonus
System B

Customer
Mgmt. B

Client BClient A

Bonus
System A

Customer
Management

Bonus
System

Bonus
System B

Customer
Mgmt. X

SPL Platform
Provider

Remote
Usage

Remote
Usage

Component
plan

instanciaton

delegation

Component
instance

Remote
Call

Common
Artefact

Individual
Artefact

transformed to

Fig. 2. Changes in the component deployment.

The transformation addresses the deployment of the customer management com-
ponent. Instead of deploying it once for every customer it is deployed as part of the
SPL Platform. The customer application now remotely uses the component as a soft-
ware service. This means that the component is reused and has to be maintained and
deployed only once. Major question arising when examining Fig. 2 are: “What makes
a common component in a SPL that is suitable for the deployment as a service?” and
“Are there any other advantages and which disadvantages come with the approach?”
We will answer both questions in the sections 4 and 6 in reversed order.

4 Characteristics of the Combined Approach

For our approach we want to answer two important questions. Firstly, what are the
advantages/disadvantages? Secondly, when is a software component suitable for the
approach? In the following we list the characteristics. With each characteristic we try
to identify influencing factors of software components that can intensify/weaken the
advantage/disadvantage. With this information the software architect can determine
software components with characteristics that minimize disadvantages and maximize
advantages of the approach. Regarding SPLs there are always two interesting aspects,
the variation points and their binding time. There are two major categories of varia-
tion points. Firstly, the deployment location of a service has to be settled during de-
sign time. Secondly, there are minor variations for centrally deployed services. These
variations reflect the range of the customers’ requirements for the service. After the
range is anticipated the service is designed accordingly. By this the variability can be
bound at design time. The variation points are described in section 6.

48

4.1 Advantageous Characteristics

First of all several issues can be consolidated. The first four of the following points
address this topic. Firstly, hardware (e. g. a server system) can be used for several
products. This means to deploy a common software component only once on a central
server system and share it via remote connection.

Secondly, by sharing a server system providing services of common components
deployed on it, several maintenance and operation aspects can be improved: availabil-
ity and backup solution only has to be treated once, i.e. before we had several servers
and every of them had to have availability and backup mechanisms like idle stand-by
servers and mirrored hard disks. Functional extensions and updates to a common
component have to be made only once. The same applies to the correction of faults.
These changes always concern one component and thus the distribution effort is re-
duced, because the component is deployed only once on the shared server system.

Thirdly, the overall operation costs for hardware resources are reduced because as
a single instance of a component requires less resources than several instances. The
mentioned advantages all lead to less effort concerning maintenance and hence re-
duce the costs for it. According to this advantage suitable components should underlie
frequent changes for updates. Additionally they should have high availability and
backup requirements.

Fourthly, consolidation comes with an additional advantage concerning load-
balancing. Usually a customer with its own systems can hardly afford to cover peak
loads so his systems will just cover average load. Even if the centralized service is
only able to cover average load of all its consumers, a single consumer causing a
performance peak will not cause heavy performance losses on the central system,
because his peak load has to be put into relation with computing power of the system
designed for several customers. For the suitability of a component we can derive that
it is increased if the component causes critical peak loads with relatively low average
load.

Furthermore our approach of SPL component services opens up the possibility for
new cost models, which are addressed by the next two paragraphs. In this context the
maintenance and operations costs for the common parts of all products of the SPL can
be shifted from a model with high fix investment cost (e. g. license, hardware) com-
bined with effort for human resources to a usage cost model. Now there are mainly
two new options for payment. Firstly, the customer can buy the service, its mainten-
ance, and operations for a fixed amount of money per period. The second possibility
derives from the SaaS approach. It means that the maintained and operated service is
paid per usage only (variable costs). The latter kind of cost model has definitely less
fix costs, which reduces the financial risks of the customer. Hence suitable software
components are expensive with a high investment risk for the customer.

