
UNCERTAINTIES MANAGEMENT FRAMEWORK
Foundational Principles

Deniss Kumlander
Department of Informatics, Tallinn University of Technology, Raja St.15, 12617 Tallinn, Estonia

Keywords: Software engineering, Methodologies, Uncertainties.

Abstract: Uncertainties management is the crucial part of modern software engineering practices, which is mostly
ignored by management and modern software development practices or dealt with reactively. In the result
unhandled uncertainties do introduce a lot of threads and cause later delivery of projects or over-budgeting,
which means the failure of the software engineering process in most cases. In this paper foundation
principles of uncertainties management framework are defined.

1 INTRODUCTION

The main goal of software engineering is to
implement tools for customers accordingly to their
wish and vision that will let them achieve their goals
faster, better and in a less expensive manner. The
modern software engineering business faces a lot of
new challenges because of permanently increasing
competition on the market, high expectations of
customers requiring constantly increasing quality,
shortening developing time and increasing flexibility
for proposing new features and changes. The
flexibility becomes more and more important as our
global business environment is starting to change
with an incredible speed. The required flexibility
and constant changes of the environment produce
quite a lot of uncertainties for any software project
ignoring of which is very risky or nearly impossible
nowadays. Researches show that even the most
modern approaches to software engineering still
leave us in a position when up to 27% of all projects
fail because customers are not satisfied with the
delivered software (Bennatan and Emam, 2005) and
only 20% of functionality in average is used “often”
or “always” (Khan, 2004). This clearly demonstrates
existence of gaps between developed software
(features, budget) and customer expectations.
Therefore it is important to explore reasons when the
shortened development cycle with constants demos
and constant collaboration inside the team used in
modern approaches are still not able to bridge this
gap. Mostly those are connected to different
uncertainties arising in projects since not all of them

are temporary. Therefore the uncertainties
management becomes very important in order to
ensure software engineering projects success
(Kumlander, 2006a).

The aim of this paper is to propose foundational
principles of the uncertainties management in order
to shift current software engineering practices
towards a new approach involving uncertainties
management and providing so much desired
flexibility in complex projects sufficiently increasing
the quality of software engineering process.

2 UNCERTAINTIES
MANAGEMENT IN CURRENT
PRACTICE

Modern software development approaches mostly
concentrate on either preventing uncertainties
somewhere early in the work-cycle doing a complete
design before passing to software implementation
stage (Kumar 2002) or eliminating them on a
constant base handling those as any other errors - for
example by implementing short sprints in agile
methods (Beedle and Schwaber, 2001) in order to
review software by stakeholders as soon as possible
and consequently accept or reject the result
eliminating the uncertainty of how the product
should look like, function and so forth.
Unfortunately it is very much simplified approach as
uncertainties could stay on a relatively permanent
base and only temporary uncertainties can be

103Kumlander D. (2009).
UNCERTAINTIES MANAGEMENT FRAMEWORK - Foundational Principles.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
103-108
DOI: 10.5220/0001971401030108
Copyright c© SciTePress

eliminated by the methods described so far.
Therefore, in this paper, under uncertainties
management we mean not only eliminating those,
but also handling uncertainties rapidly and ensuring
the best software engineering process result despite
of uncertainties arising on different stages of the
project. We try to achieve an increase in the resulted
software quality not despite all uncertainties we have
in the projects, but considering uncertainties and
aligning required activities to existing issues. Under
activities we mean both standard software
engineering activities and activities to handle
uncertainties, risks and so forth. Assuming that the
testing on bugs (run-time errors or incorrect
calculations) is handled by standard methods and
accepting that 100% bug free software is nearly
impossible (at least for commercial software), in this
paper under quality we will mean a size of gap
between developed software and customers
expectations. The smaller this gap the better is
quality of the delivered software. Alternatively we
can be targeting reducing efforts we need to spend in
order to develop software with on same, constant
quality level. Obviously in case of any problems
occurring in the project we could increase involved
resources and bridge the quality gap during
additional hours by extra developers. Therefore we
can conclude that quality and resources are mutually
dependent. Unfortunately practice shows that it is
not always true – resize one angle of the quality
triangle (resources, quality, time) will guarantee we
could keep the opposite side the same size and if it
doesn’t happen then we are likely to fail in the
engineering process. Here we would like to
emphases that the reason of failures is an
impossibility to resize the triangle at the final stages
of the software engineering process since it is too
late to do something sensible and the need to resize
mostly occurs due permanent uncertainties
resolution into demands now.

