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Abstract: SPARQL is becoming an important query language for RDF data. Query optimization to speed up query 
processing has been an important research topic for all query languages. In order to optimize SPARQL 
queries, we suggest a core fragment of the SPARQL language, which we call the coreSPARQL language. 
coreSPARQL has the same expressive power as SPARQL, but eliminates redundant language constructs of 
SPARQL. SPARQL engines and optimization approaches will benefit from using coreSPARQL, because 
fewer cases need to be considered when processing coreSPARQL queries and the coreSPARQL syntax is 
machine-friendly. In this paper, we present an approach to automatically transforming SPARQL to 
coreSPARQL, and develop a set of rewriting rules to optimize coreSPRQL queries. Our experimental 
results show that our optimization of SPARQL speeds up RDF querying. 

1 INTRODUCTION 

The Semantic Web uses the Resource Description 
Framework (RDF) (Beckett, 2004) as its data format 
to describe information in the web. RDF provides a 
model and syntax for describing data, but it does not 
provide querying functionalities. A number of RDF 
querying languages have been developed, e.g. RQL, 
N3, Versa, SeRQL, Triple and RDQL. When (Haase 
et al., 2004.) compares these six languages, 
SPARQL (Prud’hommeaus and Seaborne, 2007) has 
not emerged. SPARQL was first proposed on 12th 
October 2004 and became an official W3C 
Recommendation on 15th January 2008. Many RDF 
stores support or plan to support SPARQL, e.g. Jena 
(Wilkinson et al., 2003) and Sesame (Broekstra et 
al., 2002). SPARQL becomes increasingly important 
as an RDF query language.  

The optimization of queries has been an active 
research topic for improving the performance of 
query processing. An important optimization 
technique is rewriting of queries. While query 
rewriting has been extensively studied in the 
relational databases and XML areas, there is no 
complete and thorough work on rewriting of 
SPARQL queries. Therefore, we focus on the 
rewriting and simplification of SPARQL queries. In 
this paper we develop a core fragment of the 
SPARQL language to simplify SPARQL, which we 
name coreSPARQL, and a set of rules to optimize 
coreSPARQL queries. 

SPARQL supports a large number of different 
language constructs, which brings flexibility of 
expressiveness, but also redundancy of expressions. 
For example, the three expressions of SPARQL in 
Figure 1 have the same semantics. Redundant 
expressive power increases the difficulties of query 
processing. It is also obvious that the syntax for 
Expression 1 is user-friendly, but Expression 3 is 
more easily to be interpreted by a machine. 

 
Expression 1 Expression 2 Expression 3 

(1 [?x 3]). []     rdf:first   1;  
       rdf:rest   _:b. 
_:b  rdf:first   [$x 3]; 
       rdf:rest   rdf:nil. 

_:b1    rdf:first   1. 
_:b1    rdf:rest    _:b2. 
_:b2    rdf:first    _:b3. 
_:b3    ?x           3. 
_:b2     rdf:rest   rdf:nil. 

Figure 1: Three SPARQL expressions with same 
semantics. 

In order to reduce the number of cases, which 
must be considered when processing SPARQL 
queries, and in order to make SPARQL queries more 
machine-processable, we suggest the coreSPARQL 
language, which is a core fragment of the SPARQL 
language. coreSPARQL posses the same expressive 
power as SPARQL,  but does not  contain  redundant  

 
 

This work is funded by the German Research Foundation 
(DFG) project GR 3435/1-1 LUPOSDATE. 

107Groppe J., Groppe S. and Kolbaum J. (2009).
OPTIMIZATION OF SPARQL BY USING CORESPARQL.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
107-112
DOI: 10.5220/0001983501070112
Copyright c© SciTePress



language constructs of SPARQL and only allows 
machine friendly syntax. We develop an approach, 
which automatically transforms SPARQL queries to 
coreSPARQL queries. 

