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Abstract: The accelerated development in Grid computing has positioned it as promising next generation computing 
platforms. Grid computing contains resource management, task scheduling, security problems, information 
management and so on. In the context of database query processing, existing parallelisation techniques can 
not operate well in Grid environments, because the way they select machines and allocate queries. This is 
due to the geographic distribution of resources that are owned by different organizations. The resource 
owners have different usage or access policies, cost models, varying loads and availability. It is a big 
challenge for efficient scheduling algorithm design and implementation.  In this paper, a heuristic approach 
based on particle swarm optimization algorithm is adopted to solving parallel query scheduling problem in 
grid environment. 

1 INTRODUCTION 

The emerging paradigm of grid computing and the 
construction of computational grids are making the 
development of large scale applications possible 
from optimization and other fields (Foster, 1998). 
However, this have increased the necessity of novel 
applications that require close and potentially 
sophisticated interaction and data sharing between 
resources that may belong to different organizations. 
Examples include the bio-informatics labs across the 
world sharing their simulation tools, experimental 
results; as well as the use of the donated spare 
computer time of thousands of PCs connected to the 
Internet in order to solve computation problems. 
Hence, the question is how database management 
systems and technologies can best be deployed or 
adapted for be used in such environments. As a 
consequence of this, the databases technologies have 
led to many proposals that try to integrate databases 
with Grid applications (Alpdemer, 2003; Liu, 2003; 
Narayanan, 2003). In particular, query processors for 
Grid-enabled databases, such as (Alpdemer, 2003; 
Smith, 2003) can provide effective declarative 
support for combining data access with analysis to 
perform non-trivial tasks, and are well suited for 
intensive applications as they naturally care for 

parallelism. This is due to the fact that many 
complicated tasks can be effectively encapsulated 
and specified by databases queries. However, one of 
the more difficult tasks for the efficient exploitation 
of parallelism in such query processors; it is 
scheduling a large number of queries, in order to 
achieve better performance. For the reason that 
many computing resources are geographically 
distributed under different ownerships, each having 
their own accesses policy, cost, and various 
constraints. Unlike scheduling problem in 
distributed systems, this problem is much more 
complex as new features of Grid systems such as its 
dynamic nature and the high degree of heterogeneity 
of tasks and resources must be tackled. 

Systems like OGSA-DQP are capable of 
performing query processing over heterogeneous 
local database management systems, like mySQL 
and Oracle. Such systems may employ a number of 
machines to run the query processing tasks. Clearly, 
these machines can be heterogeneous as well, in 
terms of their computational capacity and 
characteristics. For instance, some may have high-
speed interconnections, interfaces, operating 
systems, a larger amount of memory or a low power 
CPU. This kind of heterogeneity environment (HE) 
has motivated our project.   
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In this paper, the Particle Swarm Optimization 
(PSO) is employ to solve the scheduling problem in 
Grid enabled databases environment. The 
practicality of the approach lies in the fact that 
resource scheduling remains NP-complete even 
when an unlimited number of processors is available 
(Chrétienne, 1992), as a logical consequence of the 
NP-completeness of scheduling, the scientific 
community has been eager to investigate efficient 
scheduling algorithms based on heuristics or 
approximation techniques that produce near optimal 
solutions. In practice, scheduling must rely on these 
algorithms due to the intractability of the problem. 

This paper is organized as follows. We present 
the problem in Section 2. A Particle Swarm 
Optimization (PSO) is introduced in Section 3. We 
compare our work with others in Section 4. 
Experiment settings and results are discussed in 
Section 5 and some conclusions are given in Section 
6. 

2 PROBLEM DESCRIPTION 

It is well know that, even in homogeneous systems, 
choosing the maximum degree of parallelism not 
only harms the efficiency of resource utilization, but 
can also degrade the system's performance 
(Wilschut, 1992). Therefore, on Grid enabled, it 
holds as well.  