3 FOUNDATIONAL PRINCIPLES
OF UNCERTAINTY
MANAGEMENT FRAMEWORK

3.1 Transparency

It is crucial to ensure transparency dealing with
uncertainties by providing visibility of any details on
each uncertainty issue for all teams involved into the
process. It can be debatable who needs or should
have access to organisational, may be highly

confidential, data, how access will be defined (all
members of the team or just key persons of the
team), but there is no doubts that the biggest mistake
that can be ever made is to host uncertainty
information exclusively inside local teams. Consider
as examples the following cases:

 Requirements uncertainty is kept locally within
consultants, business analysis teams records;
 Risks recognised in the development team;
 Low coverage by test cases detected by the test

team.

Notice that modern approaches try to address
certain individual uncertainties, but clearly all they
lack a methodological approach dealing with all
uncertainties types. Consider for example the agile
development key elements (Cockburn, 2002). Any
method included into the agile practice tries to
increase visibility of the software implementation
process for any involved (but not “committed”)
parties like stakeholders, designers etc. It is done by
publishing graphs of the desires completion
percentage compared to the actual one, visibility
documents on the sprint features and so forth. The
other uncertainty class the agile practice deals with
as a key methodology element - uncertainties in
requirements were the software implementation
result is different in compare to consultants,
customers or designer expectations. Notice that there
are a lot of reasons why the result and expectations
could differ (Kumlander 2006b) including a certain
probability that expectations will change during the
project life-cycle. Considering all this we still should
confess that the agility framework does lack the
systematic approach managing uncertainties.
Sometimes the engineering process converted into a
time-race replacing proper implementation
addressing real uncertainties drivers by quick
“visible” releases containing factual errors and so
having to do a lot of extra work later, when
uncertainties are resolved. Therefore the first step
that should be done dealing with uncertainties is to
increase transparency of those by implementing a
central information repository:

 Containing enough information about
uncertainties nature, time-frame each is likely to be
resolved and possible resolution alternatives;

 Providing access for different teams to this
information on constant basis;

 Capturing evolution of the uncertainty
including history of changes, discussions and
feedbacks from customers and experts.

“On constant basis” means here that it is not
enough to publish the information. People should be

ICEIS 2009 - International Conference on Enterprise Information Systems

104

both aware that it is published and know how to
obtain data. Visibility of data is defined by existence
of data, quality of data and accessibility of data. If
data is inaccessible then it does not exist. The same
can be said in case the information repository has
complex or low usability user interface.

3.2 Handling

The transparency of uncertainties provides a basis
for handling those. There are uncertainties of
different kinds and one distinguishing property is
uncertainties’ stability from the time perspective:
they can be either permanent (information required
to resolve those cannot be obtained at the moment)
or temporary (we are ready to resolve, but it hasn’t
been done yet). Obviously those two types require
different approaches and strategies to handle them
correctly. Therefore been aware of existing
uncertainties means start to handle them on
permanent basis synchronising different types of
activities with this information. We need to assess
each uncertainty considering all available
information and plan our tasks in order to minimise
overall efforts required to engineer software in given
conditions. Although all this seems to be easy, it is
rather easy to define than to follow on the
permanently base and use as a basis in all planning
exercises, and therefore is constantly missed by
methodologies and managers.

Looking into the past it should be mentioned that
some authors have treated uncertainties as risks and
so advised using risk management and assessment
methods to handle uncertainties existing in projects.
It seems not to be quite correct from our point of
view. There is a risk of certain negative
consequences if uncertainties will not be handled
correctly, but it is just one side of uncertainties and
therefore risk management will not be able to handle
uncertainties in all aspects. We still need to consider
entire context related to it, interdependencies
between different features and teams, different
solutions alternatives and the time-perspective. The
intensive handling means also additional information
to be added into the uncertainty information
package. This information will be crucial for those
who should clear our uncertainties or develop
something connected to such area.