SPARQL queries written by users or generated 
by applications are often un-optimized, and thus 
sub-optimal. Sub-optimal queries impact query 
processing performance. Based on coreSPARQL, we 
develop a set of simplification rules to rewrite 
coreSPARQL queries, and transform a sub-optimal 
query into an optimal query by eliminating 
redundant parts and optimizing sub-expressions. Our 
performance study shows that after our optimization, 
SPARQL can be processed more efficiently, and the 
transformation of SPARQL to coreSPARQL has a 
low overhead. Due to the limitation of space, we do 
not present our experiment results in this paper. 

Related Work. (Pérez et al., 2006) suggests several 
rules for rewriting AND, UNION and OPTIONAL 
expressions in SPARQL queries. The purpose of the 
rewriting is constructing a critical fragment of 
UNION-free graph pattern expressions for the study 
of evaluation complexity. 

(Bernstein et al., 2007), (Groppe et al., 2007a), 
(Broekstra et al., 2002) and (Groppe et al., 2009) 
reorder triple patterns in order to reduce the size of 
intermediate results. (Groppe et al., 2007a) pushes a 
filter expression upward if all the variables in the 
filter expression has already been bound. (Bernstein 
et al., 2007) reorders triple patterns according to 
their selectivity, which is estimated based on 
schemas. (Broekstra et al., 2002) and (Groppe et al., 
2009) both observe that the number of variables 
might impact the sizes of the intermediate resultant 
data. (Broekstra et al., 2002) reorders the triple 
patterns according to the number of variables, while 
(Groppe et al., 2009) considers the number of the 
new variables, which have not been bound so far, 
because the occurred variables are bound with the 
result of previous triple patterns. 

An amount of work contributes to the rewriting 
of relational algebra, and develops a number of 
equivalency rules (Arasu et al., 2006) (Chaudhuri, 
1998) (Ioannidis, 1996) (Jarke and Koch, 1984). 
Some of our and other equivalency rules for 
rewriting SPARQL queries are adapted from the 
equivalency rules for relational algebra, e.g. the 
rules for comparison operators. 

Several contributions are dedicated to the 
transformation of SPARQL queries to SQL queries, 
and the storage of RDF data in relational databases, 
and thus use proven database technologies, e.g. 
(Chong et al., 2005), (Chebotko et al., 2007) and 
(Cyganiak, 2005). 

(Groppe et al., 2007b), (Weiss et al., 2008) and 
(Groppe et al., 2009) suggest different indices for 
fast data access. (Groppe et al., 2009) develops a 
new approach to compute join of triple patterns by 
dynamically restricting triple patterns. 

2 RDF AND SPARQL 

Figure 2 presents an example of RDF data and of a 
SPARQL query.  

RDF data is a set of triples of the form Subject 
Predicate Object, which are RDF terms, e.g. IRIs, 
literals or blank nodes. Figure 2 provides an example 
of RDF data with 3 triples. SPARQL selects RDF 
data based on graph pattern matching, where the 
core component of SPARQL graph patterns is a set 
of triple patterns s p o. s p o corresponds to the 
subject (s), predicate (p) and object (o) of a RDF 
triple, but they can be variables as well as RDF 
terms. A triple pattern matches a subset of the RDF 
data, where the RDF terms in the triple pattern 
correspond to the ones in the RDF data. The query 
result of a triple pattern consists of pairs of variables 
with their bound values, i.e. corresponding RDF 
terms in the matched subset of the RDF data. The 
result of a set of triple patterns is the join of the 
result of each triple pattern. 

 
Book.rdf Book.sparql 

@prefix  ex:  <http://book/> 
 

ex:book1  ex:title    “XML”. 
ex:book2  ex:title    “Index”. 
ex:book2   ex:pages   90.  

prefix ex:  <http://book/> 
 

SELECT ?y, ?z 
WHERE { ?x  ex:title ?y.  
   ?x  ex:pages ?z.}  

Figure 2: RDF data and SPARQL query.  