Furthermore, the new cost model provides the possibility of outsourcing the main-
tenance of the common parts of the product line. Firstly, this leads to the possibility
for the customer to save money, because the SPL platform provider is able to be more
efficient in maintenance and thus cheaper. Secondly, the customer can outsource
functions that do not belong to his core business. Especially in combination with the
pay-per-usage cost model he gains flexibility, i.e. he can dispose of the product re-
spectively the service easily. From this we can conclude that suitability is influenced

49

in a positive way if software components do not provide core business functions of
the customer.

4.2 Disadvantageous Characteristics

In the following we point out disadvantages and as in the section before also the fac-
tors regarding software components that influence the disadvantages.

The first three points address drawbacks that arise from the centralization of com-
ponents. Firstly, all shared software services have to be client-capable unless they are
stateless. That means customer data is stored by the component this has to be taken
into account designing the component. If every customer runs its own instance, then
data and also access rights are divided without extra effort. Suitability of software
components is increased by statelessness and public access. Otherwise the implemen-
tation of client-capability is inevitable.

The second point is closely related to the last one. Data sovereignty is transferred
from the customer to the service provider. The requester has to trust the provider that
handles the data with adequate security mechanisms. Suitability of software compo-
nents will be decreased if the component stores confidential data and the customer
does not trust the service provider at the same time.

Thirdly, virtual reuse means that several completely independent clients use a sin-
gle server solution. A single point of failure is created by this. If the central compo-
nent crashes, then every customer is affected. Nowadays, this should only be a ques-
tion of costs as high-availability server solutions are on the market. The single point
of failure is a performance bottleneck at the same time. The load that was distributed
over many systems is now concentrated on one. Therefore a high performance system
may be required. On the one hand, in peak load situations again all customers are
affected, even those that are not responsible for the peak load situation. On the other
hand a load balancing between all the requesters is given now. Peak loads of single
requesters do not lead to performance problems as their single server would have
encountered. High availability and high performance server solutions are required
unless performance and availability of the centralized components are not critical. For
the suitability of a component this means that high average loads or simultaneous
peak loads of several users are negative.

Fourthly, communication via internet is sheer unavoidable. This has several conse-
quences: Secure transmission has to be implemented. This might not have been ne-
cessary in decentralized solutions with data transfer in secure subnets only. Secure
communication usually leads to higher communication overhead. Furthermore, the
reliability of internet connections usually cannot be guaranteed. Last but not least it is
more difficult to implement communication that can be initiated by both, remote and
local, components. Suitability of components is decreased by data confidentiality as
well as high communication effort and the ability to initiate communication. Higher
reliability demands than the internet can offer prohibit the service approach.

The fifth point concerns change requests. Individual change requests have a nega-
tive effect on the approach. Too much individuality caused by change requests leads
to software that is hardly maintainable and can decrease all the benefits of the ap-
proach. However, any change request leads to a down time if the software component

50

is not runtime reconfigurable. All customers are affected from the downtime but all
except from one have no benefit from the down time. Only components with little
individual change requests are suitable, but these should be identified in the SPL
platform anyways.

Fig. 3. Basic service architecture.

5 The Address Validation Service

Arvato services is an enterprise specialized on customized software solutions and
services for outsourcing solutions. To achieve a high degree of efficiency by using
synergies among different projects, arvato services is on the way to implement a SPL
approach as depicted in Fig. 1.

The address validation service (AVS) is a service allowing access on an address
database. In general the requester sends an address to the service and the result is
whether the address is valid or not. The validity check of an address contains several
sub checks that are partly optional.

Address validation is useful for many applications that can be (and some also
were) produced with a SPL approach. Therefore it was recognized as a reusable com-
ponent and as this it is used in different products.

If deployed at the customers IT site this component causes high maintenance costs.
First of all it has to be regularly updated with new customer data and secondly opti-
mization of algorithms is steadily done due to the high and still growing number of
data entries. Furthermore, the component requires relatively expensive hardware, so
that performance can be guaranteed. These are the main reasons why the address
validation component was designed to be a centrally hosted service. It is remotely
connected to customer systems that are produced with the product line and can also
be used as a stand alone service.

The address validation is an example that can realize many of the advantageous
characteristics while avoiding many of the disadvantageous characteristics of the
SPL-SaaS approach..