3.3 Light Agility

The agility still plays an important role in
eliminating certain types of uncertainties, mainly
temporary, where the only missed information is

lack of visualisation and implementation of the
proposed solution. Having shortened the cycle we
could stimulate quick resolution of temporary
uncertainties. There are no points to describe
intensively the agility manifesto in this paper since
all agile methodologies are well-known and
extremely popular nowadays. There are a lot of
articles describing agility methods, their pros,
contras and implementation practices (Cockburn
2005, Braithwaite and Joyce, 2005, Stapleton, 1997).

The light agility term in this foundational
principles refers to the fact that not all organisations
can use agility practices, not all of them right and
those do not resolve the uncertainty problem in
every aspect.

 It is not possible to apply those in distributed
organisations due communication gaps;

 There are a lot of ordinal people that cannot be
included into self-organising teams;

 Agility practices do ignore long-term
uncertainties;

 Constant, but mainly short-time collaboration is
not possible in complex projects requiring extremely
complex features and so producing time consuming
review cycles as described in the next subchapter.

3.4 Communication Ambassadors

Constant collaboration (Rauterberg and Strohm,
1992; Forsgren, 2006) in many cases is either
impossible or is not enough to resolve complex
uncertainties in complex projects. Uncertainties
could be either produced by communication gaps or
would require bridging those in order to resolve
uncertainties correctly. Communication gaps are
defined as either a problem occurring in
communication between people (group of people)
where the information is either lost or sufficiently
corrupted (Kumlander 2006b) or a problem of
improperly used resources (including the available
time) since the communication process is very slow.
The first part can occur due:

 Weak ability of persons to communicate, for
example to express a message;

 The lack of context of the message in the
transferred communication flow, including previous
discussions, differences in backgrounds, information
on the environment the message was formulated and
so forth.

The second will be produced if involved parties
are under pressure due other projects, sufficient
time-differences between communicating locations
or they are not really motivated to participate in the
immediate and continuous communication.

UNCERTAINTIES MANAGEMENT FRAMEWORK - Foundational Principles

105

Moreover the communication doesn’t only mean
the transferred message. It is also a process that
should be managed. The problem is that existing
managers cannot be responsible for all kinds of
communications and self-organising teams cannot be
used for long term communication to external
sources. Therefore there is a need to appoint certain
people to the “ambassador” position managing the
communication process by:

 Chasing other people to provide
communication, do reviews, talk to external people
and so forth;

 Supervising communication flow and ensuring
that context is also transferred;

 Directing the flow to “right” persons;
 Ensuring none-zero communication and

monitoring the communication from the time-
perspective;

 Synchronising efforts of different teams
working with different issues in different projects
and been in different time-zones.

A typical case of projects, were uncertainties
arise is a complex-features’ project. Here the
required level of revisions to completely understand
delivered features during users acceptance testing
demands several days of work. Therefore the longer
collaboration cycle than modern software
engineering practices would account with should be
used and communication supervising ambassadors
will be crucial to have ensuring permanent and rapid
communication. It is also important to use such
ambassadors to provide visibility of any processes
happening in isolated teams. Consider for example a
distributed organisation when the distance team start
to become later in their activities. Sometimes it is
critical to react on such processes immediately, but
the lack of transparency will not allow doing that.
Ambassadors should be used to intensify exchange
of information and increase transparency of the
entire organisation. Notice that isolation is not
always physical. It is possible that a group of people
included into the project belongs to another
hierarchical structure, so been in the same location,
but isolated due management reasons.

3.5 Well-defined Work Procedures

Uncertainties are introducing into the project enough
problems to generate even more having work
procedures’ gaps. Well-defined procedures will
introduce a structure into chaos produced by
unspecified features. Besides they are required to
cope with different issues resolving uncertainties. It
should be specified who is responsible for what and

what are procedures deciding on alternatives.
Notice that having clear rules doesn’t always

mean prohibiting certain activities like late
expansion of the scope. Those just define how it
should be done, who will be paying the extra cost
and how trade-offs are made. The development team
is stressed enough in such projects to not be
responsible neither be blamed for not resolving
uncertainties correctly in time and functional
perspective. It is also important to define how a
feature affected by any uncertainty is skipped from
the release and what should happen with it next.

4 POTENTIAL BENEFITS

In this chapter we would like to review potential
benefits arising when uncertainties are properly
handled by the proposed framework.

The first, but not the only one, is an overall
decrease of time and efforts required to develop the
software as risks connected to uncertainties are
properly managed and handled now.