The SPARQL query Book.sparql in Figure 2 
consists of the SELECT clause and the WHERE 
clause. The SELECT clause identifies the variables to 
appear in the query results, and the WHERE clause 
contains two triple patterns, which identify the 
constraints on RDF data. The triple pattern ?x ex:title 
?y matches the first two triples of Book.rdf, such that 
its result is {<?x=ex:book1, ?y=“XML”>, <?x=ex:book2, 
?y=“Index”>}. The triple pattern ?x ex:pages ?z 
matches the last triple of Book.rdf, such that the result 
is {<?x=ex:book2, ?z=90>}. The two triple patterns 
impose a join over the common variable ?x, such 
that the result of the two triple patterns is 
{<?x=ex:book2, ?y=“Index”, ?z=90>}. The final query 
result is {<?y=“Index”, ?z=90>}. 

SPARQL provides rich capabilities to select and 
filter data, and we refer the interested reader to 
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(Prud’hommeaus and Seaborne, 2007) for a 
complete description of SPARQL. 

3 CORESPARQL 

SPARQL allows redundant language constructs and 
supports abbreviated syntax. The redundancy brings 
the flexibility of expressiveness and abbreviations 
bring the simplification of expressions, but they do 
not increase the expressive power of the language. 
That a SPARQL query can be expressed in different 
forms increases the number of cases to be processed; 
the abbreviated syntaxes are not machine-friendly. 
In order to make SPARQL queries more machine-
processable, and to reduce the number of cases, 
which must be considered when processing 
SPARQL queries, we abstract a subset from the 
SPARQL language, and name the subset 
coreSPARQL. 

3.1 Defining coreSPARQL 

In Definition 1, we describe coreSPARQL in terms 
of the common and different properties with 
SPARQL. Figure 3 demonstrates several SPARQL 
and corresponding coreSPARQL components. 
 

component SPARQL coreSPARQL 

triple pattern 
 

s1   p1   o1; 
  p2   $x. 

s1   p1   o1. 
s1   p2   ?x. 

blank node [] [   p  o]. _:b   p   o. 

group graph pattern {  {s1 p1 o1} 
  s2 p2 o2. } 

{ s1 p1 o1. 
  s2 p2 o2. } 

&& operator Filter(A && B). Filter(A). 
Filter(B). 

Figure 3: SPARQL and corresponding coreSPARQL 
components. 

Definition 1 (coreSPARQL). coreSPARQL is a 
core fragment of SPARQL. A coreSPARQL query is 
also a SPARQL query. coreSPARQL has the same 
expressive power as SPARQL, but allows only 
machine-friendly syntax, and eliminates many 
redundant language constructs. Especially, in 
coreSPARQL, 
• all triple patterns are only in the form: s p o.; 
• a group graph pattern cannot directly nest 

another group graph pattern; 
• variable names start only with ?; 
• blank nodes [] are not allowed; 
• RDF collections of the form (…) are not 

allowed; 

• neither prefixed IRIs nor IRIs, which are relative 
to a BASE-declaration, are allowed. 

• the keyword a is not allowed; 
• the && operator is not allowed.    � 

3.2 Transforming SPARQL to 
CORESPARQL 

SPARQL provides user-friendly syntax to write 
RDF queries, and coreSPARQL queries are easy to 
program. Therefore, the next task for us is to find a 
way to automatically transform SPARQL queries to 
coreSPARQL queries. We develop a set of 
transformation rules, such that a SPARQL query can 
be transformed into a coreSPARQL query by 
recursive application of these rules, i.e. if the 
expression of a left-hand side of a rule occurs in a 
SPARQL query, it is replaced with the right-hand 
side of the rule.  

