
CONSTRUCTING STRATEGIES FOR PROGRAMMING

Alex Gerdes, Bastiaan Heeren
Faculty of Computer Science, Open Universiteit, The Netherlands

Johan Jeuring
Faculty of Computer Science, Open Universiteit, The Netherlands

Department of Information and Computing Science, Universiteit Utrecht, The Netherlands

Keywords: Strategies, Intelligent tutoring systems, Programming, Feedback.

Abstract: Learning to program is difficult. To support learning programming, many intelligent tutoring systems for
learning programming have been developed. Research has shown that such tutors have positive effects on
learning. However, intelligent tutors for learning programming are not widely used. Building an intelligent
tutor for a programming language is a substantial amount of work, and utilising it in a course is often hard
for a teacher. In this paper we illustrate how to construct strategies for solving programming exercises and
how these strategies can be used to automatically support students using an intelligent programming tutor to
incrementally develop a program. Using strategies for programming, specifying an exercise becomes relatively
easy, and more flexible.

1 INTRODUCTION

Learning to program is difficult. A first course in pro-
gramming is often a major stumbling block. To sup-
port learning programming, many intelligent tutoring
systems for learning programming have been devel-
oped. Studies show the positive effects of various tu-
tors on learning programming. However, intelligent
tutors for learning programming are not widely used.
Building an intelligent tutor for a programming lan-
guage is a substantial amount of work, and using an
intelligent tutor in a course is often hard for a teacher.
Most teachers want to adapt or extend an intelligent
programming tutor to their needs, which is often hard
or impossible.

Part of the reason why it is hard for a teacher to
adapt or extend an intelligent programming tutor to
his needs, is that it is often a lot of work to specify
a new exercise, together with the desired behaviour
upon errors. In this paper we show how we can con-
struct strategies for solving programming exercises,
and how these strategies can be used to automatically
give feedback and hints to students using an intelli-
gent programming tutor to incrementally develop a
program. We restrict ourselves to a tutor for learning
the functional programming language Haskell (Pey-

ton Jones et al., 2003). We believe, however, that
our approach based on programming strategies is also
applicable to other programming languages and pro-
gramming paradigms.

This paper has the following contributions:

• We present a strategy language and some program
refinement rules, and we discuss how these can be
used in an intelligent tutoring system for learning
programming.

• We show how strategies can be derived automati-
cally from model solutions.

• We develop special programming strategies for
higher-order functions, and suggest a taxonomy
for classifying programming tasks.

The last two contributions are somewhat technical in
nature, and we illustrate these by means of some con-
crete examples.

This paper is organised as follows. Section 2 dis-
cusses how students learn programming and how in-
telligent tutoring systems for programming can help
students. We then introduce strategies in Section 3,
and we discuss the role strategies play in program-
ming. Section 4 shows how we derive strategies
from model solutions, and how strategies for com-
mon higher-order functions are specialised. These

65
Gerdes A., Heeren B. and Jeuring J. (2009).
CONSTRUCTING STRATEGIES FOR PROGRAMMING.
In Proceedings of the First International Conference on Computer Supported Education, pages 65-72
DOI: 10.5220/0001973500650072
Copyright c© SciTePress

specialised strategies lead to a taxonomy, which can
be used for classifying programming tasks. Examples
of how our strategies can be used are given in Sec-
tion 5. The last section discusses related work and
concludes.

2 LEARNING TO PROGRAM

Programming is a complex cognitive skill (Merriën-
boer et al., 1992). Especially novice students en-
counter difficulties when trying to translate a problem
description into a series of solution steps to solve the
problem. A first course in programming is often a
major stumbling block (Proulx, 2000).

