
ONLINE EXERCISE SYSTEM
A Web-Based Tool for Administration and Automatic Correction of Exercises

Daniel Baudisch, Manuel Gesell and Klaus Schneider
Embedded Systems Group, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

Keywords: CAT, CAL, Computer aided teaching, Computer aided learning, Online Exercise System (OnExSy), Web-
based exercise tools, Submission, Automatic correction.

Abstract: We describe OnExSy, our online exercise system that allows our students in computer science to submit their
solutions to exercises via a web form. The system is not only able to automate the administration of the student
accounts as done by many other comparable systems. In addition, our system is even able to automatically
check the correctness of the submitted solutions and is able to provide a counterexample in case the solution
is wrong. This feature is provided by modern formal verification tools that have also been developed in our
research group. As a result, our tutors do not waste time for checking the correctness of the solutions of many
students, and instead, can spend the saved time for an individual support of students. Moreover, the tool is
available not only during the time when lectures are held, but also during holidays which is very important for
the final preparation of the exam.

1 MOTIVATION

In the Bachelor program in Computer Science at the
University of Kaiserslautern,‘Computer Systems 1&
2’ is one of the required courses of the first two
semesters. This course covers the basic principles
of computer systems, especially the design of digital
hardware circuits, the design of microprocessors in-
cluding computer arithmetic and assembler program-
ming, and the overall architecture of a computer sys-
tem like the memory hierarchy and peripherals. The
overall number of students in this course is about
200 students each semester including also students of
other disciplines like mechanical engineering.

As most courses of our Bachelor programs, ‘Com-
puter Systems 1& 2’ also offers exercises to provide a
deeper understanding of the topics. The classical ex-
ercises arrogate the students to provide their solutions
on paper that have to be submitted each week. After
the correction of the students’ solutions by a tutor, the
tutor presents the correct solution in the lesson and
may also talk about the students’ solutions and their
mistakes. Usually, the tutor himself is a student in
higher semester.

In the past, we recognized an increasing failure
rate of our students as a growing problem in our de-
partment. This may be traced back to the following

reasons: The Bachelor program has a tight schedule
of courses and the exams have to be passed within
given deadlines. Although exceptions from these
rules are allowed, most students try to meet these re-
quirements. This leads to the fact that less students
have time for jobs as tutors, so that thenumber of en-
gaged tutors decreases while the number of students
grows. This leads to a reduced individual support of
our students, since theavailable time per week of the
tutors is consumed by the correctionof the submitted
solutions.

A further problem is that a minimal amount of ex-
ercises have to be solved correctly to be able to apply
for the exam in this course. Due to limited time during
the week, it seems that studentscheat by copying the
results of other students, which however harms their
preparation of the exam at the end. Detecting copies
of submitted solutions of 200 students every week that
are distributed over many tutors can not be done with
reasonable effort.

In this paper, we describe how we support our stu-
dents by improving their individual discussion with
their tutors. Besides providing special courses for
the preparation of the tutors in the future, we have to
make sure that they can spend their time in the really
important tasks, i.e., tasks that cannot be solved by a
computer: Thesubmission of the students’ solutions,

104
Baudisch D., Gesell M. and Schneider K. (2009).
ONLINE EXERCISE SYSTEM - A Web-Based Tool for Administration and Automatic Correction of Exercises.
In Proceedings of the First International Conference on Computer Supported Education, pages 104-110
DOI: 10.5220/0001978801040110
Copyright c© SciTePress



the distribution to their tutors, and the maintenance
of the students’ accountsare typical tasks that can be
done even better with a computer, and clearly, our tool
OnExSy provides this functionality.

In addition to this, our tool OnExSy is also able
to automatically check the correctness of the submit-
ted solutions and to immediately provide a feedback
to the students in case their submission was wrong.
In many cases, checking the correctness of a solution
is trivial, e.g., if the solution is a simple number. In
other cases, e.g., if the solution is a digital circuit or
a computer program, many correct solutions are pos-
sible, so that we cannot simply check for equality of
a sample solution. Instead, the semantics has to be
checked, which amounts to theautomatic verification
of programs and circuits. Fortunately, the research
done by our group already considered this problem in
great detail, so that we are happy to use the tools we
originally developed for research also for teaching.

As a result, our tutors now have much more time
to discuss potential problems with the students, since
for most exercises, there is no longer a need for cor-
recting the submitted solutions. This leads to anim-
proved individual support of each student with even
less tutors. Tutors can now even prepare the exer-
cises of the next week instead of only explaining why
a submitted solution was not correct. In many cases,
the feedback of OnExSy was sufficient to solve this
problem.