We use the following notation to describe these 
rules: we write s (s1, s2,…), p (p1, p2, …), o (o1, o2,…) 
for the subject, predicate, and object of a triple 
pattern, os (os1, os2, …) for a list of objects, e.g. os = 
o1, o2, o3, …, om, where m≥1, and pos (pos1, pos2, …) 
for predicate-object-lists, e.g., pos=p1 os1; p2 os2; …; 
pm osm, where m≥1. A blank node [ ] is replaced by a 
blank node label, e.g. _:b, where b must be not used 
elsewhere in the query. Note that some patterns in 
the following rules may be not supported by 
SPARQL. Such patterns are intermediate results of 
the transformation, and will be translated to standard 
language constructs after the transformation. 

 

• Rule 1: eliminating Object-Lists: 
1.1  s1 p1 o1, os. => s1 p1 o1. s1  p1  os. 

 

• Rule 2: eliminating Predicate-Object-Lists:   
2.1  s1 p1 os1; pos.  =>  s1 p1 os1.  s1  pos. 

 

• Rule 3: eliminating blank nodes []. 
3.1  []  =>   _:b 
3.2  [ pos ].   => _:b  pos. 
3.3  [ pos ]  p1  os1. => _:b  pos.  _:b  p1 os1. 
3.4  s1  p1  [ pos ]. => s1  p1 _:b.  _:b  pos. 

 

• Rule 4: eliminating RDF collections ( ), where e 
(e1, e2,..) is an element of the collection, i.e. a 
variable, a literal, a blank node, or a collection. 
Here, we introduce a variant of the collection, e.g. 
(e)s=_:b. to restrict that the blank node, which is 
allocated for the collection (e), must be _:b. 

4.1  (e)  pos. => _:b  rdf:first   e.  
   _:b   rdf:rest  rdf:nil.  
   _:b  pos. 

4.2  (e).  => _:b   rdf:first  e.   _:b  rdf:rest   rdf:nil. 
4.3  (e1 e2 e3…).  =>  _:b   rdf:first   e1.  

_:b  rdf:rest  (e2 e3…). 
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4.4  s p (e1 e2 ...). => s  p  _:b.   (e1 e2 ...)s=_:b. 
4.5  (e1 e2…)s=_:b.  => _:b   rdf:first   e1.  

_:b   rdf:rest   (e2…). 
4.6  (e)s=_:b.  =>  _:b  rdf:first  e.  _:b  rdf:rest  rdf:nil. 
4.6  ()   =>  rdf:nil   

 

• Rule 5: eliminate the keywork a:  
5.1  a    =>   rdf:type 

 

• Rule 6: eliminate directly nested group graph 
patterns  

6.1  { {A} …}  =>   { A …},  
where {A} is not a part of a OPTIONAL, or a  
UNION, or a GRAPH graph pattern; A does not 
consist of only Filter expressions either. 

 

6.2  { {Filter(e).} … }  
       { Filter(true) …},   if the result of the static  
=>             analysis of e is true. 

 { Filter(false)…},    if the result of the static  
             analysis of e is false or a  
             type error. 
 

For example, the expression 10>1 is statically 
analyzed to true, and thus {Filter(10>1)).} = Filter(true)..  
In the group graph pattern {Filter(bound(?x)).}, the 
variable x will never be bound. Therefore, the static 
analysis of bound(?x) detects a type error, and thus 
{Filter(bound(?x)).} = Filter(false).. For the details on the 
static analysis and type errors, see Section 11.2 
Filter Evaluation in the SPARQL specification 
(Prud’hommeaux and Seaborne, 2007). 

 

• Rule 7: eliminating && operator, where A, B and 
C are conditional expressions. 

7.1  Filter(A && B).  =>  Filter(A). Filter(B). 
7.2   (A && B) || C  =>  (A || C) && (A ||C). 
7.3     !(A  ||   B)  =>  !A && !B 
7.4     !(A && B)  =>  !A || !B 

 

• Rule 8: eliminating prefixes and BASE 
declarations. 

