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Abstract: Recently, Federated Data Warehouses – collections of autonomous and heterogeneous Data Marts – have be-
come increasingly attractive as they enable the exchange of business information across organization bound-
aries. The advantage of federated architectures is that users may access the global, mediated schema with
OLAP applications, while the Data Marts need not be changed and retain full autonomy. Although the un-
derlying concepts are mature, tool support for Federated DWs has been poor so far. This paper presents the
prototype of the “FedDW” Query Tool that supports distributed query processing in federations of ROLAP
Data Marts. It acts as middleware component that reformulates user queries according to semantic correspon-
dences between the autonomous Data Marts. We explain FedDW’s architecture, demonstrate a use-case and
explain our implementation. We regard our proof-of-concept prototype as a first step towards the development
of industrial strength query tools for DW federations.

1 INTRODUCTION

Data Warehouses (DWs) are complex and very large
databases optimized for the support of analytical de-
cision making. Typically, a DW collects and consoli-
dates all data in the scope of the enterprise from dis-
parate sources. More specific data repositories, called
Data Marts, may be derived from the DW to deliver
some subset of data to particular user groups (Inmon,
2005). The integration of DW systems often becomes
necessary due to business cooperations or mergers
and acquisitions between large-scaled companies.

Federated Data Warehouses(FDWs) are data in-
tegration systems, allowing transparent access to the
heterogeneous schemas of autonomous Data Marts.
Such systems provide a global, “mediated” schema by
storing semantic correspondences – calledmatches–
among the source schemas. At query time, the FDW
uses the matches to rewrite user queries.

Schema integration is the necessary prerequisite
for data integration systems to work. The two chal-
lenges of schema integration areschema matching
anddata matching. The former means finding corre-
spondences among elements of autonomous schemas
– e.g., their attributes – whereas the latter aims at

identifying the real-world entities referred to by the
tuples (Doan and Halevy, 2005).

For example, consider the telecommunications
market and assume that two competing mobile net-
work providers – we call them “Red” and “Blue” –
have agreed upon sharing their DW data for strategic
decision making. This cooperation offers advantages
to both partners since the knowledge base for their
strategic business decisions broadens beyond the orig-
inal organizational boundaries. Therefore, it becomes
much easier for the two providers to analyze questions
such as “How much was last year’s turnover, grouped
by month and product?”, or “Which service plans are
most popular among 21–30 year old customers?”, etc.

Despite its obvious benefits from the business per-
spective, the integration of autonomous Data Ware-
houses is difficult and laborious for both, technical
and organizational reasons. Technically, numerous
heterogeneities among the schemas and data need to
be resolved. From the organizational viewpoint, DW
access is often restricted to ensure the privacy of con-
fidential data. Thus, the complete physical combina-
tion of the autonomous DWs – which would be the
easiest solution – is often impractical, especially for
large-scaled systems. Such a situation commonly oc-
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curs in practice, sometimes even among the divisions
of a single company (Kimball, 2002).

In our example, Red and Blue decide to share
their Data Marts about phone connections (Figs. 1 and
2). Since both companies have developed their DW
schemas independently, numerous heterogeneities ex-
ist among the two Data Marts, although they represent
the same application domain. Obviously both fact ta-
bles can only be unified after some previous transfor-
mations of their schemas and their data. For example,
Red has modelled two measures,tn tel and tn misc
for turnovers generated with telephony and miscel-
laneous services, respectively (Fig. 1), whereas Blue
has chosen a single measure namedturnover (Fig. 2).
Section 4 will detail the two example Data Marts and
demonstrate our approach to the integration problem.

Figure 1: Fact and dimension tables of company “Red”.

Assuming that Red’s management wants to access
the integrated view on Blue’s and its own data as soon
as possible, current DW approaches fall short. Due to
the autonomy of both companies, the two“connec-
tions” Data Marts cannot be physically integrated un-
less Red and Blue would create a common central au-
thority. As the review of related work indicates (see
Section 2), there is need for approaches and tools ca-
pable of DW integration on the logical schema level.