The second benefit can be demonstrated
assuming the opposite to what is proposed. If
uncertainties still exist and are not handled correctly
then the team members’ motivation decreases
producing dramatic drop of the team performance.
Such negative impact can be explained by the
following reasons. First of all, if uncertainties stay
hidden then gaps between expectations and software
arise extremely suddenly and bridging those requires
sufficient efforts applied immediately. This
increases overall pressure on team members and
consequently produces considerable stress. Stress
and depression, coming from an impossibility to
foresee or avoid such problems, affecting team
members. In the second case the schedule can be
reluctant and there is no pressure from stakeholders,
which is quite hard to imagine in the modern
competitive business world, but anyway it happens
sometimes. Despite of this gaps should still be
bridge and this should be done constantly. Bridging
normally means re-implementing functionality
throwing away hours or days spent so far. People
generally hate such situations as mostly see that they
have spent time on tasks that were not properly
addressed by initiators. This produces certain
conflicts within the organisation or de-motivate
people do their tasks properly as they tend to believe
that it should be reworked later anyway.

The third benefit we like to demonstrate is an
increased mobility of the team and consequently of
the organisation. The proper uncertainty handling

ICEIS 2009 - International Conference on Enterprise Information Systems

106

will let the team to be ready to support uncertainty
resolving just in time it can and should be resolved.
In other words exactly when all involved parties are
able to do the work, their have acquired all required
information and the team is in a position to start
functionality specification, development and testing
activities. It is extremely important to avoid attempts
to resolve uncertainties both earlier wasting time and
depressing and later leaving certain questions open
and so requiring extra communication rounds, letting
business drivers to switch to other topics loosing
their concentration on the current one.

5 EXAMPLES

This chapter is designed to present project cases
from our practise were uncertainties arose and were
not properly handled. In the result projects were
declared as failed. We leave it to readers to see how
earlier proposed method had to be applied and what
benefits will be derived as following the framework
in those cases is a straightforward process.

A target of the first project to be revised was to
develop an accounting system addressing quite a
complex model accordingly to an international
accounting standard recently announced to be
mandatory in some world regions. The description
of the accounting model contains a lot of
interconnections and has quite restricted possibilities
to divide those into sub-steps. The company had
some consultants, but the topic was too novel for
them and therefore external consulting resources
were required in order to progress the project.
Unfortunately external resources were highly
demanded on the market at that moment and
therefore hardly available. The following key-words
can be used to summarise the project nature: a novel
approach without clear implementation practise at
the moment; sophisticated, complex requirements;
long software implementation cycle with massive
interdependencies.

The implementation result was the following.
The project took a considerable amount of time to
deliver to market – approximately two years instead
of envisioned six months. During first iterations
consultants failed several times formalising the
required functionality even using external resources.
Under failing we mean a set of attempts to release
drafts to development that were proved to contain
mismatches of logic that were discovered when
developers tried to implement those. During the first
year quite a little progress was made and ten or so
cycles were made until the functionality have been

compromised in certain key areas to have it finally
delivered to development in a more or less
acceptable way. A constant lack of information were
observed due complexity of the features on all levels
of the work-process. Therefore it was decided to
push the project by switching to one of the agile
practices in order to have a possibility to look at
results and discuss arising difficulties. Unfortunately
the lack of consultants’ time and constant
postponements of external resources availability
have factually degenerated the review process into a
simple “try, see, fail, not approve and try again”
approach. Key drivers for this were:

 It is uncertain how we could implement it, so
let developers do something until designers think;

 The released part is so complex that cannot be
understood at once during the demo, so everybody
needed sufficient time to test and think through
before additions can be proposed. It was also hard to
fit such sufficient time intervals into everybody
schedule and developers were waiting for this unable
to continue as no other functionality is proposed –
all designers involved into analysing the current
step.

Summarising all previously said, the project was
finally completed, but it took sufficiently more time
than it had to take. In the result the product lost a lot
of opportunities and became outdated immediately
after it was released. A lot of functionality items
were not addressed during the lost time producing a
lot of existing customers’ criticism. The team
motivation level decreased sufficiently and some
key persons left the company looking for a better,
well-organised work place in order to spent their
efforts and life on something useful (as they said in
private conversations before their left the company).

