
C PORTAL
Online Educational Framework for C and C++ Languages

Ádám Gábor, Dénes Németh and Imre Szeberényi
Budapest University of Technology and Economics, Műegyetem rkp 3-5, Budapest, Hungary

Keywords: C programming language, C++ programming language, Educational portal, Moodle framework, GRE security,
Chroot, Resource limitation.

Abstract: This paper introduces the C portal educational framework, which helps teachers to assign C and C++ program-
ming language problems to students and automatically compile and test the received solutions in a secured
environment. The paper evaluates how the compiled untrusted binary can be executed with minimal security
risk with focus on privilege escalation and uncontrolled resource usage. The paper also proposes how the
system can be integrated in the existing systems intended for programming education like Moodle or dokeos.

1 INTRODUCTION

For more than a thousand year papers, letters or books
were the main medium for delivering thoughts, ideas
and theories between people. This has changed a lot
with the spread of interconnected and telecommuni-
cation systems. These technologies make it possible
to receive, send and share huge amount of informa-
tion within a fraction of a second. The effects of these
developments are estimated to be as big as the first
industrial revolution.

These changes affect all aspects of the everyday
life, which includes the educational system too. Our
goal was to create an on-line interactive e-learning
system for the C and C++ programming languages.
There are several e-learning systems, but most of
them can only handle tests or essay-like exams and
hardly any supports the teaching of programming lan-
guages. The tools of this type mainly deal with inter-
preted languages like Prolog, ASP, PHP, Lisp, etc. or
languages which can be easily tested in a secured con-
tainer like Java or ran on the client side.

The C language is something completely differ-
ent. It is a compiled language usually used for system
programming, which means that it is hard to safely
execute a C based program either by previous pars-
ing of the source code or limit the capabilities of the
binary executable by the operating system.

The goal of our system is to provide an environ-
ment in which solutions to C based e-problems can be
safely tested. This environment consists of two parts:

1) a plugabble user interface described in the 2.1
section, 2) a batch system described in sections 2.3
and 2.4. The batch system is responsible for han-
dling, executing and testing the submitted solutions.
The last section of the paper covers the security risks
and implications of the presented system.

2 THE INFRASTRUCTURE

The structure of the system consists of four logical
components, which are illustrated on figure 1. The
first is theuser interfacewhich handles the interac-
tion with students and teachers. Theinteroperabil-
ity interfacestores all input and output data in a re-
lational databases and shares it between the different
components of the system. The third component is the
workload manager, which is responsible for global
job scheduling and separating the database from the
unsafe running jobs, the last component is theexecu-
tion system, which executes, tests and separates jobs
from eachother. This last component can be com-
posed of multiple physical computers. The last two
components are called the batch system.

2.1 User Interfaces

The platform where certain users can interact with
the system are the user interfaces. These are dy-
namic web pages, accessed via SSL using certificates,

248
Gábor Á., Németh D. and Szeberényi I. (2009).
C PORTAL - Online Educational Framework for C and C++ Languages.
In Proceedings of the First International Conference on Computer Supported Education, pages 247-252
DOI: 10.5220/0001975502470252
Copyright c© SciTePress



Execution system instance

Globbal scheduler

Job

acceptor

Local scheduler

Queued

jobsTransfer

service

Database
Web

interface

Result

provider
Executed

jobs

Executor

Moodle

interface

Workload managerInteroperability

interface

User

interfaces Execution host

Figure 1: The structure of the system.

where the user has to authenticate with a username
and password. The web pages are implemented using
PHP, a widespread script language for developing dy-
namic web pages and applications (McArthur, 2008;
Adam Trachtenberg, 2006). The user interface on de-
velopment level is separated to two distinct layers: the
data processing layer and the presentation layer.

The data processing layer collects all the input
generated by the user (via submitting a form, or
just clicking on a hyperlink), and executes the script
for the actual target object. After the processing
is finished, including verifications, validations and
database transactions, the presentation layer is called
by the appropriate parameters describing the structure
of the page to be displayed and the generated content.

The presentation layer is a collection of self writ-
ten and Smarty template engine (Sweat, 2005) tem-
plates. The Smarty template engine is also imple-
mented in PHP, and gives a very simplified but en-
hanced way of generating web pages from predefined
templates by providing an object oriented api for pass-
ing content.