Our previous work has studied Data Mart inte-
gration from the conceptual perspective. We intro-
duced theDimension AlgebraandFact Algebrawith
conversion operators for multi-dimensional schemas
and data, addressing all heterogeneities identified in
(Berger and Schrefl, 2006). Mappings formulated
with these operators overcome structural and data het-

erogeneity among the logical schemas of autonomous
Data Marts (Berger and Schrefl, 2008).

In this paper we present the prototype ofFedDW,
a Query Tool for federations of ROLAP Data Marts.
The tool allows its users to match autonomous Data
Marts withSQL-MDistatements – that implement the
Dimension Algebra and Fact Algebra operators – and
formulate SQL queries over the global schema. When
evaluating end user queries, FedDW generates a query
plan over the local Data Marts from the operator tree.

The main contribution of our paper is the proof-of-
concept implementation of a query tool for Data Mart
federations. To the best of our knowledge, FedDW
is the first query tool that combines query answering
in federated systems with multi-dimensional data in-
tegration. Our prototype represents a useful first step
towards the development of industrial strength query
tools for Federated Data Warehouses.

The paper is structured as follows. Sect. 2 reviews
previous approaches of DW integration. In Sections 3
and 4 we summarize FedDW’s functionality and illus-
trate its use, while Section 5 sketches the tool’s imple-
mentation. Finally, Section 6 concludes the paper.

2 STATE OF THE ART

Integration of heterogeneous data has been a ma-
jor challenge for the database community over the
past decades (Halevy et al., 2006; Doan and Halevy,
2005). Lately, the more sophisticated problem of Data
Warehouse integration has drawn the attention of re-
searchers. In the following subsections we briefly re-
view previous effort made in these directions.

2.1 Multi-system Query Languages

The first approaches towards interoperability of het-
erogeneous databases have developedmulti-database
query languages. Multi-database systems are
“lightweight” federations without a global schema. In
these systems, the user is responsible for matching
the heterogeneities among data when formulating the
query.

Multi-database languages extend standard query
languages with conflict resolution features for schema
and data heterogeneity. The most useful approach
for the Data Warehousing area is nD-SQL. The nD-
SQL language introduces powerful schema trans-
formations – e.g., variables ranging over attribute
names and other meta-data – and even supports multi-
dimensional data (Gingras and Lakshmanan, 1998).
Aggregation hierarchies in dimensions cannot be rep-
resented, though, which seems too restrictive in most
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Figure 2: Fact and dimension tables of company “Blue”.

practical scenarios. Other prominent examples of
multi-database languages are Schema-SQL (Laksh-
manan et al., 2001) and MSQL (Grant et al., 1993).

Only few approaches have addressed extensions
of standard SQL for OLAP applications in distributed
Data Warehouses. For example, SQLM formally de-
fines an OLAP data model and introduces a set of
transformation operators. The SQLM language sup-
ports irregular hierarchies in dimensions of stand-
alone Data Warehouses – e.g., multiple aggregation
paths. Although the approach allows the user to in-
clude additional XML data extending the query scope,
SQLM does not support matches between multiple
Data Mart schemas (Pedersen et al., 2002).

In contrast, the SQL-MDi language allows OLAP
queries across several autonomous Data Marts.
SQL-MDi introduces sets of conversion operators
that resolve heterogeneities among multi-dimensional
schemas and data, including aggregation hierarchies
(Berger and Schrefl, 2006). At query time, the FDW
uses the conversion operators to translate distributed
data to the global schema, and it computes the query
result from the virtual global cube. The semantics
of SQL-MDi has been formally defined with the so-
called Dimension Algebra and Fact Algebra, that are
based upon closed set operations like the Relational
Algebra (Berger and Schrefl, 2008).

2.2 Integration of Data Warehouses

Data Warehouse integration is complex because
their schemas conform to the multi-dimensional data
model. This means that so-called “data cubes” store
factsin measure attributes that are categorized by the
attributes of severaldimensions. The dimensions,
in turn, may be organized in hierarchies of aggrega-
tion levels. Thus, matchings of multi-dimensional
schemas have to consider (1) the attributes in facts
and dimensions, (2) the dependencies between facts
and dimensions, and (3) the aggregation hierarchies.