The very basic system architecture of the address validation service is depicted in
Fig. 3. In the back end there is a data base containing all the relevant data for the
validity checks of the addresses. Its content is steadily kept up-to-date. Furthermore
there is a business service that contains all the business logic to serve customers’
validation requests. It has exactly one well defined interface offering all possible
operations.

51

As customers may have their requirements concerning the interface, adapters of-
fering different interface technologies like SOAP and REST are created. In addition
the adapters may hide parts of the functionality, reducing the complexity for the cus-
tomer as well as strictly enforcing access rights.

We have great cost-reducing effects from embedding the service in customized
software solutions that are created with the help of our SPL approach.

6 Characteristics of Suitable Software Components

To identify suitable components we derive two categories of characteristics. Firstly,
the high level characteristics delivering service candidates that are worth the effort of
being analyzed on the architectural level. If the analysis on the architectural level is
also positive, the realization of the component as a centrally deployed service is as-
sumed as economically recommendable.

6.1 High Level Characteristics

As already mentioned our SPL-SaaS approach has several advantages and drawbacks
that are dependant from the choice of the software components centrally maintained
and delivered as a service. With the experience gathered from the address validation
service in mind, we analyzed advantages and drawbacks mentioned in section 4. We
derived adequate high level criteria to evaluate suitability of components for our SPL-
SaaS approach. We identified positive as well as negative criteria. If components
mainly fulfill the positive and mainly avoid fulfilling the negative criteria, they are
adequate service candidates having enough potential for achieving a reduction of
maintenance costs. The positive criteria maximizing the benefit of the approach are:

� High usage degree provides high reuse potential
� Frequent changes (functional extensions, fault corrections)
� High availability and backup requirements
� Components cause critical peak loads but have relatively low average load
� A high price which means a high investment risk (due to fix costs) for the custom-

er

On the other hand there are negative criteria that should be minimized with the
choice of suitable components to increase benefit:

� Providing core business functions of the customer
� Statefulness of the service and non-public access
� Storing confidential data while the customer does not trust the service provider
� High average loads or simultaneous peak loads of several users
� High communication effort
� Bi-directional initiation of communication
� Higher reliability demands (higher than the internet can provide)
� Individual change requests
� High performance requirements

52

6.2 Architectural Level Characteristics

If there is a service that fits to the criteria listed in the previous subsection, it is not
yet clear if it is adequate for our approach. This is because of the architectural con-
straints that will arise due to the requesters’ requirements. In general the abstract
system architecture would be as depicted in Fig. 3. There is a database that is accessed
by a service and a business service implementing the business logic used by the data-
base. In addition there are several customer specific interfaces, which access the busi-
ness service interface.

Business
Service

Customer
specific

data base
schema

Customer
unspecific
data base
schema

Customer
specific

data base

Customer
specific

application Logic

Customer
specific
interface

Customer
unspecific

application Logic

Customer
specific

data base

Customer
unspecific
data base

Customer
specific
interface

Customer
unspecific
interface

Customer
specific
interface

Customer
unspecific
interface

Customer
unspecific

application Logic

Fig. 4. Service architecture feature diagram.

But there can be differences in the architecture according to varying customers’
requirements. We have depicted these differences that have to be covered by the
service in a feature diagram in Fig. 4. To any given service candidate the range of
possible customer requirements being supported has to be anticipated. This results in
a set of variation paths that have to be covered by the service solution. Every path
indicates a certain complexity concerning the service realization and operation. With-
in the figure the complexity is generally decreasing for leaves from left to right. The
variation points from the feature diagram are application logic, data base schema, data
base content and interface. Any of them can be required to be customer specific or
not, but not every combination makes sense. The feature diagram lists the five rea-
sonable variation possibilities. The variation points concern variants on: Data base
schema, Data base content, Application logic, and Interface.