All input generated by the user is being verified
and validated to prevent malicious code to be inserted
and executed, to prevent cross-side scripting and sql
injections. The input types are classified in order to
how the content is to be verified and validated. There
are input types for what the user can only choose a
value, but there are free input fields which have in-
put scope boundaries. These inputs are supervised by
regular expressions and built in methods.

Apart from php and database security the most
threat comes from the user written C and C++ codes
which are too difficult (impossible) to filter. There-
fore we rely on the strength of theexecution system
defense mechanism.

There are two completed user interfaces ready and
in use: the administrative and the student interfaces.
The integration with the Moodle e-learning content
management system is already started.

2.2 Interoperability Interfaces

The interoperability interface has two functionali-
ties: First to provide asynchronous communication
between the global scheduler and the user interfaces.

admin_user

member

user user_assign

groups group_assign ex_type

exercise_files

test_resultsolution_files result

solution

exercise test_case

ehosts

Figure 2: The schema of the database structure.

Secondly to act as a data storage for the neighbor-
ing components. The best choice for both tasks was
an SQL database (Kofler, 2005; Dubois, 2007). The
complex structure of the database used by these mod-
ules is shown on Fig. 2. This structure was chosen
to provide maximal modularity and scalability for the
system.

As this interface is used by more than one com-
ponent, it has to provide granular data to each sub-
system without the ability to identify the component
which is doing the query. Tables have been divided
to ensure flexibility, and to provide a simple way of
accessing data independent from the type or content,
while keeping the existing connections among the ob-
jects. As of security concerns, each component were
granted different access privileges to the database -
select, insert, update and delete rights -, keeping the
number of these rights at the minimum, but still suf-
ficient to ensure the expected functionality to be pre-
sented by each component. This is done by defining
roles - collection of privileges -, and associating them
to the appropriate subsystem.

Further concern was to enable the integration and
cooperation of this system with existing, e-learning
projects, such as Moodle (Cole and Foster, 2007; Ko-
rte, 2007). As being a complex e-learning content
management system, Moodle already has a well docu-
mented, distributed database infrastructure with more
than two hundred tables. It includes the storage of
a wide variety of educational data templates, such as
tests, quizzes, discussion boards, etc.

As the redesign of the database schema of Moodle
is impossible we had to add new fields and tables to
our database to ensure the functionality of the new
Moodle module, while keeping the connections and
data structure provided by Moodle untouched.

2.3 The Workload Manager

The workload manager runs the global scheduler,
which implements two functionalities: the informa-
tion collector for the execution system and the global
resource broker. The information collector gathers all

C PORTAL - Online Educational Framework for C and C++ Languages

249



metrics (queued jobs, running jobs, available slots)
of the execution system instances, these are needed
for global load balancing. The global resource broker
uses this information to track and schedule the jobs.

The job scheduling covers three tasks: 1) query of
the interoperability interface for new jobs, 2) selection
of an executor instance for job locations and 3) trans-
fer of the results of the solutions from the executor
instance to the database through the interoperability
interface.

The workload manager also contains the transfer
service, which moves the data between the execution
system instances and the workload manager. This is
implemented as an SSH client, which holds the pri-
vate keys of the job acceptor and the result provider
users of each execution system instance. This oper-
ates in a push/pull mode, which means that it pushes
a job to the execution system instance, and periodi-
cally queries the result provider for available results.
The pull mode on one side has a slight overhead, but
on the other side it allows a much clearer separation
between the two systems.

2.4 The Execution System

The execution system consists of several execution
hosts. Each host runs four services. These are job ac-
ceptor, result provider, execution and local scheduler
services. These services are explained in the follow-
ing sections.

Execution system hosts are physically separated
from the Internet by sitting in a private network which
is connected to the workload manager over a switch
but not to Internet. This separation prevents all com-
puters except the workload manager to communicate
with the executor hosts.

2.4.1 The Job Acceptor

The job acceptor accepts jobspushedfrom the work-
load manager. Currently it is implemented as a simple
SSH server, which only accepts connections from the
workload manager and a unique user which can write
to one single directory, which is the execution queue.

2.4.2 The Result Provider

The result provider is apullable service, which allows
the transfer service to move the produced result of the
pushed solution back to the workload manager. In
our system it is implemented as a simple SSH server,
which allows a single user of the transfer service to
handle the results queue:

• count the number of entries in a single directory,
which represents the results queue

create home

copy sources compile

hidden

sourcesremove hidden sources

compile

remaining

sources

link

copy back executeable

destroy home

Local

scheduler

Executor

Figure 3: The comilation process.