Dimension integration – a sub-problem of multi-
dimensional data integration – has been addressed by
some recent projects. For example, “DaWaII” is a
visual tool that allows the user to specify mappings
between dimensions and check their compatibility
(Cabibbo and Torlone, 2005; Torlone and Panella,
2005). In order to automatically discover semantic
matches among dimension schemas, the approach of
(Banek et al., 2007) combines structural schema com-
parison with linguistic heuristics.

In contrast, fact integration has not received much
attention yet. Although integration techniques devel-
oped for databases – e.g., (Zhao and Ram, 2007) –
probably also apply for Data Warehousing, the au-
tomatic discovery of matches between facts of au-
tonomous Data Marts remain an open research prob-
lem. Thus, the facts of multi-dimensional schemas
still have to be matched manually.

In order to reduce complexity, the integration of
multi-dimensional data should concentrate on Data
Marts instead of complete DWs. Some previous ap-
proaches have proposed loosely coupled Data Mart
federations without a global schema. For example,
(Mangisengi et al., 2003) define an XML-based query
language which allows the ad-hoc integration of Data
Marts. The XML layer of their approach exchanges
meta-data between autonomous schemas and supports
some simple transformation of the data. In contrast,
(Abelló et al., 2002) define relationships based on
structural similarity between Data Marts that enable
drill-across queries. Clearly, the disadvantage of such
systems is that the user is responsible for repairing all
conflicts within the query.

Federations of Data Marts with a mediated global
schema – calledFederated Data Warehouses– are the
ideal solution from the user’s point of view. Such
an architecture hides schema and data heterogene-
ity while the participating Data Marts remain au-
tonomous. The FDW manages the mappings between
the global and local schemas, which allows the refor-
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mulation of user queries and translation of the query
results (Berger and Schrefl, 2008). The federated ap-
proach isolates the global schema from changes in the
Data Marts. Should the autonomous schemas evolve,
the global schema remains valid – only the outdated
mappings must be changed accordingly.

Algorithms for query processing in Distributed
DWs have brought interesting findings that are also
relevant for Federated DWs. In particular, two ap-
proaches named Skalla (Akinde et al., 2003) and
DWS-AQA (Bernardino et al., 2002) have indepen-
dently introduced the idea of globally replicating con-
solidated dimensions. The experiments conducted in
both these approaches indicate that replicated dimen-
sions improve the overall response time of queries
against the global schema. Query answering in such
settings is reduced to the retrieval of facts because all
dimension data is globally available.

3 FedDW ARCHITECTURE

“FedDW” is the prototype of a query tool for Feder-
ated Data Warehouse systems, as depicted in Fig. 3.
In this architecture, the query tool acts asmediator:
FedDW receives user queries that are formulated over
the global schema and rewrites each query to a set of
queries against the local Data Marts. Finally, the tool
translates the distributed data into the virtual global
cube from which it computes the query result.

FDW systems conforming to the architecture de-
picted above are tightly coupled data integration sys-
tems with the global schema defined over several au-
tonomous Data Marts. In this reference architecture,
the users access the global schema with OLAP query
tools. The intermediatefederation layerstores the se-
mantic matches between the import schemas of the
Data Marts and the global schema, using acanoni-
cal data model. So-called wrappers manage the com-
munication between the federation layer and the Data
Marts since they send the reformulated queries and
ship back the answers (Berger and Schrefl, 2008).

FedDW encapsulates the core functionality of the
Federated Data Warehouse system. It manages data
translation between the autonomous Data Marts and
the global schema, according to the semantic matches
formulated in the SQL-MDi language. Internally, the
FedDW tool expresses the semantic matches as se-
quences of Dimension Algebra and Fact Algebra op-
erators (Berger and Schrefl, 2008). User queries are
answered over the virtual global cube which FedDW
computes from the autonomous Data Marts, as speci-
fied by the matching operators. Accordingly, the tool
consists of two components: theSQL-MDi parserand

Figure 3: Federated Data Warehouse Architecture.

SQL-MDi processor(Rossgatterer, 2008).
Two auxiliary components, theMeta-data Dictio-

nary and theDimension Repository, complement the
functionality of the FDW. The former improves the
usability of the system because it not only keeps track
of the import schemas for each autonomous Data
Mart, but it also saves the semantic matches persis-
tently. The latter increases performance of user query
answering by providing local copies of the dimen-
sions in the Data Marts, as proven by the experiments
of (Bernardino et al., 2002; Akinde et al., 2003).