To get rid of copied solutions, we furthermore
added the feature to OnExSy thateach student is
given a different exercise. This is either done by ran-
domly generating an instance of an exercise, e.g. in
computer arithmetic where two binary numbers of a
certain bitwidth are randomly chosen, or by select-
ing an exercise from a data base. Copying a solution
made by another student is therefore no longer pos-
sible (unless the rare case should occur that two stu-
dents were given the same exercise).

The only problem that remains is that we do not
yet check theauthentication of the students, i.e., it is
possible that another student provides the solutions.
We do not believe that this is currently the case among
our own students (at least not to a intolerable de-
gree) as already reported by other Universities (Ross,
2005), where even students of other countries have
been paid for submitting online solutions.

Automatic correction of exercises is also done by
some other tools used in other areas for teaching like
CalMæth (CalMæth, 2008). Clearly, there already
exist a lot of tutoring tools starting with small tools
for specific problems, e. g. JADE (Java Decision Dia-
gram Package) (JADE, 2003), and ending with com-
plex user interfaces for online learning that intent to

provide flexible support of questionnaires, e. g. Lec-
turnity and Dynamic Power Trainer from IMC (im-
c.de, 2008). Inspired by these tools and our goal men-
tioned above, we decided to implement a compact and
modular exercise system that is capable of

• creating individual exercises for each student to
get rid of copied solutions

• online (web-based) submission of the students’
solutions

• automatically checking the correctness of submit-
ted solutions with immediate feedback, e.g. by
counterexamples

• training tools to solve further exercises for prepar-
ing the final exam.

Concerning the latter point, we specify a maximal
number of trials for each exercise. If this number of
trials is exceeded, the sample solution is presented.

Note, that these tools are not intended to replace
the course or even the lecturer. Instead, these tools
are used to complement and guide the preparation for
the final exam by providing 24h a day the opportunity
for our students to train themselves on the required
exercises.

The remainder of this paper is structured as fol-
lows: Our group developed two independent tool sets
to achieve the mentioned goals. The first tool set is
named Online Exercise System (OnExSy) and is de-
scribed in the next chapter. This section is followed
by the description of the second tool set, which is
called Online Training Tools. Finally, we discuss the
results and experiences of these tools and close this
paper with a discussion of future enhancements.

2 ONLINE EXERCISE SYSTEM

The Online Exercise System (OnExSy) is a modular
system that consists of a user interface and a collec-
tion of programs, which are necessary to create ran-
domized exercises and to check provided solutions.
OnExSy is built of independent modules (single sub-
sequent tools). The modularity of OnExSy is one
of the main features, keeping the system manageable
and simplifying its extensibility for the future.

In the following, we describe OnExSy’s modules,
i.e., its user interface followed by a short description
of the underlying programs.

2.1 User Interface

The user interface is the main part of OnExSy that
provides the fundamental functions to run the sys-
tem and to connect it to the graphical user interface,

ONLINE EXERCISE SYSTEM - A Web-Based Tool for Administration and Automatic Correction of Exercises

105



W
e
b
b
ro

w
se

r

Student OnExSy
optional sam-
ple solution

Individual Exercises

Points

Submissions

Student’s Data

Cfg File

Scripts, e.g.

Online
Trainer Tools

Lecture dependant data

Location: Server

Login, solution

submission, ask

for results, . . .

exercises–,

submission–formulars

select according

to CGI Parameter

store submissions and

points and manage

individual exercises

to check the

students

solutions

Figure 1: An overview of our Online Exercise System.

i. e. the web browser, and to the server. The basic
functions implemented in the user interface are listed
below and will be explained later in more detail.

• Theregistration of studentsincluding a fairdistri-
bution to tutorials(if more than one date is avail-
able) with an external program.

• The system alsopublishes the group assignments
on a web page.

• It assigns new (individual) exercises to the stu-
dents.

• Furthermore, the user interface checks the correct-
ness of submitted solutions by external programs
and the stores the achieved points of the student in
a data base.

• Finally, it provides statistics of submitted solu-
tions and achieved points of the students which
can be seen by the tutors (for his class) or by the
student (for his account).

The user interface is based on an Apache web-
server(APA08, 2008). The system was written in
Moscow ML1, so that the system can be ported to dif-

1http://www.itu.dk/ sestoft/mosml.html

ferent platforms like Linux, Windows and MacOS.
The registration is necessary to get the students’

personal information like names and matriculation
numbers. If the lecture offers more than one date for
exercise lessons, the student has to choose three dif-
ferent dates with three priorities during the registra-
tion.

To give all students the same chance to get into
their preferred group, the final classification to the ex-
ercise lessons is done after the registration deadline
by an external program. This program tries to find a
satisfying classification, i.e. usually, the students can
be classified to their first or second selected exercise
lessons. The result of this classification is also dis-
played by the system.