• retrieve and remove elements from this queue

2.4.3 The Local Scheduler

The local scheduler is responsible for two tasks. 1)
measure the metrics related to the execution hosts.
These metrics are the load and the number of run-
ning and queried jobs. 2) drive the execution service,
namely to decide which task should be executed from
the received jobs. In the current implementation this
is a shell script running in the background.

2.4.4 The Execution Service

The execution service driven by the local scheduler
provides the safe container for running and testing so-
lutions. The execution environment is a read only
image, which contains a minimal operating system
with pool users used for compiling and executing so-
lutions. If the scheduler notices that a solution needs
to be tested from the local queue it selects a pool
user(PU) and compiles the user supplied and hidden
source files as illustrated on figure 3.

The home of the user is a separate memory based
temporary image created on demand and mounted in-
side the read only environment. After the home is
mounted the sources are copied. First the hidden
source files are compiled, than they are deleted and
only the compiled object files are available in the fur-
ther steps. After this the user supplied and non-hidden
files are compiled. If all compilation was success-
ful the objects are linked, and the final executable is
copied outside of the read-only environment. Before
the complete home is destroyed the log file is trans-
ported and parsed outside of the sandbox environment
by the local scheduler.

If everything regarding the compilation process
succeeded according to the settings defined by the in-

CSEDU 2009 - International Conference on Computer Supported Education

250



create home

copy pre script

execute

pre script
copy executeable

destroy home

Local

scheduler

Executor

remove private keys

copy all keys

execute

solution
periodically

check state

resource limits

time limits

kill job

kill job

pull results

Figure 4: The execution process.

teroperability interface the testing phase begins. In
this phase each test case is executed separately. The
process of a test case execution is illustrated on figure
4. This process also starts with a temporary home cre-
ation and all keys, the executable and thepre scripts
are copied there. After this step the system executes
the pre script, which can create user specific input or
data for the executable. After the pre script finished
the compiled executable is started.

The local scheduler chroots(Joy, ) to the scratch-
box and executes the wrapper of the job, which is bi-
nary that closes the standard input and outputs (stdin,
stdout, stderr) of the wrapper and reopens them: The
file called INPUT is used as standard input and the
STD.OUT and STD.ERR files are opened for stan-
dard output and standard error respectively. If the
streams are opened successfully the wrapper calls the
exec system call for the compiled binary.

The following limitations are set for the solution
execution:

1. The shell of the PU is the compiled executable

2. The PU can write only in its home

3. The PU can have only one process (it can not fork)

4. The PU can use maximum 32 MB memory

5. The PU can not use the network

6. The PU can not use more then 60 sec CPU time

7. The PU can not use more then 300 sec real time

8. The PU can not access device files

9. The PU can not access the sys or proc file system

The pool user is prevented from breaching 5, 8 and
9 limitations on kernel level, while the UNIX stan-
dard limits utility is used to enforce limitations 3, 4
and 6. The rule 2 is enforced by using a file system
for the operating system which lacks write operations
and ismounted as read-only. The home of the user is
a memory file system. The 1 limit is hard coded into

define

exercise

types

create

exercise

content

manage

students

manage

student

groups

associate

students,

groups and

exercises

create

solution

process

solution

view

result

view

statistics

TEACHER

INTERFACE

STUDENT

INTERFACE

EXECUTION

SYSTEM

Figure 5: The usecase worrkflow of the user interfaces.

the read only image. The limitation 7 is enforced by
the local scheduler, which terminates the running pro-
cess if the consumed amount of real time is more than
allowed.

If none of these limitations are breached and the
test case process exits normally, then thepostscript
is executed. which processes the output and decides
whether the test case is accepted or not. This post
script is a simple shell script, which has access to
the all keys of the test case. If the post script exists
normally it creates adoneflag, which is checked by
the local scheduler which moves all data to the results
queue.

2.5 The Workflow

The workflow is centralized to the lifecycle of an ex-
ercise, shown on Figure 5. The account of the main
administrator is automatically generated, and by au-
thenticating with this account, the administrator has
full management and administrative access to every
object in the system. The main administrator has to
initialize the database by inserting the available exer-
cise types, and generating the student database. The
admin has full access to the user management mod-
ule, so it is possible to add users when the system
operates.