The topic of how students learn to program has
been studied extensively, by computer scientists, edu-
cational scientists, and cognitive psychologists. How
do students acquire a complex skill like program-
ming? When a student has to write a program that
takes a list of integers as argument, and returns the
sum of the integers, one of the first steps is to dis-
tinguish the empty list from the non-empty list case.
Distinguishing these two cases can be viewed as a
production rule. Anderson (1993) and his colleagues
have developed the ACT-R theory, which says that the
knowledge underlying a skill begins with an elabo-
rated example, followed by problem solving by anal-
ogy. By applying the skill, the student internalises
the production rule used in the exercise. With prac-
tice, production rules acquire strength and become
more attuned to the circumstances in which they ap-
ply. Learning complex skills can be decomposed into
learning individual production rules, and strategies
for combining them. A similar approach to learning
programming is taken by Merriënboer et al. (1992).
They present a four-component instructional design
model for the training of complex cognitive skills. For
learning computer programming, the design model
emphasises the importance of worked-out examples.
In a later stage steps are removed from the worked-
out examples. These missing steps have to be added
by a student. Only after these stages should students
work out complete programs themselves.

2.1 Intelligent Tutoring Systems for
Programming

There exist intelligent tutors for Lisp (Anderson
et al., 1986), Prolog (Hong, 2004), Pascal (Johnson
and Soloway, 1985), Java (Sykes and Franek, 2004;
Kölling et al., 2003), Haskell (López et al., 2002), and
many more programming languages. Some of these
tutors are well-developed tutors extensively tested in

classrooms, others have not outgrown the research
prototype phase yet. Evaluation studies have indi-
cated that:

• working with an intelligent tutor supporting the
construction of programs is more effective when
learning how to program than doing the same
exercise “on your own” using only a compiler,
or just pen-and-paper (Anderson and Skwarecki,
1986);

• students using intelligent tutors require less help
from a teacher while showing the same per-
formance on tests (Odekirk-Hash and Zachary,
2001);

• using such tutors increases the self-confidence of
female students (Kumar, 2008);

• the immediate feedback given by many of the tu-
tors is to be preferred over the delayed feedback
common in classroom settings (Mory, 2003).

Despite the evidence for positive effects of using
intelligent programming tutors, they are not widely
used. An important reason is that building an intel-
ligent tutor for a programming language is difficult
and a substantial amount of work (Pillay, 2003). Fur-
thermore, using an intelligent tutor in a course is of-
ten hard for a teacher. Most teachers want to adapt
or extend an intelligent programming tutor to their
needs. Adding an exercise to a tutor requires inves-
tigating which strategies can be used to solve the ex-
ercise, what the possible solutions are, and how the
tutor should react to behaviour that does not follow
the desired path. All this knowledge then has to be
translated into the internals of the tutor, which implies
a substantial amount of work. For example, com-
pletely specifying feedback in (much simpler) mathe-
matical exercises results in exercise files of hundreds
of lines (Cohen et al., 2003).

In comparison, intelligent tutors for mathemat-
ics such as ActiveMath (Melis et al., 2001), APlusix
(Chaachoua et al., 2004), MathPert (Beeson, 1990),
to mention just a few, are much more widely spread
and used than intelligent programming tutors. Math-
ematics has a number of advantages compared with
programming: the mathematical language of expres-
sion is much more stable than most programming lan-
guages, many mathematical problems are relatively
easy compared with programming problems, often
there is a unique solution to a mathematical prob-
lem, and, finally, checking correctness of intermedi-
ate steps is much easier because many mathematical
problems are solved by applying meaning-preserving
transformations or rewrite steps to an expression.
These properties of mathematics make it easier to give

CSEDU 2009 - International Conference on Computer Supported Education

66

feedback to users of an intelligent tutor, both at inter-
mediate steps as at the end.

3 STRATEGIES FOR
PROGRAMMING

Procedural skills can be described by production sys-
tems. Anderson (1993) shows that many of the char-
acteristics of such systems are similar to how students
solve problems, and hence that they are psychologi-
cally plausible. However, psychological plausibility
does not imply ease of usability. Models in ACT-R
are rather low-level, and tend to get quite large.

A procedural skill is often called a strategy,
and there exist programming languages supporting
the formulation of strategies (Visser et al., 1998;
Borovanský et al., 2001). Using such a language
for defining procedural skills is much easier than us-
ing production systems, since common programming
language techniques, such as abstraction, modularity,
and typing are readily available. As long as the feed-
back students get is psychologically plausible, the
form of a language for describing procedural skills
can be optimised to make it as easy as possible to
specify such skills, and to make it easy to produce
the desired feedback.