TheVisual Integration Tool (VIT), which assists in
populating the Meta-data Dictionary, is an important
supplementary utility in the FDW architecture (cf.
Figure 3). The VIT allows the user to define semantic
matches between Data Marts and the global schema
using UML-based diagrams, and store the matches
persistently as SQL-MDi statements. At query time,
the FedDW tool automatically retrieves the SQL-MDi
code of the matches from the Meta-data Dictionary.
The FedDW user may concentrate on OLAP query-
ing without having to bother about conflict resolution.
Thus, the usability of FedDW improves considerably.

Currently, the FedDW Query Tool prototype of-
fers the following functionality:

• FedDW’s user interface accepts an SQL-MDi
statement and an OLAP query – formulated
in SQL – as input. The SQL-MDi statement
resolves conflicts among the autonomous Data
Marts by specifying a global schema and match-
ing it against the Data Mart schemas. In turn, the
SQL OLAP query formulates the user’s business
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question over the virtual global cube, that adheres
to the global schema (Figure 4 gives an example).

• On execution of the query, the prototype computes
the virtual global cube as instance of the global
schema. It then translates all local data as spec-
ified by the semantic matches in the SQL-MDi
statement, and executes the SQL query. The user
interface displays the current progress of query
processing (see Figure 4).

• Finally, the query result pops up in an additional
window that allows to drill into the details – facts
and dimensions – of the virtual global cube (see
Figure 5). In OLAP terminology, such operations
are denoted asdrill through.

Figure 4: FedDW prototype: Graphical User Interface.

In the next Section we will explain the conflict res-
olution features of FedDW in detail.

4 USE CASE TOUR OF FedDW

Let us now assume that the management of mobile
network provider Red decides to integrate its sales
Data Mart with Blue’s under a federation. The fact
and dimension tables of Red and Blue are shown in
Figs. 1 and 2, respectively. In particular, the two Data
Mart schemas are briefly characterized as follows:

• Provider “Red” stores the data of turnover within
the measuresduration, tn tel andtn misc, catego-
rized by the dimensionsdate, customer andprod-

Figure 5: FedDW prototype: View Results.

ucts (see Figure 1). The aggregation levels of the
dimensions are given in brackets. As monetary
unit for the measures Red’s schema uses Euros.

• “Blue” stores its turnover data within the mea-
suresduration and turnover, structured by the di-
mensionsdate, customer, product, promotion and
category (see Figure 2). Again, the aggregation
levels of these dimensions are given in brackets.
Blue’s schema uses US-Dollars as monetary unit.

FedDW supports numerous strategies for resolv-
ing heterogeneities among the facts and dimensions
of autonomous Data Marts. Tables 1 and 2 list the
conflicts identified in (Berger and Schrefl, 2006) and
describe the corresponding resolution techniques em-
ployed in FedDW. The two tables also map the reso-
lution techniques to the relevant SQL-MDi operators.

Using FedDW, the Data Marts of Red and Blue
may be integrated with the SQL-MDi code listed in
Figure 6. This statement matches the local facts and
dimensions with the global schema, which is very
similar to Red’s schema. Figure 7 depicts the fact
table of the virtual global cube, as specified by the
sample SQL-MDi statement. For brevity, the figure
omits the global dimension tables (exceptcustomer).

The SQL-MDi language uses three main clauses
for defining the global schema and semantic matches:
(1) DEFINE [GLOBAL] CUBE, (2)MERGE DIMENSIONS,
and (3)MERGE CUBES. TheCUBE clauses specify the
attribute structure of both the virtual global cube and
the import schemas of the autonomous Data Marts.
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Table 1: Conflict resolution strategies of FedDW for facts, and corresponding language support.