8.1      p:a   =>   <prefix(p) a>,  
where prefix(p) is a function to resolve the 

prefixed IRI p:a according to defined PREFIX and 
BASE declarations. The PREFIX and BASE 
declarations are deleted in the coreSPARQL query. 

Example 1. Using this example, we demonstrate 
how to transform a SPARQL expression t1 = (1 [ p 
o1] (2)). into the corresponding coreSPARQL 
expression by recursively applying the rules above. 

 

1. Applying Rule 4.3 on t1: t1 => t2. t3.: 
_:b1  rdf:first  1.                 (t2) 
_:b1  rdf:rest  ([ p o1] (2)).          (t3) 
 

2. Applying Rule 4.4 on t3: t3 => t4. t5. 
_:b1  rdf:rest  _:b2.               (t4) 
([ p o1]  (2))s=_:b2.                (t5) 

 

3. Applying Rule 4.5 on t5: t5=> t6. t7. 
_:b2  rdf:first  [ p o1].             (t6) 
_:b2    rdf:rest    ((2)).             (t7) 

 

4. Applying Rule 3.4 on t6: t6 => t8. t9.  
_:b2    rdf:first  _:b3.             (t8) 

        _:b3  p      o1.              (t9) 
 

5. Applying Rule 4.4 on t7: t7 => t10. t11. 
 _:b2  rdf:rest  _:b4.             (t10) 
 ((2))s=_:b4.                    (t11) 

 

6. Applying Rule 4.6 on t11: t11 => t12. t13.: 
_:b4  rdf:first    (2).              (t12) 
_:b4    rdf:rest    rdf:nil.            (t13) 

 

7. Applying Rule 4.4 on t12: t12 => t14. t15.: 
_:b4     rdf:first  _:b5.             (t14) 
(2)s=_:b5.                    (t15) 

 

8. Applying Rule 4.6 on t15: t5 => t16. t17.: 
_:b5  rdf:first  2.               (t16) 
_:b5     rdf:rest  rdf:nil.            (t17) 

 

The result of transformation consists of the triple 
patterns t2, t4, t8, t9, t10, t13, t14, t16 and t17. 

 

Note that there are further redundancies, which 
we allow in coreSPARQL, as they can be processed 
in a machine-friendly way. For example, the 
wildcard * in SELECT [ DISTINCT | REDUCED ] * and  
DESCRIBE *, can be replaced by the concrete 
variables in triple patterns. REDUCED keyword can 
be replaced by DISTINCT or can be deleted. Any 
operations on constants can be replaced by the result 
of their applications.  

4 REWRITING CORESPARQL 
QUERIES  

While the coreSPARQL query does not contain 
redundant language constructs, a coreSPARQL 
query may not be optimal, e.g. containing redundant 
constraints. For example, if we have two constraints 
bound(?x). Filter(?x=1). in a SPARQL query, then the 
constraint bound(?x) is redundant: bound(?x) requires 
that the variable x is bound with a value, and 
Filter(?x=1) implies that x is bound to the value 1. The 
reason for sub-optimal SPARQL queries is that 
queries written by users or generated in applications 
are often non-optimized. The sub-optimal queries 
impact significantly query processing performance. 

As well as being sub-optimal, queries are also 
possibly unsatisfiable. A query is unsatisfiable if the 
query selects the empty result for any RDF data. 
Therefore, if we can detect that a query is 
unsatisfiable, we can avoid the submission and 
evaluation of the unsatisfiable query, and thus save 
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processing time and query cost. A query is 
unsatisfiable, if it contains conflicting constraints. 
For example, two constraints IsIRI(?x) and Filter(?x = 
“http:://example.com”) contradict each other: IsIRI(?x) 
requires that ?x is an IRI, but Filter(?x = 
“http:://example.com”) requires that ?x is a string. 