Each lecture that offers exercises has a configu-
ration file that contains a description of its exercises.
This includes descriptions for all exercise sheets and
all exercises. A description for an exercise sheet can
have a link, e. g. to a PDF file, a description in HTML
or/and an arbitrary number of exercise descriptions.
Each exercise description consists of an optional link
or/and an HTML description and the description of
the solution checking script. The latter is simply given

CSEDU 2009 - International Conference on Computer Supported Education

106



as a command line. We will describe its functionality
later.

To access the correct data and the available func-
tions mentioned above, the user interface receives via
a CGI interface the parameters defining the lecture,
the semester and the function that has to be executed.
Additionally, one can define additional CGI parame-
ter, e. g. the language. However, in our implementa-
tion this parameter affects only the user interface, but
basically it is possible to select an exercise with the
specified language.

Of course, our system supports common exercises
that have to be made by all students. These exercises
can be put in a familiar way like publishing a link
to an electronic version of the exercise sheet or dis-
tributing a printed version. The students calculate the
results of the exercises as usual with paper and pencil
or specific tools like Hades (Hades, 2007) (a design
tool for digital circuits). Having calculated the results,
the students can submit them via a web page. They
just have to open the link on the corresponding page
of the exercise lesson. In particular, after the student
has opened the exercise site, he is asked for his name
and his matriculation number to login. These infor-
mations are necessary to be entered at the beginning
of the session to enable the assignment of individual
exercises.

Figure 2: After the login, OnExSy presents an overview of
all assignments.

After the login, the student sees an overview over
the exercise sheets and the exercises (see Figure 2).
After having selected an exercise, the submission
form is opened (see Figure 3). The next step is to
enter the calculated result (see Figure 4). After press-
ing the button for submission, the result is sent to our
server and is automatically checked. The next screen
shows whether the submitted result was correct (see
Figure 5). The result window also shows the output
of the solution checker, e. g. messages like ‘syntax er-
ror’, i.e. the submitted solution was given in a wrong
format, or as can be seen, a counterexample if a sub-
mitted solution was not correct.

Figure 3: The students select an exercise and get the assign-
ment. After having solved the exercise, the student enter
their solutions into a submission form.

The students do not have to submit all exercises
at once. They can even submit the solutions to parts
of an exercise one after the other (at different points
of time). If a solution is not correct, the student can
submit a modified solution. The number of trials can
be limited by the configuration program, but can also
be set to infinity. Furthermore, it is important to know
that all given solutions are stored and will not be over-
written by subsequent ones. In particular, correct sub-
missions will not be invalidated by incorrect or empty
ones.

ONLINE EXERCISE SYSTEM - A Web-Based Tool for Administration and Automatic Correction of Exercises

107



Figure 4: Students can also copy complete source code into
the submission form.

However, in the last semester, we experienced that
quite a lot of students reached nearly 100% of the
points of the online exercises, but nevertheless failed
in the final written exam. We believe that they copied
the solutions of other students, which is very simple
via email and other means of communication.

We reacted in two ways to this experience: First,
we reorganized the classical procedure of exercise
lessons. Instead of working out the sample solution of
the previous exercise sheet, we focus more on prepar-
ing the solution of the next exercise sheet. In particu-
lar, the tutors are instructed to give useful hints and -
most important - to clarify the exercises to avoid mis-
understandings.

Second, OnExSy supports individual exercises for
every student that are randomly generated. To this
end, we can assign a particular program for each sub-
mission form that generates an exercise. When the
user interface of OnExSy is instructed to dynamically
generate the submission form for the selected exer-
cise, it checks the configuration file for an exercise
generator program. If no task has been created for
the selected exercise, yet, the program is executed
and a task is created. The information about the task
is stored in the student’s directory that is located on
the server (see Figure 1). So he can go offline, work

Figure 5: The solution is checked and the result is re-
turned. In this case, the submitted solution was not correct
and the student gets a counterexample. Remark: if the an-
swer is correct and given within the determined deadline,
the achieved points are granted.

out the solution for the given task and whenever he
logs in again, he can submit the solution of the pre-
viously stored exercise. After the correct solution has
been submitted, or if the number of trials has been
exceeded and no correct solution has been submitted,
the generator program is called again and a new task
is created. Independent of the result, the sample so-
lution for the old task is given. Hence, we give the
students the opportunity to check and to compare their
solutions with a sample solution. Furthermore, we of-
fer to train a specific type of exercise arbitrarily often
without having any effort for the correction of these
solutions.