Conflict addressed Resolution technique Relevant SQL-MDi clause of FedDW
– Import fact table (“cube”) CUBE operator

Example: see lines 1, 5, and 13 in Figure 6
Dimensionality conflicts Import dimension attributesDIM keyword

(Number ofDIM references determine cube dimensionality) Example: see lines 2, 7, 9, and 11 in Figure 6
Overlapping / disjoint measures Import measure attributes MEASURE keyword

Example: see lines 2, 6, and 7 in Figure 6

Naming conflicts (measures
and dimension attributes)

Rename attributes Operator “–>”; Examples (cf. Figure 6):
line 6 (measure attribute)
line 9 (dimension attribute)

Schema-instance conflicts Merge measures PIVOT MEASURES ... INTO clause ofCUBE
(Converts fact context into members of a new dimension) Example: see line 3 in Figure 6

Schema-instance conflicts Split measures PIVOT MEASURE ... BASED ON clause ofCUBE
(Generates “contextualized facts” from dimension members) (Not used in sample query.)

Heterogeneous base levels Roll-up dimension attributesROLLUP clause ofCUBE
(Corrects domain conflicts among dimension attributes) Example: see line 4 in Figure 6

Domain conflicts (measures) Convert measure domains CONVERT MEASURES APPLY ... clause ofCUBE
Example: see line 12 in Figure 6

Overlapping cube cells
(fact table extensions)

Join fact tables (“cubes”) MERGE CUBES ... [set-operation]
Example: see line 23 in Figure 6

Overlapping cube cells Aggregate measure values
AGGREGATE MEASURE clause of MERGE
CUBES operator

Example: see line 24 in Figure 6

For each dimension of the global schema theMERGE

DIMENSIONS clause defines its members and hierar-
chy from the imported dimensions. Analogously, the
MERGE CUBES clause determines how to compute the
cells of the global cube from the imported facts.

Within each of its main clauses SQL-MDi de-
fines a number of operators to repair heterogeneous
schemas and instances of facts and dimensions (cf.
Tables 1 and 2). While theCUBE clause allows to
repair heterogeneities among the Data Mart import
schemas, the MERGE clauses mainly provide oper-
ators for the definition oftuplematchings and transla-
tions in dimensions and facts. Semantic matches be-
tween elements of autonomous Data Marts are gener-
ally expressed by equal naming. Thus, renaming op-
erations often occur in SQL-MDi, as explained later.

In what follows, we demonstrate how “Red” ap-
plies SQL-MDi to resolve the heterogeneities among
the Red and Blue sales Data Marts, using the sample
statement of Figure 6. For a systematic overview of
the available options please refer to Tables 1 and 2.
In detail, the sample SQL-MDi statement applies the
following conflict resolution techniques:

[Lines 1–12]: In the first part of the query the user
specifies the Data Marts’ import schemas. Notice that
the DEFINE keyword is needed only once. The two
CUBE clauses (lines 1 and 5) import the example Data
Marts, referencing their measure and dimension at-
tributes with the adequate keywords (MEASURE, DIM).
It is mandatory to specify an alias for each cube (AS

keyword) to facilitate access to its properties later on.

[Lines 1–4]: TheCUBE clause imports Red’s Data
Mart and performs two transformations. First, line 3
repairs the schema-instance conflict among the two
fact tables by merging the existing measurestn tel and
tn misc into a singleturnover measure. This operation
generates thecontext dimension“category”. Second,
line 4 rolls-up the dimension attributedate hr to level
date, so to match Blue’sdate granularity.

[Lines 5–12]: The otherCUBE clause imports
Blue’s Data Mart and specifies four transformations.
First, theMAP LEVELS clause in line 8 restricts the
levels of thedate dimension. Only those levels ref-
erenced in square brackets are kept in the import
schema. Notice that theDIM keyword automatically
imports all levels ifMAP LEVELS is omitted (as for
the dimensions of Red’s Data Mart). Second, line 9
renames thedur min measure attribute. Third, lines 6
and 10 rename dimension attributecustomer and level
customer id, respectively. Fourth, line 12 calls the
stored procedureusd2Eur() to convert the domain of
Blue’s turnover measure from US-$ to Euro.

[Lines 2 and 9–11]: Dimensionalityof the import
schema is determined by the number of explicit ref-
erences to dimensions of the underlying Data Mart,
using theDIM keyword. Recall that schema Blue de-
fines the additionalpromotions dimension, which is
impossible to match with any of Red’s dimensions.
Thus, dimensionpromotions is excluded from the im-
port schema of Blue’s Data Mart (see line 11, cf.
with line 2) by omitting theDIM promotions import
specification. This way, the dimensionality conflict
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Table 2: Conflict resolution strategies of FedDW for dimensions, and corresponding language support.