In order to optimize queries and improve the 
evaluation performance, we develop a set of 
equivalency rules to detect conflicting and redundant 
constraints. By recursive application of these rules, a 
coreSPARQL query can be optimized to a more 
simple expression, or even to an empty expression, 
i.e. the query is unsatisfiable. 
We use the rewriting rules in  

Table 1 to simplify coreSPARQL queries, where 
C (C1, C2, …) represents a literal, G a graph pattern or 
the query pattern, i.e. the outer-most graph pattern, 
and E (E1, E2,…) an expression. Additionally, we 
introduce a new graph pattern: void graph pattern, 
denoted by ⊥. Contrary to the empty group pattern {} 
in SPARQL, which matches any RDF graph, a void 
graph pattern ⊥ does not match any RDF graph. If a 
SPARQL query is simplified to the void graph 
pattern, the query is unsatisfiable. Note that ⊥ is an 
intermediate result during simplification, and any 
satisfiable SPARQL expressions will not contain ⊥ 
after optimization. 

5    CONCLUSIONS 

We suggest the coreSPARQL language, which is a 
core fragment of SPARQL, but has the same 
expressiveness as SPARQL. Optimization 
approaches, SPARQL engines and all applications, 
which process SPARQL queries, benefit from 
coreSPARQL, because coreSPARQL posses 
machine-friendly syntax and thus is easy to program, 
contains less language constructs and thus reduces 
the number of cases to be considered. 

We develop a set of transformation rules to 
translate SPARQL queries to coreSPARQL queries, 
and a set of rewriting rules to further optimize 
coreSPARQL queries. We develop a prototype of 
our approach, which shows that our optimization 
speeds up SPARQL query processing. 
 

Table 1: Rewriting rules for optimizing coreSPARQL 
queries. 

Eliminating the same components: 
• G G => G 

Constant propagation: 
 

• Filter(?x=C). Filter(…?x…). => 
     Filter(?x=C). Filter(…C…).,  
    if ?x is not the parameter of a bound function. 

 

E.g. Filter(?x=10). Filter(?x>5). => 
         Filter(?x=10). Filter(10>5). 
E.g. Filter(?x=“work”). Filter(Lang(?x)=“EN”)). => 
         Filter(Lang(“work”) = “EN”). 

Variable binding: 
• Filter(bound(?x)). Filter(…?x…). => Filter(…?x…).,  
     if ?x of Filter(…?x…) is neither a parameter of a      
     bound function nor inside an operand of  ||. 

 

• Filter(!bound(?x)). Filter(…?x…). => ⊥, 
     if ?x of Filter(…?x…) is neither a parameter of a    
     bound function nor inside an operand of ||. 

 

E.g. Filter(bound(?x)). Filter(?x>10). => Filter(?x>10). 
E.g. Filter(!bound(?x)). Filter(?x=“red”). => ⊥ 

 

Functions IsIRI, IsBlank, IsLiteral: 
 

• IsIRI(C) =>      true, if C is an IRI; 
                            false, if C is  not aIRI. 

 

E.g. IsIRI(<mailto:alice@work.example>) => true 
E.g. IsIRI(“mailto:alice@work.example”) => false 

 

The rules for the functions IsURI, IsBlank, IsLiteral are analogous to 
this one. 

Funtions LangMatches, Regex: 
• LangMatches(C, L) => 

 

         true,   if C matches L; 
         false,  if C does not match L  

 

E.g. LangMatches(“work@EN”, “EN”) => true  
E.g. LangMatches(“work”, “EN”) => false 

 

The rules for the function Regex are analogous to this one 
 

Function Lang: 
• Lang(C1@C2) => C2 

 

E.g. Lang(“work”@EN) => “EN”  

Function Filter: 
• Filter(false). => ⊥   • Filter(true). => {} 

 

• C1 op C2 =>      
   

               true,  if C1 op C2 = true; 
      false, if C1 op C2 = false; 

 

E.g. Filter(1>10). => Filter(false). => ⊥ 
 

Elimination of ⊥ and {} 
• G Optional ⊥ => G         •   G Optional { } => G 

 

• G UNION { } => G          •   G UNION ⊥ => G 
 

• G {}  => G                       •   G ⊥ => ⊥ 
 

• G Graph n { } => G,        •   Graph n ⊥ => ⊥ 
where n is a variable or an IRI 
E.g.  Graph ?g ⊥ => ⊥    
E.g.   {s p o} ⊥ => ⊥ 

 
 
 

OPTIMIZATION OF SPARQL BY USING CORESPARQL

111



 
 
 

 
 
 

Table 1: Rewriting rules for optimizing coreSPARQL queries (cont.). 