Heeren et al. (2008) have developed an embedded
domain-specific language for specifying strategies for
exercises. The strategy language can be used for any
domain based upon rewrite rules, and can be used
to automatically calculate feedback on the level of
strategies, given an exercise, the strategy for solving
the exercise, and student input (Heeren and Jeuring,
2008). The specification of a strategy and the cal-
culation of feedback is separated: the same strategy
specification can be used to calculate different kinds
of feedback.

We can use this strategy language to specify exer-
cises in programming: the only additional concept we
have to add to this language is refinement rules, which
refine programs. For example, we can split a problem
into two subproblems, solutions of which constitute a
solution to the original problem.

Using this strategy language for specifying pro-
gramming exercises offers the possibility to effi-
ciently calculate feedback while incrementally devel-
oping a program, and to significantly reduce the effort
in adding new programming exercises to an intelligent
tutor for programming. In practice, all programs are
developed incrementally, so we think incremental de-
velopment is a realistic assumption. A program that
is developed incrementally contains parts that are un-
defined, or holes, and replacing these holes by ‘more

defined’ programs are the steps a student takes when
solving a programming problem. Replacing holes can
be done by means of applying refinement rules of-
fered by the programming tool, or by typing in the
part of the desired program at that point. The exact
input method is immaterial for our approach.

Using strategies for programming we can track the
progress of a student solving a programming problem.
We can detect deviations from the strategy, and sup-
ply hints what to do next. How we react to a deviation
is not part of the strategy, but of the didactic model,
which determines how strategies are used. We might
not be able to recognise all steps from beginning to
end, but the longer we can, the better our feedback
options are. We argue that the first steps in program
development are the most important steps, which re-
quire detailed and good feedback. It is at this point
where programming techniques have to be selected
and applied.

4 CONSTRUCTING
PROGRAMMING STRATEGIES

Before we explore strategies for programming exer-
cises, let us first have a look at an incremental con-
struction of a solution for the programming task of
implementing insertion sort in Haskell. This is an
example of a small, stand-alone exercise, typical for
learning how to program in the language. This ex-
ercise can also be found in popular textbooks on
Haskell (Hutton, 2007).

4.1 Insertion Sort

We assume that the type of the function is given as
part of the exercise:

isort ::Ord a⇒ [a] → [a]

This type declaration expresses that lists of arbitrary
types (the type variablea) can be sorted as long as
an ordering is defined on the elements of the list (the
type class constraintOrd a). We start with an empty
definition:

isort = ...

The ellipsis in the line above indicates that the defi-
nition is not yet complete. A possible first step is to
assign a name to the function’s first argument of type
[a], which results in:

isort xs= ...

Now that the list to be sorted has a name (xs), we have
to decide what to do with it. The important step in

CONSTRUCTING STRATEGIES FOR PROGRAMMING

67

isort :: Ord a⇒ [a] → [a]
isort [] = []
isort (x :xs) = insert x(isort xs)

insert:: Ord a⇒ a→ [a] → [a]
insert a[] = [a]
insert a(x :xs)

| a 6 x = a :x :xs
| otherwise= x : insert a xs

Figure 1: Model solution for insertion sort.

completing the definition is to realise that we have to
distinguish the empty list from the list with at least
one element. This step is part of the insertion sort al-
gorithm, and a standard technique for processing lists.

isort [] = ...

isort (x :xs) = ...

By discriminating these cases, we now have two parts
that have to be completed. We focus on the more chal-
lenging definition forx:xs(x is the first element of the
list, xs is the remaining part). Here, the insight is that
xs needs to be sorted first by applying the function
isort recursively.

isort [] = ...

isort (x :xs) = ... isort xs...

After completing the base case for the empty list, and
introducing a helper-function for inserting an element
into a sorted list (insert), we arrive at the definition
given in Figure 1.