Conflict addressed Resolution technique Relevant SQL-MDi clause of FedDW
Heterogeneous hierarchies Match corresponding levelsMAP LEVELS clause ofDIM keyword

(Import levels of dimensions referenced by cube import) Example: see lines 8, and 10 in Figure 6

Naming conflicts (level attributes
and non-dimensional attributes)

Rename attributes
Operator “–>” (level attributes)

Example: see line 10 in Figure 6
MATCH ATTRIBUTES clause ofMERGE DIMEN-
SIONS operator (non-dimensional attributes)

Example: see line 18 in Figure 6
Overlapping members
(dimension extensions)

Merge dimension membersMERGE DIMENSIONS ... [set-operation]
Example: see lines 15, 16, 20, and 22 in Fig. 6

Heterogeneous roll-up functions
(i.e. hierarchies between members)

Overwrite roll-up hierarchiesRELATE ... USING HIERARCHY OF ... clause of
MERGE DIMENSIONS operator

Example: see line 17 in Figure 6
Domain conflicts (level attributes
and non-dimensional attributes)

Convert attribute domains CONVERT ATTRIBUTES APPLY ... clause of
MERGE DIMENSIONS operator

Example: see line 19 in Figure 6
Conflicting values of non-
dimensional attributes

Correct attribute values RENAME clause ofMERGE DIMENSIONS
Example: see line 21 in Figure 6

among the two Data Marts is repaired; considering
thecategory dimension generated in line 3, both im-
port schemas contain four-dimensional cubes.

[Line 13]: The global schema is not defined im-
mediately. Instead, theGLOBAL CUBE clause is a for-
ward declaration, simply reserving its name and alias
for later use (cf. line 23).

[Lines 15–22]: Next, the MERGE DIMENSIONS

clauses specify how to populate the global dimen-
sions with tuples (“members”). In our example,
the customer dimensions need several directives for
conflict resolution: (a) the member hierarchy of
Red’s customers should override Blue’s hierarchy
(line 17); (b) the non-dimensional attributesname and
cust name are matched (line 18); and (c) the domain
of base fee is converted from US-$ to Euro (line 19).
Moreover, line 21 changes value ‘HandyTel’ in Red’s
product dimension to the correct ‘HandyTelCo’.

[Lines 23–25]: Finally, the global fact table is
determined by theMERGE CUBES clause (line 23),
which completes the forward declaration given in
line 13. In order to compute the correct values for all
measures, line 24 specifies the adequate aggregation
function to apply foroverlappingcube cells.

To examine the global cube defined by the SQL-
MDi statement, the user enters an SQL OLAP query
as well. In our example, the user has been interested
in “How much turnover has our company generated
over the last year, grouped by month and product?”,
as depicted in Figure 4. Upon successful execution of
the sample SQL-MDi statement, FedDW returns the
virtual global cube. Then it evaluates the SQL OLAP
query and displays its result, as shown in Figure 5.

5 FedDW IMPLEMENTATION

Having demonstrated the capabilities of the FedDW
tool in our sample use case, the following section will
briefly summarize its implementation. It was guided
by the following aims: (1) Minimize the design ef-
fort through the reuse of well-known software design
patterns. (2) Use standards whenever available for
FedDW’s internal data model in order to maximize
the interoperability of FedDW. (3) Support multiple
platforms (i.e. databases and operating systems).

5.1 FedDW Query Tool Components

The SQL-MDi parser component of FedDW checks
the syntactic and semantic correctness of the SQL-
MDi matching expressions, i.e. whether all clauses
conform to the EBNF grammar specification of
the SQL-MDi language and whether all referenced
schema elements exist in the autonomous Data Marts.
The parser communicates with the Meta-data Dictio-
nary (cf. subsection 5.2) to verify the query syntax
and semantics. If the parser detects errors it returns a
description and gives hints on possible reasons.