Comparison operators: 
 

• FILTER(?x op1 C1). FILTER(?x op2 C2).  => 
 

     FILTER(?x op1 C1).,   if ((op1=op2 ∧ (C1 op1 C2)  ∧ op1∈{<, <=, >=, >}) ∨ ((C1 op1 C2) ∧ C1≠C2 ∧  
                                             (op1, op2∈{<, <=} ∨ op1, op2∈{>=, >})) ∨ (C1=C2 ∧ ((op1=‘<’ ∧ op2=‘<=’) ∨  
                                             (op1= ‘>’ ∧ op2= ‘>=’)))) 

 

     FILTER(?x op2 C2).,  if ((op1=op2 ∧ (C2 op1 C1) ∧ op1∈{<, <=, >=, >}) ∨ ((C2 op2 C1) ∧ C1≠C2 ∧  
                                             (op1, op2∈{<, <=} ∨ op1, op2 ∈ {>=, >})) ∨ (C1=C2 ∧ ((op2=‘<’ ∧ op1=‘<=’) ∨  
                                             (op2= ‘>’ ∧ op1= ‘>=’))))  

 

     FILTER(false).,          if ((C1>C2 ∧ op1∈{>, >=} ∧ op2∈{<, <=} ) ∨ (C1<C2 ∧ op1∈{<, <=} ∧ op2∈{ >, >=}) ∨    
                                             (C1=C2 ∧ op1≠op2 ∧ (op1, op2∈{=, !=} ∨ op1, op2∈{<,>})))  

 

      FILTER(?x op1 C1). FILTER(?x op2 C2)., otherwise. 
 

E.g. Filter(?x>10). Filter(?x>30). => Filter(?x>30).;  Filter(?x>30). Filter(?x<10). => Filter(false). 

Operators ||, ! and ¬ 
 

• E || true => true            •   false || false => false           •   E || E => E         •    !(A1 op A2)  => A1 ¬(op) A2 
 

• ?x op1 C1 || ?x op2 C2 => 
 

     ?x op1 c1,   if ((op1=op2 ∧ (C2 op1 C1) ∧ op1∈ {<, <=, >, >=}) ∨ ((C2 op1 C1) ∧ C1≠C2 ∧ (op1, op2∈{<, <=} ∨  
                              op1, op2∈{>=, >})) ∨ (C1=C2 ∧ ((op1=‘<=’ ∧ op2=‘<’) ∨ (op1=‘>=’ ∧ op2=‘>’)))  

 

     ?x op2 C2,   if ((op1=op2 ∧ (C1 op1 C2) ∧ op1∈{<, <=, >, >=}) ∨ ((C1 op2 C2) ∧ c1≠c2 ∧ (op1, op2∈{<, <=} ∨  
                              op1, op2∈{>=, >})) ∨ (C1=C2 ∧ ((op2=‘<=’ ∧ op1=‘<’) ∨ (op2= ‘>=’ ∧ op1=‘>’))))  

 

     Bound(?x) ,  if (op1=¬(op2) ∧ C1=C2),  
 

     ?x op1 C1 || ?x op2 C2, otherwise 
 

• ¬(=)  =>  !=       •  ¬(!=)  =>  =      •  ¬(<)  =>  >=       •  ¬(<=)  =>  >      •  ¬(>)  =>  <=       •  ¬(>=)  =>  < 
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