The second project was started by an insurance
company as an internal project using recently hired
young developers in order to comply with
requirements defined by the state motor vehicles
insurance policies regulation. A set of alternative
solutions were proposed requiring different
hardware implementations. Having to sell insurance
policies via different channels the system required a
possibility to set a point of sale in different company
branches, at partners and resellers and all of them
had very different software and hardware installed.
Therefore one uncertainty raised in the project was a
long running debate involving the management team
about financing one or another alternative. Another
problem was a lack of certainty of young
developers’ abilities and consequently uncertainty
on plans and schedules defining features that should
be promised in the scope of the project. This has

UNCERTAINTIES MANAGEMENT FRAMEWORK - Foundational Principles

107

produced uncertainties for other departments that
were supposed to use this new system.

Finally there were a lot of problems discussing
the required features list with different departments.
First of all there were a lot of communication gaps
as it constantly seemed that developers and
insurance professionals are using completely
different languages. The biggest problem was the
lack of experience among young developers.
Fortunately this problem was taken under control by
rapid releases, but unfortunately there was a lack of
believe among insurance people that the project will
be completed and therefore they rarely attended
demos or were not concentrated during those.
Secondly the IT team found themselves been in a
position between different departments getting
conflicting requirements. The only resolution here
was to post them to higher management and that
produced sufficient uncertainty due actual lack of
central decisions force and vision. In the result the
team had to re-implement a sufficient portion of
functionality.

Summarising all earlier said, uncertainties of that
project were produced by undecided size of
investments stakeholders were ready to put into the
project, limited abilities of personnel producing a
mess in interconnections between teams, scheduling
chaos, an uncertainty of what and when will be
delivered and opposite opinions on how the system
should function coming from different departments.

6 CONCLUSIONS

Uncertainties management is the crucial part of
modern software engineering practices, which is
mostly ignored by management and modern
software development practices or dealt with
reactively. In the result unhandled uncertainties do
introduce a lot of threads and cause later delivery of
projects or over-budgeting, which means the failure
of the software engineering process in most cases.

In this paper foundation principles of
uncertainties management framework are defined.
First of all it is transparency of uncertainty issues
including their context, past and current discussions
and infrastructure elements ensuring visibility of
them to all involved parts. Secondly, it is adopting
elements of agility practices in order to resolve the
easiest class of uncertainties – temporary. Thirdly, it
is handling and monitoring uncertainties proactively
including planning resolution process, considering
dependencies. Finally communication supervising

ambassadors ensuring that all communication gaps
are bridged and well-defined work procedures.

REFERENCES

Bennatan, E. N., Emam, K.E., 2005. Software project
success and failure, Cutter Consortium,
http://www.cutter.com/press/050824.html

Khan, A. A., 2004. Tale of two methodologies for web
development: heavyweight vs agile, Postgraduate
Minor Research Project, 619-690.

Kumlander, D., 2006a. Software design by uncertain
requirements, Proceedings of the IASTED
International Conference on Software Engineering,
224-2296.

Somerville, I., Jane, R., 2005. An empirical study of
industrial requirements engineering process
assessment and improvement, ACM Transactions on
Software Engineering and Methodology, 14(1), pp. 85-
117.

Kumlander, D., 2006b. Bridging gaps between
requirements, expectations and delivered software in
information systems development, WSEAS
Transactions on Computers, 5(12), 2933-2939.

Rauterberg, M., Strohm, O., 1992. Work organisation and
software development, Annual Review of Automatic
Programming, 16, 121-128.

Forsgren, O., 2006. Churchmanian co-design – basic ideas
and application examples, Advances in Information
systems development: bridging the gap between
academia and industry, Springer, 35-46.

Kumar, R., 2002. Managing risks in IT projects: an
options perspective, Information and Management, 40,
63–74.

Cockburn, A., 2002. Agile Software Development;
Addison Wesley, Reading, MA.

Beedle, M., Schwaber, K., 2001. Agile Software
Development with SCRUM, Prentice Hall, Englewood
Cliffs, NJ.

Braithwaite, K., Joyce, T., 2005. XP Expanded:
Distributed Extreme Programming, 6th International
Conference on eXtreme Programming and Agile
Processes in Software Engineering, Springer, 2005,
180-188.

Stapleton, J., 1997. DSDM Dynamics System Development
Method, Addison Wesley, Reading, MA.

ICEIS 2009 - International Conference on Enterprise Information Systems

108