4.2 Program Refinement Rules

The basic steps for constructing a solution for a
programming task are program refinement rules, or
rewrite rules. These rules typically replace an un-
known part (ellipsis) by some expression. A program
refinement rule can introduce one or more new un-
known parts. We are finished with an exercise as
soon as all unknown parts have been completed. The
insertion sort example contains several program re-
finement rules: assigning a name to a function’s ar-
gument, distinguishing the empty list from the non-
empty list by means of pattern matching, and making
a recursive call to the function. These rules are the
basis for programming strategies. They are reusable
and not specific for the insertion sort exercise.

4.3 Strategy Combinators

The simplest strategies consist of a single rewrite rule.
We use a collection of standard combinators to com-
bine strategies, resulting in more complex strategy

descriptions (Heeren et al., 2008). We briefly de-
scribe the combinators most relevant for this paper.
Thesequencecombinator applies its argument strate-
gies one after another, thus allowing programs that
require multiple refinement steps. Thechoicecombi-
nator makes it possible to have multiple, possibly dif-
ferent refinement paths. Theparallel combinator ex-
presses that the steps of its argument strategies have to
be applied, but that the steps can be interleaved. The
last combinator,label, marks a position in the strat-
egy, allowing us to customise this part of the strategy
later on.

4.4 Automatically Deriving
Programming Strategies

A programming strategy describes sequences of re-
finement steps: applying all the steps of such a se-
quence results in a solution for the programming task.
We could specify all allowed sequences that solve a
programming task by hand, but it is less labour in-
tensive to automatically derive a programming strat-
egy from model solutions. The advantage of using
model solutions is that it becomes relatively easy for a
teacher to add new programming tasks to the tutoring
system, since he will be familiar with the program-
ming language. In fact, there is no need to learn a
new formalism, or to change the implementation of
the system. With the strategy combinator for choice,
we can combine multiple model solutions. Figure 1
contains a model solution for the insertion sort pro-
gramming task.

A model solution can be compiled into a pro-
gramming strategy by inspecting its abstract syntax
tree (AST), where each language construct is mapped
to its corresponding refinement rule. By introducing
choices in the strategy for certain language construc-
tions, we gain some flexibility in the sequences of re-
finement steps that we accept. For example, the two
definitions for the two cases forisort can appear in
any order since swapping the two does not change
the meaning of the function. If two unknown parts
are introduced by a refinement rule, we use the paral-
lel combinator by default to leave the order in which
these holes are completed unspecified. We apply this
principle, for instance, for the right-hand sides ofisort
that are introduced by pattern matching.

4.5 Strategies for Higher-order
Functions

The functionisort presented in Figure 1 is not the
standard solution that an expert would give. Figure 2
contains an alternative, much more concise definition

CSEDU 2009 - International Conference on Computer Supported Education

68

isort :: Ord a⇒ [a] → [a]
isort = foldr insert[]

Figure 2: Model solution for insertion sort withfoldr.

foldr :: (a→ b→ b) → b→ [a] → b
foldr cons nil= recwhere

rec [] = nil
rec(x : xs) = cons x(rec xs)

Figure 3: The higher-order functionfoldr.

for isort that is based on the higher-order function
foldr (also known as a catamorphism). The defini-
tion of this function can be found in Figure 3. The
function foldr captures compositional computations
over lists, and is a highly reusable function defined
in the Haskell standard Prelude library. In fact, the
definition for isort in Figure 2 formulates at a very
high level what is essential about insertion sort: we
start with the empty list (foldr’s second argument),
and the helper-functioninsertis used for each element
(foldr’s first argument).