First of the variation points is the data base schema. It may happen that customers
need to have different data base schemas within a service. This requirement makes it
quite hard to realize the service economically as it implies that each of the following
presented variation points is forced to the customer specific choice. An example is a
master data management service. Its purpose is to allow customers to store, update
and request their master data. This is useful as else wise master data would be scat-
tered over several databases. But for our case this would imply that we have to main-
tain a data base schema for each customer. Customer specific business logic and in-
terfaces would also be required. For our address validation service, there exists only
one data base schema serving all customers.

53

Second variation point is the data base content. If customers can be served with a
service that has only one data base schema it still may occur that each customer has
its own content for the data base. Furthermore the customers do not want that their
data is accessible by other service users. An example for customer specific data base
content is a schedule service. It offers a calendar and participants known to the sys-
tem can be invited to meetings. The data base schema is the same for every customer,
client, but every customer wants to be sure that only his employees can see their own
appointments. To this end, data records could be marked with their owners name so
that access control can be guaranteed. In the end it means less effort to maintain a
database with a single schema instead of maintaining multiple schemas. In the case of
our address validation service all customers access the same data base content – the
addresses plus some extra validation content.

Third variation point is the application logic. It is possible that not all customers
want exactly the same operations on the data. If that is the case, usually the data base
schema and the thus also the data base content will be customer specific. This is the
worst case scenario because it means that every customer has its own specific service.
This makes it hard to realize cost efficiency with our SPL-SaaS approach and is gen-
erally not encouraged. If there is only customer unspecific application logic, then we
assume that there are only customer unspecific data base schemas. Executing the
same operations on different data schemas is generally not advisable. The address
validation service offers the same application logic for all customers.

Fourth variation point is the interface towards the customer. Even if the service is
always part of products built with the SPL and the customer does not access it direct-
ly, it is helpful to have different interfaces. For example, if variability within the SPL
platform allows products based on different technologies, several interfaces differing
in technology are useful. The different interfaces are only adapters to the interface
offered by the business component. Adapters could also be located on the client side,
but if other customers want to access the service directly, it is an advantage being able
to offer a plethora of interfaces to the service. A customer specific interface can also
hide some functionality if the complexity of functions shall be reduced towards the
customer. Additionally it can be used to restrict the access to certain functions by
simply not adapting them. The adapters can restrict the functionality of the original
interface but do not change it in other ways. Different point-to-point security varia-
tions, like REST over https, can also be covered with adapters. The address validation
service offers different interfaces like SOAP over JML and REST over http.

We have seen that not all combinations of features make sense. According to Fig. 4
there are five combinations. Each combination implies a different complexity for the
centralized service.

The left most leaf shows the most inadequate case. Customer specific data base
schemas require higher development, test and maintenance efforts. Therefore the
realization of a service that has only customer specific properties is discouraged.

The right most leaf has only customer unspecific variants. This means that there is
no variability that has to be bound. The service provider is in the lucky position to
design one service and to have multiple service users. In this case efforts for design,
test and maintenance do not scale with the number of users. This is the good situation
as the savings with the centralized service approach are very high.

54

Customer specific interfaces are relatively easy to develop and maintain. Testing
new customer specific interfaces can be reduced to testing the sole interface instead
of testing the whole service. Our address validation service is an example for a ser-
vice categorized like the second leaf from the right. It has different interfaces and we
have experienced that each interface causes only little effort overall. Furthermore an
existing interface might be reused for a new customer. The more interfaces there are
the higher is the probability to be able to reuse an interface.

The two remaining leaves in Fig. 4 cause more design, test and maintenance effort,
but are still considered as suitable service candidates.

7 Related Work

The idea of combining the SPL and SaaS approach is addressed by several contribu-
tions. The importance of the topic is brought to life by [1] and [8].
In [9] the authors describe the idea of a web based product line. In this case technolo-
gical issues on building such product lines are discussed. Compared to our approach
the contribution concentrates on building product lines completely from web services.
[10] concentrates on variability in web service flows. Some of the described variabili-
ty points like protocol are also interesting for our approach, but the aim of our contri-
bution is not centrally to handle variability in the flow of web services.