As the user upload module accesses the interoper-
ability interface, five pairs of public and private keys
are generated automatically and associated to each
student user, thus enabling the modules of the exe-
cution system to ensure privacy by accommodating
encryption algorithms without querying the database
for personal data.

The main admin may also generate sub-admin ac-
counts in the same way as students (for the assistant
lecturers for example). Sub-admins can create student
groups conformly with the labor or seminar groups.

The next step is the creation of an exercise. This
is a complex task for the teacher user, because all the
required information have to be inputted. These pa-
rameters describe the method of giving the exercises
to the students, and specify the parameters of how the
solutions are to be verified, validated and evaluated.

C PORTAL - Online Educational Framework for C and C++ Languages

251



Header file contents can be added to provide dis-
tinctive api to the students, as well as hidden files
needed only for the compiler while building and test-
ing the program from the source code handed in.
When setting the specification of the exercise, the
teacher may add student specific parameters automat-
ically generated by the system at runtime. This can
be done by explicitly the teacher: the body of the pa-
rameter generating script can be entered manually for
each exercise, so as the students receive the exercise
specification, the parameters are generated by the in-
put function body as a static part of the specification,
so the student acquire these parameters transparently.
Any number of test cases can be assigned to the exer-
cise.

At the point when the execution system success-
fully compiles the solution source code, it runs a se-
ries of tests defined by the creator by input and output.
Prescripts and postscript can be also defined to each
test case, enabling the configuration of the execution
system to react and function in a unique way, while
processing the solutions and evaluating each test case
for each exercise. The creator has full access to man-
age and modify the settings of the exercise while it
is not associated and distributed to the student users.
Other teacher users have read privilege to exercises
of other creators, and can easily create new ones with
using similar settings or header files.

When an exercise is successfully entered into the
system, every teacher user may assign it indepen-
dently from the identity of the creator of the exercise
to single student users. Exercises can also be assigned
to groups of students (even if it is already assigned to
individual student users), but with the limitation that
the teacher user may only assign it to groups created
by their own. The procedure of removing associations
is similar.

As a student user authenticates on the student web
interface, the assigned and completed exercises are
prompted. In this page a student may hand in so-
lutions to the associated exercises - the number of
possible tries, the content length and the maximum
number of uploadable file content are all defined by
teacher users -, and is also able to view the results of
each previously handed in solution. When a solution
is submitted, it is passed to the interoperability inter-
face, from where the execution service takes all the
parameters of the actual exercise, and the contents of
the solution. After the evaluation is completed, and
result data is written back into the database, the status
of the solution changes to evaluated, thus enabling the
web page for the student to view the results of the pro-
vided solution and maybe create a newer one based on
the evaluated solution.

3 SECURITY CONSIDERATIONS

During the development of the framework the two
most important principles used were to keep the sys-
tem simple, stupid and use only well proven, out
of the box technologies. Since no system can pro-
vide 100 percent protection against all local exploits,
one of the best choices is to keep the used technolo-
gies as updated as possible and use the strongest en-
forced privilege and service separation and prevent
the spreading of the compromisation.(Bishop, 2003)

In an order to secure the infrastructure we run each
functionality from 1-4 on separate nodes, and deploy
firewalls between them.(Rash, 2007) These firewalls
should allow only the absolutely necessary network
communication between the services. The physically
separated part of the infrastructure are the execution
instances, the most easily breachable part of the sys-
tem. They are only connected to the workload man-
ager, which drops every incoming network packets
and only allows the SSH client of the transportation
service to reach the executor instances. This makes it
impossible for the executor instance to reach the rest
of the infrastructure. Even if the execution system is
compromised, the rest of the system stays protected
from internal attacks.

The workload manager runs the global scheduler
as a non root user, which on one hand writes to the
execution system through SSH and to the interoper-
ability interface through PHP and MySQL. It accepts
incoming connections only from the user interface
while anything else is dropped. It is difficult to by-
pass this node as the rest of the system is connected
only to this and there is no direct transfer of any net-
work traffic.

The hardest part is the protection of the execu-
tor system. This not only includes the privilege pro-
tection, but the ensuring that the running test do not
jeopardize the system, by creating dead locks, starva-
tion or high load, which renders the system unusable.
These problems are further explained in the (Daniel
J. Barrett, 2003) and (Bishop, 2003) books.