Remember that we can automatically derive
strategies from the model solution’s AST, with which
we can recognise the steps of a student solving a pro-
gramming task. One approach would be to combine
the strategies derived for the two model solutions. In-
stead, we specialise the strategy that we derive for the
foldr function such that it recognises solutions with
explicit recursion (as the code in Figure 1), and also
solutions in terms offoldr. We can even let the strat-
egy accept alternative solutions in terms offoldr, such
as a definition that gives a name to the argument list
(η-expansion):

isort :: Ord a⇒ [a] → [a]
isort xs= foldr insert[] xs

The advantage of this approach is that the spe-
cialised strategy forfoldr has to be defined only once,
but it can be reused for several programming tasks in-
volving lists. For instance, the task of merging a list
of lists by appending all the lists, or computing all the
permutations of a list, are tackled by the same strategy
for foldr. In classroom settings, we often experience
that students find it difficult to define a function using
foldr, and prefer to use explicit pattern matching and
recursion. This is not always desirable, and it could
even be a goal of a programming task to use func-
tions such asfoldr, just to become familiar with these
higher-order functions. With the specialised strategies
we can easily support these kinds of tasks, or provide
help in rewriting a definition with explicit recursion

into an application offoldr.

4.6 A Taxonomy of Strategies

The functionisort is a catamorphism because it can be
defined as afoldr, but what about the helper-function
insert? Here too we use pattern matching on lists, and
recursion on the tail of the list. Carefully inspecting
the definition in Figure 1 reveals that there are two
cases for the non-empty list. For one, we use recur-
sion, but in casea6 x we usexswithout callinginsert
recursively. Technically, this means that we cannot
(conveniently) usefoldr, but that we have to define it
as a paramorphism instead. The functionpara cap-
tures another class of useful computations on lists,
just asfoldr, but in a more general way:

para:: (a→ [a] → b→ b) → b→ [a]→ b
para cons nil= recwhere

rec [] = nil
rec(x :xs) = cons x xs(rec xs)

We give an alternative definition forinsert, which is
based onpara:

insert::Ord a⇒ a→ [a]→ [a]
insert a= para f [] where

f x xs rs
| a 6 x = a :x : xs
| otherwise= x : rs

The recursion pattern ofinsert is nicely captured by
para: the definition forinsert and its helper-function
f are not recursive.

The new definition forinsertis not shorter than the
original definition, nor is it more intuitive. Still, this
version is to be preferred as a model solution as it sep-
arates the recursion pattern (para) from the instantia-
tion that is specific for the programming task at hand
(the local functionf and the empty list). In Haskell,
it is possible to specify recursion patterns as higher-
order functions (such asfoldr andpara). Program-
ming tasks that are expressed with the same higher-
order function essentially belong to the same problem
class. Identifying these problem classes helps with
providing detailed feedback on (partial) solutions in
an interactive way.

We have introduced the functionsfoldr andpara
for our insertion sort problem, but more of these func-
tions exist that characterise the structure of a compu-
tation. An anamorphism, for instance, helps in con-
structing lists from values, and has yet another re-
cursion pattern. Augusteijn introduces various mor-
phisms for defining other sorting algorithms (Au-
gusteijn, 1998). The functionsmap and filter from
Haskell’s standard library are specific instances of

CONSTRUCTING STRATEGIES FOR PROGRAMMING

69

foldr but they are equally useful in classifying pro-
gramming tasks. The higher-order functions give us a
taxonomy of programming tasks.

The examples may give the impression that our
approach only deals with computations involving
lists. It is not accidental that we use lists in our exam-
ples: lists are frequently used by functional program-
mers, they are well supported by the language, and
they are a popular subject for programming tasks. The
technique we present here, namely specialising strate-
gies for higher-order functions that capture a pro-
gramming pattern, can also be applied to other data
structures, such as binary trees. The same holds for
other programming techniques, such as accumulating
parameters, or divide and conquer algorithms.

5 USING PROGRAMMING
STRATEGIES

Now that we have programming strategies available,
we want to use these strategies to support a student
with the stepwise construction of a program. A strat-
egy describes the order of the refinement steps that a
student has to take to construct a program. This or-
ganisation of steps enables feedback when solving a
programming task.

Given a strategy, we can give various types of
feedback. Gerdes et al. (2008) give a list of feed-
back services derived from existing exercise assis-
tants. This list includes different levels of feedback.
In addition to feedback on the strategy level, we can
also provide feedback on more basic levels. If a stu-
dent makes an error on the level of syntax or types,
this mistake is reported. Another basic form of feed-
back is to verify whether or not a refinement step is
correct. The following paragraphs explain how pro-
gramming strategies can be used to provide strategy
related feedback.