Furthermore, the problem of query partition 
parallelism is discussed under the viewpoint of 
sending query fragments to many databases and 
executing the query in parallel. So the main focus is 
on executing a query fragment at any database as 
long as the cost for query execution is minimal.   
Therefore, it is clear that some optimizations and 
restrictions for data access and query execution are 
required. Unfortunately, finding a schedule of 
minimal length is in general a difficult problem. This 
becomes intuitively clear as one realizes that an 
optimal schedule is a trade-off between high 
parallelism and low inter-machine communication. 
On the one hand, query fragments should be 
distributed among the machines in order to balance 
the workload. On the other hand, the more the query 
fragments are distributed, the more inter-machine 
communications. 

Another problem of resource selection for a 
query scheduler on emergent Grids is the budget; the 
integration of computational economy as part of 
scheduling system greatly influences the way 
computational resources are selected to meet the 
user requirements. The users should be able to 

submit their queries along with their requirements to 
a scheduling system. 

Moreover, many of the resource management  
systems  (e.g. (Stonebraker, 1994; Heiser, 1998; 
Amir, 2000; Buyya, 2000) ) support a single model 
for resource trading, provide their own programming 
model and are implemented as monolithic systems. 
To overcome these limitations, the modern Grid 
computing systems use a layered architecture. Users 
and owners's resources have their own expectations 
and strategies for being part of the Grid (Buyya, 
2001). In particular, the resource consumers adopt 
the strategy of solving their problems at low cost 
within a required time frame. The resource providers 
adopt the strategy of obtaining best possible return 
on their investment while trying to maximize their 
resource utilization by offering a competitive service 
access cost in order to attract consumers.  

Indeed, the grid enabled database environment is 
dynamic and, also the number of resources to 
manage and the number of queries to be scheduled. 
These queries are usually very large making thus the 
problem a complex large scale optimization problem 
(as several optimization criteria such as response 
time and/or economic cost must to be matched). 

3 PSO QUERY SCHEDULER 
ON GRIDS 

3.1 Solution Approach 

The complexity of the process of resource selection 
and creating a schedule S for a query graph G on a 
set of databases D is a key problem in emergent 
computational Grids. It should be obvious that 
generally there is more than one possible schedule 
for a given graph and a set of databases (which of 
course would have consequences for the scheduling 
of the other queries). Due that the usual purpose in 
employing a parallel system is the fast execution of a 
program; the usual aim is to produce a schedule of 
minimal length.  

The algorithm proposed here receives a query 
plan which can be partitioned into sub-plans that can 
be evaluated on different machines. In our 
simulation, we assume the existence of a query 
optimizer which first constructs a single-node plan, 
and then transforms the single-node plan into a 
multi-node one, in order to reduce the search space 
(Kossman, 2000).  

For example, exchange operators encapsulate the 
parallelism and involve communication (Graefe, 
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1990), and they naturally define the boundaries of 
different sub plans. Let us assume there are two 
databases, each containing one table, namely Orders 
and LineItem. The nodes of the plan are query 
operators (scans, projects, joins, and exchanges or 
data communication). These operators may be 
executed on different machines in parallel. But we 
assume that scans are not parallelisable, because 
data from any single table is accessed in an existing 
database. So suppose that the optimizer decides, 
using PSO Query Scheduler proposed here, that the 
join of this example, implemented as a hash join 
algorithm, should be cloned at any site, in order to 
deal with the second stage, where the single node 
plan is parallelized and how to improve it. 

In particular, in grid-enabled databases 
considered here, a query is decomposed into a set of 
partitions S. Define |S| to be the number of partitions 
in the set S and si to be the ith partition, then S = {si, 
0 ≤ i < |S|}. A grid-enabled database consists of a set 
of heterogeneous databases D.  Define |D| to be the 
number of databases in the set D an mj to be the jth 
database, then M = {mj, 0 ≤ j < |D|}. The estimated 
expected execution time of partition si on database 
mj is Tij, where 0 ≤ i < |S| and 0 ≤ j < |D|.  

To formulate this problem under our simulation 
model, an estimation of the computational load of 
each partition, the computing capacity of each 
resource, and an estimation of the prior load (CPU, 
Network) of each one of the resources are required. 
Thus, we make the usual assumption that we know 
the computing capacity of each resource, the 
estimation or prediction of the computational 
necessities (workload) of each partition, and the load 
of prior work of each resource. This assumption is 
typically made for the current state-of-the-art in 
Heterogeneous Computing systems when studying 
the matching and scheduling problem (Freund, 1994; 
Singh, 1996; Shroff, 1996). Finding the estimated 
expected execution times for subtasks is another 
research problem, which is outside the scope of this 
paper.  