From the input SQL-MDi statement the parser
component generates a data structure called theop-
erator tree. It contains the sequence of Fact and Di-
mension Algebra specified by the SQL-MDi match-
ing expression. The leaf nodes of the operator tree
contain the unary algebraic transformations of facts
and dimensions, whereas the internal nodes – called
“structure nodes” – represent the binary operators,
specifying how to merge the intermediate results to
the virtual global cube. Upon completion of parsing,
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1 DEFINE CUBE red::connections AS c1
2 (MEASURE c1.duration , MEASURE c1.tn_tel , MEASURE c1.tn_misc , DIM c1.date_hr

, DIM c1.cust_sscode , DIM c1.product ,
3 PIVOT MEASURES c1.tn_tel , c1.tn_misc INTO c1.turnover USING c1.category)
4 (ROLLUP c1.date_hr TO LEVEL c1.date[date])
5 CUBE blue ::connections AS c2
6 (MEASURE c2.dur_min -> duration ,
7 MEASURE c2.turnover , DIM c2.date
8 (MAP LEVELS c2.date( [date], [month], [year] )),
9 DIM c2.customer -> cust_sscode

10 (MAP LEVELS c2.customer ( [customer_id -> cust_sscode ] , [contract_type ] )
,

11 DIM c2.product , DIM c2.category)
12 (CONVERT MEASURES APPLY usd2Eur() FOR c2.turnover DEFAULT) )
13 GLOBAL CUBE dw0::sales AS c0

15 MERGE DIMENSIONS c1.date_hr AS d1, c2.date AS d2 INTO c0.date AS d0
16 MERGE DIMENSIONS c1.cust_sscode AS d3, c2.cust_sscode AS d4 INTO c0.customer

AS d5
17 (RELATE d3.cust_sscode , d4.customer_id WHERE d3.cust_sscode =d4.customer_id

USING HIERARCHY OF d3)
18 (MATCH ATTRIBUTES d3.name IS d4.cust_name)
19 (CONVERT ATTRIBUTES APPLY usd2Eur() FOR d4.base_fee DEFAULT)
20 MERGE DIMENSIONS c1.product AS d6, c2.product AS d7 INTO c0.product AS d8
21 (RENAME d6.product >> ’HandyTelCo ’ WHERE c1.product=’HandyTel ’)
22 MERGE DIMENSIONS c1.category AS d9, c2.category AS d10 INTO c0.category AS

d11
23 MERGE CUBES c1, c2 INTO c0 ON date , customer , product , category
24 AGGREGATE MEASURE duration IS SUM OF duration , AGGREGATE MEASURE turnover

IS SUM OF turnover
25 (MEASURE duration , MEASURE turnover , DIM date , DIM customer , DIM product ,

DIM category)

Figure 6: Example SQL-MDi statement, integrating Red’s andBlue’s Data Marts.

Figure 7: Fact table “sales” of virtual global cube “dw0”.

the ordering of operators in the tree is optimized alge-
braically such that the size of intermediate results is
reduced as early as possible (Brunneder, 2008).

FedDW’s query processor component receives the
operator tree from the SQL-MDi parser and computes
the query result over the virtual global cube. All unary
transformations in the leaf nodes are traversed “from
left to right”. Then these intermediate results are com-

bined step by step, according to the structure node op-
erators. The ordering of nodes given in the operator
tree remains unchanged (Rossgatterer, 2008).

The critical phase of the query processing algo-
rithm is the generation of an optimal query plan. This
means that the processor reformulates the original
user query into a sequence of queries over the au-
tonomous Data Marts. If the operator tree refers to
dimensions that exist in the Dimension Repository
(cf. Section 3), the processor eliminates the accord-
ing sub-queries from the query plan and instead reads
the intermediate results from the repository. Thus, the
amount of data shipped between the autonomous DW
systems is reduced, as shown by (Bernardino et al.,
2002; Akinde et al., 2003).

The implementation of a language parser is known
to be rather mechanical and thus easy to automatize.
Several software tools – calledcompiler generators–
have been developed that enable the automatized gen-
eration of parsers. FedDW’s parser component has
been generated with the JavaCC framework, based
upon the formal description – the grammar – of the
underlying SQL-MDi language, augmented with so-
called production rules (Brunneder, 2008).
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In order to optimize the runtime performance and
extensibility of the parser and processor components,
we applied several well-known software design pat-
terns. As far as the parser is concerned, the genera-
tion of the operator tree from the SQL-MDi statement
conforms to theVisitor design pattern. It consists of
(1) a hierarchy of classes representing the nodes of
some data structure to be traversed, and (2) the vis-
itor class. Each node class provides anAccept()
method with the visitor class as input parameter.
Moreover, the visitor class contains a corresponding
visitElement() method for eachAccept() method
of the node classes (Gamma et al., 1995). The JavaCC
framework automatically applies the Visitor pattern in
the source code it generates (Brunneder, 2008).