Hints. At each point in the construction of the inser-
tion sort function we can check whether the step taken
by the student is expected, and we can give hints, in
increasing specificity. For example, suppose a stu-
dent asks for a hint when he is at the point of pattern
matching:

isort xs= ...

The tutor starts with ‘apply pattern matching on the
argument’, in this casexs. When a student asks for
more detail we go down in the strategy, and give the
two components of which the pattern matching con-
sists, namely the empty list[] and the non-empty list
(x : xs).

The steps in a strategy do not necessarily have
to be sequential. As mentioned in subsection 4.3, it
is also possible to do steps in parallel or to make a
choice between different steps. For example, after ap-
plying the pattern matching refinement rule, the cases
for the empty and non-empty list can be constructed
in arbitrary order. When asking for a hint, both of
these steps can be presented to the student.

Deviation from the Strategy. Since a strategy out-
lines the steps to take, we can check if a step is in
line with the strategy. If a student deviates from the
strategy, there are two possibilities:

• a known refinement rule that is not part of the
strategy has been applied,

• or we cannot explain the step made by the student,
but cannot prove the program to be wrong.

In both cases we can either let the student go on, or
report that we want the student to follow the strategy.
An example of a deviation, from theisort strategy, is
introducing three cases when pattern matching on the
input list:

isort [] = []
isort [x] = [x]
isort (x :xs) = insert x(isort xs)

This is a correct program that meets the requirements,
but the second case is superfluous. We want to report
this to the student.

Buggy Strategies. Besides the correct strategy, we
also specify known inappropriate (‘buggy’) strategies
for solving the problem. Buggy strategies are used
to catch common mistakes, which we use to explain
what a student has done wrong. Consider the follow-
ing definition:

isort [] = ...

isort (x :xs) = insert x xs

Although this is a valid and type correct program, it
does not have the expected behaviour. This is an ex-
ample of a buggy strategy in which a student forgets
to call the function recursively on the tail of the list
(isort xs).

Every expected deviation from the strategy can be
turned in to a buggy strategy. The deviation presented
before, in which a superfluous third case is given to
implementisort, could just as well be an example of
a buggy strategy. Buggy strategies make it possible to
give more detailed feedback.

CSEDU 2009 - International Conference on Computer Supported Education

70

Customising Strategies. We can calculate many
types of feedback from a programming strategy spec-
ification. The implementor of an exercise assistant
decides what feedback to use. For example, an exer-
cise assistant may want to give feedback at each in-
termediate step or let a student complete an exercise
and give feedback afterwards, by showing a complete
derivation of the program.

From a didactic point of view it might be desir-
able to force a student to take a specific route towards
the complete definition of a program. Strategies help
to allow or disallow certain solution paths. Possible
variations are:

• The order in which the main function (isort) and
its helper-functions (insert) are developed is con-
strained, reflecting top-down versus bottom-up
development styles.

• It is optional to enforce a student to give explicit
type signatures (e.g.isort :: Ord a⇒ [a] → [a])
of the (helper-)functions he needs to define. We
can ask to give the signatures in advance, at some
point, or after completion.

• For functions with multiple cases (e.g., the empty
list and non-empty list), it is possible to express
the order in which the cases should be completed.
For example, the simplest case first.

These examples give an indication of the kind of feed-
back that can be constructed from a programming
strategy.

6 CONCLUSIONS, RELATED
AND FUTURE WORK

Conclusions. We have shown how we can use
strategies for programming to give students feedback
while incrementally developing programs for intro-
ductory programming problems. Strategies and feed-
back are separated, so that users (teachers) can tune
the feedback the intelligent programming tutor gives
to students. Recursion combinators play a fundamen-
tal role in our approach, and offer the possibility to
easily add flexibility to an intelligent tutoring system
for programming, because they can capture many dif-
ferent forms of strategies in abstract terms.

We have developed a proof-of-concept implemen-
tation of an intelligent tutoring system for introduc-
tory programming tasks. This system supports the
strategies that are described in this paper.