3.2 Particle Swarm Optimization 

PSO is a population-based search algorithm and is 
initialized with a population of random solutions, 
called particles (Hu, 2004). Unlike in other 
evolutionary computation techniques, each particle 
in PSO is also associated with a velocity. Particles 
fly through the search space with velocities which 
are dynamically adjusted according to their 
historical behaviour.  

In particular, PSO learns the scenario and uses it 
to solve optimization problems. Thus, each single 
solution is like a 'bird' in the search space, which is 
called 'particle'. All particles have fitness values 
which are evaluated by the fitness function to be 
optimized, and have velocities which direct the 
flying of the particles. So the particles fly through 
the search space by following the particles 
(solutions) and then searches for optima by updating 
each generation, following equations will be used to 
compute the new elements of velocity and position 
vectors: 

 
vid(k+1)=X[wk(k)vid(k)+c1r1[pid(k)-

xid(k)]+ c2r2[pgd(k)-xid(k)]] 
 

  (1) 

xid(k+1)=xid(k)+vid(k+1)   (2) 
 

where wk is the inertia weight, which represents the 
particle's preference to continue moving in the same 
direction it was going on the previous iteration,  
introduced in (Shi, 1998), X is the constriction 
coefficient, which serves as a balancing factor for 
the local and global search, introduced in (Clerc, 
2002), c1 and c2 are cognitive and social factors 
respectively, often set equal to 2, k represents the 
iteration number, r1 and r2 are random numbers 
between [0,1], i(i=1,2,...,N) is the index representing 
the particles in the swarm and d (d=1,2,...n) is the 
index for dimensions of searching space. We define 
one particle as a possible solution in the population, 
and the fitness function is the minimum time/cost 
value. The main PSO algorithm is given below: 

 
begin 
 for i=1 to number of particles do 
  Initialize position and  

  velocity  randomly; 
  Initialize the neighborhood; 
 end  
 repeat 
  compute the fitness value  

  G(xi); 
  for i=1 to number of  

  particles do 
   if G(xi)>G(xpbi) then 
         for d=1 to number 

    of dimensions do 
     xpbid=xid;  
    end 
   end 
  select the local best  

  position in  the   
  neighborhood lbi; 
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  for d=1 to number of  
  dimensions do 

   w=rand(); 
   vid=w * vid +   

   cir1(pbxid-xid) + 
    c2r2(lbid-xid); 
   xid=xid+vid; 
  end 
 end 
 perform mutation; 
 until Maximum number of 

 generations; 
 scheduling resources; 
end  
 
From a higher level point of view our approach 

transform an existing plan to a more efficient, by a 
PSO technique, modifying the set of resources 
allocated to a part of the query plan. 
Transformational approaches to query optimization 
have already been employed for constructing query 
plans (Ioannidis, 1996), however not for scheduling 
resources. 

4 RELATED WORK 

There is one previous work (Gounaris, 2006) that 
deals with the scheduling of resources in 
heterogeneous environments to support arbitrary 
degrees of partition parallelism; however, it 
mitigates the problem of devising a near optimal 
workload distribution of tuples among the selected 
databases. In other words, they assume that all the 
available machines are similar in terms of workload, 
so they simplified the problem of resource 
scheduling by neglecting the problems of a near 
optimal distribution due to its NP-hard complexity. 

In the literature, different approaches can be 
found that relate to ours in certain ways. Due to its 
theoretical and practical relevance, the evolutionary 
computing research community has started to 
examine the Grid resource scheduling (Di, 2004; 
Abraham, 2000; Zomaya, 2001; Meijer, 2004; 
Braun, 2001). However, the existing approaches in 
the literature show several limitations: in some 
works just the uni-objective case is considered and 
usually either concrete grid environments. 
Moreover, the schedulers's performance has been 
studied only on small size instances. Dynamic 
aspects of this problem have not been addressed so 
far to Grid enabled databases environments.  