The privilege protection is achieved by the tech-
nologies explained in the limitation enumeration, but
the rest has to be achieved by the created architecture.
The too extensive I/O usage limiting is achieved by
using a read only scratch box and a temporary 2 MB
size tmpfs created in the memory acting as the home
of the pool user. This creates a maximal disk quota
and converts disk usage to memory access, which is
indirectly the already limited CPU usage.

The pool user is prevented from network usage by
GRE security. This is required to protect the network
from flooding. (Simson Garfinkel, 2003; Vacca, 2007)

CSEDU 2009 - International Conference on Computer Supported Education

252



The UNIX based systems normally can not handle
more then 65536 processes, so the pool users must be
prevented from flooding the system with huge amount
of processes, so the maximal number of processes for
a single pool user is limited to one.

The pool users are separated from each other by
the standard UNIX UID/GID structure to prevent un-
wanted interference.

Above these limitations the solutions of the stu-
dents are fairly queued, which means that the system
tries to allocate the same amount of resources to each
student. This prevents a single user to flood the sys-
tem with jobs, which wait in the queue and delay the
solutions of other users for a longer amount of time.

On the interoperability interface the backups of
the databases must be periodically stored on a sep-
arate node. There are several tools to backup a
database, so secured backups are out of the scope of
this paper.

We can draw the following conclusion on the se-
curity side: This system is an educational supporting
framework and not a mission critical banking system
or airplane control unit and should not be treated as
such. If an incident happens, the main goal is to pro-
tect the database, notice the event and identify the stu-
dent who submitted the dangerous code.

If only the executor instance is compromised, it
can be easily reinstalled, since it holds no states. The
lost jobs, which are not transported back to the work-
load manager can be rerun.

4 CONCLUSIONS

As the implementation of the necessary core function-
ality of the system has been finished, our goal was
to construct an environment consisting of distributed
elements capable of compiling and testing C based
problem solutions. Private and public testing proved
that the modules of the system are well constructed
and stable, and its usage did not produce any unex-
pected event.

Due to its distributed structure, the vulnerability
of singular components does not affect the stability of
the whole system, thus it provides a stable solution for
a distributed system to be applied in an educational
institute. As the system is already being used by more
than half a year by more than two hundred students
without severe errors or malfunctions, we can state
that our security assumptions were correct. As usage
increased many software ergonomical problems were
resolved and interfaces were made more user-friendly.

There are lots of e-learning platform and portal
implementations used by major institutions, and as

our framework was designed to be compact but modu-
larly structured, it is a bearable and sustainable devel-
opment to integrate our system as a module to these
bigger platforms. The integration into the Moodle
e-learning content management system is almost fin-
ished.

ACKNOWLEDGMENTS

Part of this work was funded by the Pázmány Pt́er
programm (RET-06/2005) of the National Office for
Research and Technology, the authors would like to
thank the EGEE-III (INFSO-RI-222667) program.

REFERENCES

Adam Trachtenberg, D. S. (2006). PHP Cookbook.
O’Reilly.

Bishop, M. (2003). Computer security: Art and science.
Addison-Wesley Publishing Co.

Cole, J. and Foster, H. (2007).Using Moodle: Teaching
with the Popular Open Source Course Management
System. O’Reilly Media, Inc., 2nd edition.

Daniel J. Barrett, Richard E. Silverman, R. G. B. (2003).
Linux Security Cookbook. O’Reilly Media, Inc.

Dubois, P. (2007).MySQL Cookbook. O’Reilly, 2nd edi-
tion.

Joy, B. Chroot on unix operating systems.
http://en.wikipedia.org/wiki/Chroot.

Kofler, M. (2005). The Definitive Guide to MySQL 5.
Apress, 3rd edition.

Korte, L. (2007).Moodle Magic: Make It Happen. FTC.

McArthur, K. (2008).Pro PHP: Patterns, Framework, Test-
ing and More. Apress.

Rash, M. (2007).Linux Firewalls - Attack Detection and
Response. O’Reilly Media, Inc.

Simson Garfinkel, Gene Spafford, A. S. (2003).Practical
UNIX and Internet Security. O’Reilly Media, Inc.

Sweat, J. E. (2005).PHP Architect’s Guide to PHP Design
Patterns. Marco Tabini & Associates, Inc.

Vacca, J. R. (2007).Practical Internet security. No Starch
Press.

C PORTAL - Online Educational Framework for C and C++ Languages

253