Related Work. The Lisp tutor (Anderson et al.,
1986) is an intelligent tutoring system that supports

the incremental construction of Lisp programs. The
interaction style of the tutor is a bit restrictive, and
adding new material to the tutor is still quite some
work. Using our approach based on strategies, the in-
teraction style becomes flexible, and adding exercises
becomes relatively easy.

In tutoring tools for Prolog, a number of strategies
for Prolog programming have been developed (Hong,
2004). Strategies are matched against complete stu-
dent solutions, and feedback is given after solving the
exercise. We expect these strategies can be translated
to our strategy language, and can be reused for a pro-
gramming language like Haskell. Soloway (1985) de-
scribes programming plans for constructing Lisp pro-
grams. These plans are instances of the higher-order
function foldr and its companions. Our work struc-
tures the strategies described by Soloway.

Automatic grading of student programs cannot be
used to obtain feedback on partial programs at inter-
mediate steps in the development of programs. But
we use the work of Xu and Chee (2003), in partic-
ular their approach to abstract syntax tree construc-
tion from model solutions, to generate first approxi-
mations for program construction strategies. We then
add development order and/or type-based strategies,
several abstractions, and possibly buggy strategies to
the strategies thus obtained.

Future Work. Strategies constructed from model
solutions might be rather strict, and enforce par-
ticular solutions. We can add more flexibility by
specifying programming problems by means ofcon-
tracts (Meyer, 1992), and then check at each inter-
mediate step that the contract is not violated. We can
then offer all possible refinement rules to the students,
and give feedback at steps that violate a contract. We
have yet to investigate how we can statically, incre-
mentally, check contracts.

A model solution must be expressed in terms of
higher-order functions to take advantage of the spe-
cialised strategies for these functions. Alternatively,
we can try to recognise recursion patterns in model
solutions. We also plan to investigate how well our
approach works for other programming languages,
such as Java. Although Java has no support for higher-
order functions, we can use strategies to capture com-
mon, high-level programming techniques.

The proof-of-concept implementation has to be
extended with contracts and further developed to be
used in tests in class-rooms. Only when we have a
well-developed prototype can we investigate how our
work scales. The primary goal is to support introduc-
tory programming; so our approach need not scale to
full-blown software engineering projects.

CONSTRUCTING STRATEGIES FOR PROGRAMMING

71

REFERENCES

Anderson, J. R. (1993).Rules of the Mind. Lawrence Erl-
baum Associates.

Anderson, J. R., Conrad, F. G., and Corbett, A. T. (1986).
Skill acquisition and the LISP tutor.Cognitive Sci-
ence, 13:467–505.

Anderson, J. R. and Skwarecki, E. (1986). The auto-
mated tutoring of introductory computer program-
ming. Communications of the ACM, 29(9):842–849.

Augusteijn, L. (1998). Sorting morphisms. In3rd In-
ternational Summer School on Advanced Functional
Programming, volume 1608 of LNCS, pages 1–27.
Springer-Verlag.

Beeson, M. J. (1990). A computerized environment for
learning algebra, trigonometry, and calculus.Journal
of Artificial Intelligence and Education, 1:65–76.

Borovanský, P., Kirchner, C., Kirchner, H., and Ringeis-
sen, C. (2001). Rewriting with strategies in ELAN: A
functional semantics.International Journal of Foun-
dations of Computer Science, 12(1):69–95.

Chaachoua et al., H. (2004). Aplusix, a learning environ-
ment for algebra, actual use and benefits. InICME
2004: 10th International Congress on Mathematical
Education. Retrieved fromhttp://www.itd.cnr.
it/telma/papers.php, May 2008.

Cohen, A., Cuypers, H., Reinaldo Barreiro, E., and Sterk,
H. (2003). Interactive mathematical documents on the
web. In Algebra, Geometry and Software Systems,
pages 289–306. Springer-Verlag.

Gerdes, A., Heeren, B., Jeuring, J., and Stuurman, S.
(2008). Feedback services for exercise assistants. In
Remenyi, D., editor,The Proceedings of the 7th Euro-
pean Conference on e-Learning, pages 402–410. Aca-
demic Publishing Limited.