2.2 Programs

The solution programs and the generator programs
are independent of OnExSy’s user interface. Hence,
OnExSy is a flexible system with a solid user interface
that can be extended by arbitrary solution checker and
generator programs. The whole system can be ex-
tended to any kind of exercise that can be checked by
a computer. Clearly, every exercise that has a canoni-

CSEDU 2009 - International Conference on Computer Supported Education

108



cal solution can be automatically checked. However,
even though many correct solutions could exist, it is
still possible to check the correctness of these exer-
cises by means of formal verification tools. As an ex-
ample, we verified digital hardware circuits for com-
puter arithmetic that have been submitted by the stu-
dents.

Note that ‘verification’ does not mean ‘testing’.
Instead, verification of a program checks that the pro-
gram behaves according to the specification (given in
the exercise) for all possible input traces. Using state-
of-the-art verification tools based on symbolic model
checking (Burch et al., 1990), it is possible to explore
very large state spaces within some seconds, so that an
immediate feedback to the student can be given (the
circuits and programs required by the exercises are
small enough to allow this immediate response). In
our own research, we developed a synthesis and ver-
ification system (AVEREST, 2008) whose core tech-
niques are now also used for teaching. The use of
formal verification is a key feature of OnExSy that
enables both automatically checking the correctness
of solutions and the generation of counterexamples in
case a solution should be wrong.

A positive side effect of applying solution check-
ing programs to the students’ solutions is the equal
quality level for each student. While the correction by
persons may naturally differ between different tutors,
OnExSy provides a fair treatment for all students.

Figure 6: The Online Training Tool generated a BDD out of
an user-defined propositional formula.

Figure 7: The Online Training Tool generated an automaton
out of an user-defined description.

2.3 Online Training Tools

OnExSy is complemented with further training tools
that are not used to correct solutions to exercises, but
to allow our students to do some complex calculations
on their own. For example, these tools can be used
to calculate some normal forms like BDDs of a given
propositional formula (see Figure 6), to compute min-
imal disjunctive normal forms, to minimize finite state
machines (see Figure 7), etc.

The purpose of these tools is that the students can
explore themselves many special cases that can not all
be discussed within the course or the tutorial. More-
over, these tools are an important means for the final
preparations for the exams when the lecture time is
over.

3 CONCLUSIONS

We applied our OnExSy to the complete exercises of
‘Computer Systems 1& 2’. The correctness of all sub-
mitted solutions have been automatically checked by
the OnExSy alone without any further effort of our
tutors. After eliminating some initial software prob-
lems, the feedback of the students was mainly posi-
tive. Currently, we are using the OnExSy for two fur-
ther lectures that are also offered by our group. Due to
the topics of these lectures, more complex programs
are required for checking the correctness of the solu-
tions.

ONLINE EXERCISE SYSTEM - A Web-Based Tool for Administration and Automatic Correction of Exercises

109



We experienced another interesting effect: First,
we did not limit the number of trials for an exercise.
Due to this fact, some students tried toguess a solu-
tion instead of trying to solve the problem. One of
our students even tried 417 solutions for one exercise.
Obviously, he wrote a program that simply enumer-
ated all possibilities. The short time intervals of his
submissions noted by our system confirmed this sus-
picion. For this reason, a limitation of the number
of trials became necessary. It forces students to think
about a solution instead of starting a brute force sub-
mission of guesses.

The development of the programs for generating
individual exercises and for checking the correctness
of the solutions required a lot of work. The initial
effort of creating these programs often reaches and
sometimes exceeds the effort that would be necessary
to correct the exercises manually. However, this effort
will be clearly amortized in the near future, and also
leads to a better service for our students.

We intend to improve OnExSy by further features
like tools to generate more statistic analysis of the
submitted solutions. This gives our students individ-
ually information about their success, and moreover
helps us and our tutors to identify particular problems
more quickly than before. This allows us to imme-
diately react in the lecture and the tutorials to clarify
potential misunderstandings.

REFERENCES

APA08 (2008). Apache http server project.
http://www.apache.org/index.html.

AVEREST (2008). Averest - a framework for the speci-
fication, verification, and implementation of reactive
systems. http://www.averest.org/.

Burch, J., Clarke, E., Mcmillan, K., Dill, D., and Hwang,
L. (1990). Symbolic model checking: 1020 states and
beyond. InSymposium on Logic in Computer Science,
pages 1–33. IEEE Computer Society Press.

CalMæth (2008). Calmæth.
http://CalMaeth.maths.uwa.edu.au.

Hades (2007). Hades - interactive simulation
framework. http://tams-www.informatik.uni-
hamburg.de/applets/hades/webdemos/index.html.

im-c.de (2008). IMC AG: Learning management system.
http://www.im-c.de/.

JADE (2003). JADE: Java decision dia-
gram package. http://www.informatik.uni-
bremen.de/agra/doc/software/manual/index.html.

Ross, K. (2005). Academic dishonesty and the internet.
Communications of the ACM, 48(10):29–31.

CSEDU 2009 - International Conference on Computer Supported Education

110