Chang and Kim also recognized the common reuse potentials in SPL and SOA
[11], but they consider everything as a service. Thus, they identify variation points on
process level, which is not applicable for our domain, because of the previously men-
tions drawbacks (see also section 2).
An interesting approach combining SOA and SPL concepts for creating business
process families is given in [12]. Though, this approach does not cover the deploy-
ment phase.

In [13] the authors describe how to manage variability in service centric systems
with technologies from the SPL approach. Our approach works the other way round
and provides service technology for SPLs.

8 Conclusions and Future Work

In this paper we presented an approach to reduce maintenance costs of software
products developed from a SPL. Therefore the SPL process is extended with the
maintenance process. This means to identify and deploy common components cen-
trally and offering them as a service. The service then is used for different products of
the SPL. This concept is called SaaS as the common components can be seen as a
service provided for different products. The presented approach holds several advan-
tageous and disadvantageous characteristics ready which have to be taken into ac-
count for selecting adequate candidates for common services. From these characteris-
tics several criteria for identifying suitable components have been derived. Addition-
ally we have developed a service architecture feature diagram, which provides the
possibility to evaluate components concerning their adequacy for our SPL-SaaS ap-

55

proach. Suitable components have a high reuse potential while causing little service
development costs. We presented an example of such a component from the arvato
environment to show the practical need of our idea.

The presented criteria are a first step for a detailed evaluation catalogue for assess-
ing common components concerning to their reuse potential. In future research we are
going to built up this evaluation catalogue to evaluate the reuse potential in reference
to maintainability. Afterwards the catalogue is going to be used and evaluated by
analyzing the arvato SPL to show its workability.

References

1. Helferich, A.; Herzwurm, G; Jesse, S.; Mikusz, M.: Software Product Lines, Service-
Oriented Architecture and Frameworks: Worlds Apart or Ideal Partners? Lecture Notes in
Computer Science, pp. 187—201. Springer (2006)

2. Pohl, K.; Böckle, G., van der Linden, F. J.: Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer (2005)

3. Clements, P.; Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Professional (2001)

4. M. Turner, D. Budgen, and P. Brereton: “Turning Software into a Service”, Computer, vol.
36, no. 10, pp. 38–44, (2003)

5. M.P. Papazoglou and D. Georgakopoulos: “Service Oriented Computing”; Comm. ACM,
vol. 46, no. 10, pp. 25–28, (2003)

6. M. P. Papazoglou: “Service-Oriented Computing: Concepts, Characteristics and Direc-
tions”, 4th International Conference on Web Information Systems Engineering (WISE'03),
Rome, Italy, (2003)

7. Jacobson I.; Booch, G.; Rumbaugh, J.: The Unified Software Development Process. Addi-
son-Wesley Professional (1999)

8. C. Wienands. “Synergies Between Service-Oriented Architecture and Software Product
Lines,” 2006. Sie-mens Corporate Research. Princeton, NJ.

9. A. Sillitti, T. Vernazza, G. Succi: “Service based Product Lines”, Proceedings of the 3rd
International Workshop on Software Product Lines: Economics, Architectures, and Impli-
cations (ICSE 2002)

10. S. Segura, D. Benavides, A. Ruiz-Cortés. P. Trinidad. “A Taxonomy of Variability in Web
Service Flows Service Oriented Architectures and Product Lines” SOAPL - 07. SPLC'07.
Kyoto, Japan. 2007

11. S. H. Chang, S. D. Kim, “A Variability Modeling Method for Adaptable Services in Ser-
vice-Oriented Computing”, Software Product Line Conference, 2007 (SPLC 2007), pp.
261-268

12. E. Ye, M. Moon, Y. Kim, K. Yeom. “An Approach to Designing Service-Oriented Product-
Line Architecture for Business Process Families” Proceedings of the 9th International Con-
ference on Advanced Communication Technology, pp. 999-1002. Phoenix Park, Republic
of Korea (2007)

13. J. Lee, D. Muthig, M. Kim, S. Park “Identifying and Specifying Reusable Services of
Service Centric Systems Through Product Line Technology”, Proceedings of the First
Workshop on Service-Oriented Architectures and Product Lines (SOAPL 07), pp.57-67

56