Heeren, B. and Jeuring, J. (2008). Recognizing strate-
gies. In Middeldorp, A., editor,WRS 2008: Reduction
Strategies in Rewriting and Programming, 8th Inter-
national Workshop.

Heeren, B., Jeuring, J., Leeuwen, A. v., and Gerdes, A.
(2008). Specifying strategies for exercises. InMKM
2008: Mathematical Knowledge management, vol-
ume 5144 ofLNAI, pages 430–445. Springer-Verlag.

Hong, J. (2004). Guided programming and automated error
analysis in an intelligent Prolog tutor.International
Journal on Human-Computer Studies., 61(4):505–
534.

Hutton, G. (2007). Programming in Haskell. Cambridge
University Press.

Johnson, W. L. and Soloway, E. (1985). Proust:
Knowledge-based program understanding.IEEE
Transactions on Software Engineering, 11(3):267–
275.

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J.
(2003). The BlueJ system and its pedagogy.Jour-
nal of Computer Science Education, Special issue on
Learning and Teaching Object Technology, 13(4).

Kumar, A. N. (2008). The effect of using problem-solving
software tutors on the self-confidence of female stu-
dents. InSIGCSE 2008: Proceedings of the 39th
SIGCSE technical symposium on Computer science
education, pages 523–527. ACM.

López, N., Núñez, M., Rodrı́guez, I., and Rubio, F. (2002).
WHAT: Web-based Haskell adaptive tutor. InAIMSA
2002: Proceedings of the 10th International Confer-
ence on Artificial Intelligence: Methodology, Systems,
and Applications, pages 71–80. Springer-Verlag.

Melis, E., Andrès, E., Goguadze, G., Libbrecht, P., Pollet,
M., and Ullrich, C. (2001). ACTIVEMATH : a generic
and adaptive web-based learning environment.Inter-
national Journal of Artificial Intelligence in Educa-
tion, 12.

Merriënboer, J. J. v., Jelsma, O., and Paas, F. G. (1992).
Training for reflective expertise: A four-component
instructional design model for complex cognitive
skills. Educational Technology, Research and Devel-
opment, 40(2):23–43.

Meyer, B. (1992). Eiffel: The Language. Prentice Hall
International.

Mory, E. (2003). Feedback research revisited. In Jonassen,
D., editor,Handbook of research for educational com-
munications and technology.

Odekirk-Hash, E. and Zachary, J. L. (2001). Automated
feedback on programs means students need less help
from teachers. InSIGCSE 2001: Proceedings of the
32nd SIGCSE technical symposium on Computer Sci-
ence Education, pages 55–59. ACM.

Peyton Jones et al., S. (2003).Haskell 98, Language and
Libraries. The Revised Report. Cambridge University
Press. A special issue of the Journal of Functional
Programming, see alsohttp://www.haskell.org/.

Pillay, N. (2003). Developing intelligent programming
tutors for novice programmers. SIGCSE Bull.,
35(2):78–82.

Proulx, V. K. (2000). Programming patterns and design
patterns in the introductory computer science course.
In SIGCSE 2000: Proceedings of the 31st SIGCSE
technical symposium on Computer science education,
pages 80–84. ACM.

Soloway, E. (1985). From problems to programs via plans:
the content and structure of knowledge for introduc-
tory LISP programming. Journal of Educational
Computing Research, 1(2):157–172.

Sykes, E. and Franek, F. (2004). A prototype for an intelli-
gent tutoring system for students learning to program
in Java.Advanced Technology for Learning, 1(1).

Visser, E., Benaissa, Z.-e.-A., and Tolmach, A. (1998).
Building program optimizers with rewriting strate-
gies. In ICFP 1998: International Conference on
Functional Programming, pages 13–26.

Xu, S. and Chee, Y. S. (2003). Transformation-based di-
agnosis of student programs for programming tutor-
ing systems.IEEE Transansactions on Software En-
gineering, 29(4):360–384.

CSEDU 2009 - International Conference on Computer Supported Education

72