The operator tree itself is implemented asAbstract
Syntax Tree(AST) data structure. An AST represents
the syntax of some language string within the nodes of
a tree, whereby each node denotes a construct of the
language (Reilles, 2007). By combining the Visitor
pattern with the AST structure we cleanly separate the
implementation of the parser from the definition of
the underlying query language. Thus, neither syntax
changes nor the introduction of new operators affect
the existing implementation. Consequently, the effort
necessary to support language extensions is kept min-
imal (Brunneder, 2008).

Finally, the processor component employs theIt-
erator modelfor the implementation of the Fact and
Dimension Algebra transformation operators. Ac-
cording to the Iterator model, every operator class
processes a single tuple instead of a data block per
call. Moreover, every operator class works in isola-
tion; this means that it must not communicate with
other operator classes nor the overall query plan to
compute its result (Graefe and McKenna, 1993). The
Iterator pattern offers two advantages. First, it allows
to parallelize the traversal of the operators in the tree
nodes. Second, the set of operators available in the
underlying query language and algebra can easily be
extended (Rossgatterer, 2008).

In order to maximize FedDW’s compatibility with
common databases, its internal data model complies
to CWM, the Common Warehouse Metamodel (Med-
ina and Trujillo, 2002). Our FedDW prototype sup-
ports the Oracle and Microsoft SQL Server 2005
database systems. Both the parser and processor com-
ponents are implemented in Java. Therefore, FedDW
runs on multiple operating systems.

5.2 Auxiliary System Components

The Meta-data Dictionaryof the FDW architecture
represents the system’s schema catalogue. It stores

current snapshots of (1) the global schema, (2) each of
the local schemas in the autonomous Data Marts, and
(3) the semantic matches specified in the SQL-MDi
language. The Meta-data Dictionary offers two ad-
vantages to the “FedDW” query tool. First, the SQL-
MDi processor component may retrieve the semantic
matches from the dictionary, such that the details of
schema matching and data translation remain trans-
parent to the users. Otherwise the users would be re-
sponsible for matching the schemas manually for each
query. Second, it enables the SQL-MDi parser com-
ponent to check the validity of the schema elements
(e.g., dimension names, measure attribute names) ref-
erenced by the statement.

As depicted in Figure 3, theDimension Repository
complements the FDW architecture. The repository
holds copies of the data stored in the dimensions of
the autonomous Data Marts, translated into the global
schema. This approach reduces the complexity of
query processing in the FDW system because fewer
sub-queries are needed. In particular, all sub-queries
that retrieve and translate the dimension data from the
autonomous Data Marts can be eliminated from the
query plan. The conceptual idea behind the Dimen-
sion Repository is motivated by the Skalla (Akinde
et al., 2003) and DWS-AQA approaches (Bernardino
et al., 2002), as mentioned in subsection 2.2.

6 CONCLUSIONS

In this paper we demonstrated the practical realiza-
tion of federated Data Warehouse concepts, introduc-
ing the “FedDW” Query Tool. We explained the fea-
tures of its prototype and demonstrated its use with
a realistic scenario. The FedDW prototype together
with an example scenario and instructions is available
for download on our websitehttp://www.dke.jku.at.

Soon we will release the prototype of the Visual
Integration Tool as well. As mentioned, the VIT ad-
ministrates the Meta-data Dictionary of the Federated
Data Warehouse approach. It allows the users to per-
sist the semantic matches among autonomous Data
Marts and the global schema as SQL-MDi statements.
In conjunction, the FedDW Query Tool and Visual In-
tegration Tool offer comprehensive functionality for
the integration of autonomous Data Marts.

Our first experiments with FedDW showed rea-
sonable performance and good usability. The viability
of the FedDW approach depends on its performance
with large data sets. This is subject of our future work.
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