Particularly in the database field, distributed 
query processing has mostly been influenced by 
some pioneering systems. The most influential, 

System R* (Mackert, 1986), but they simplified the 
problem of resource scheduling by neglecting the 
benefits of partitioned parallelism. In other words, 
the data are retrieved from a single site only, and are 
joined on a single site, which is either the site of one 
of the inputs or the site that asked for the data. 
Distributed Ingres (Epstein, 1978) took a step 
forward; they used a fragment and replicate query 
processing strategy. A query is partitioned into 
equal-sized fragments, each fragment is sent to a 
computer processor, and all other relations are 
replicated in all computer processors, however, 
different machines may have different processing 
speeds and/or different access methods for accessing 
required data, thus equal-distribution of fragments 
may lead to load imbalance. In (Rahm, 1995) 
discusses an approach for load balancing employing 
partitioned parallelism, although it refers to 
completely homogeneous environments, it does not 
force the system to employ all the available nodes 
when there are not needed. Other existing techniques 
for parallel and distributed databases (Garofalakis, 
1997; Mayr, 2003, DeWitt, 1986) do not consider 
partitioned parallelism or completely ignore the 
resource selection phase by assuming a fixed set of 
resources then they try to schedule tasks over these 
resources. In other words, they also assume 
homogeneous and stable environments in terms of 
capabilities, connection speed and ownership.  

5 EXPERIMENTAL SETTINGS 
AND RESULTS 

For the evaluation of our proposal; we built a 
simulator by extending the cost model in (Sampaio, 
2002), which is a detailed and validated simulator 
developed for parallel object database systems, it has 
been adapted to operate in a heterogeneous and 
autonomous environment and has been incorporated 
in the query engine.  

In our simulation, we define 156 cost models, 
each one is a database; each one estimates the 
response time by estimating the cost of each 
operator instance separately in time units. The 
communication costs are also considered; these costs 
are composed of fixed costs per message, per-byte 
costs to transfer data, and CPU costs to pack and 
unpack tuples. Each database in our simulation is 
heterogeneous because we change several system 
parameters, which are described in Table 1. 

We assumed that the processing speeds of each 
machine/resource, budget(G$) and network of each 
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query are known. Hence, Expected Time to 
Compute matrix (ETC) is updated by the time units 
that are generated by our cost models; where the 
position ETC[i][j] indicates the expected execution 
time of partition i in machine m. This ETC matrix is 
needed in order to compute our fitness function. 

Table 1: System parameters. 

Description Unit 
Seek time of disk s 

Time to probe hash table s 
Size of the network packet bytes 

Network bandwidth Mb/s 
Size of the exchange producer cache tuples 
Size of the exchange consumer cache tuples 

Time to insert into hash table tuples 

Table 2: Tables from TPC-H. 

Name Short Name Cardinality Tuple Size 
Part P 200,000 159 

PartSupp PS 800,000 144 
Orders O 1,500,000 104 

LineItem L 6,000,000 112 
Supplier S 10,000 159 

Table 3: Parameter settings of PSO and GA algorithm. 

Name Parameter 
description 

Parameter value 

PSO Size of swarm 100 
Self-recognition 
coefficient (c1) 

2 

Social coefficient 
(c2) 

2 

Weight (w) 0.9  0.4 
Max velocity 100 

GA Size of population 100 
Probability of 

crossover 
0.8 

Probability of 
mutation 

0.03 

Scale for 
mutations 

0.1 

 
For the experiment, we used a variety of queries, 

which makes relations from Table 2, and all queries 
make use of the TPC-H database. Finally, we totally 
submitted 4000 queries consecutively to the Grid in 
two stages; and the computational complexity of all 
these queries was randomly chosen (about three to 
five joins). In first stage, we submitted 2000 queries 
to the Grid and the queries were scheduled by our 
PSO Query Scheduler algorithm. After the first 2000 
queries were all finished, we submitted the second 
2000 queries that were allocated with the Genetic 
Query Scheduler (Di, 2004). 

Thus, we compared the performance of PSO 
algorithm with Genetic algorithm (GA) that has 
many similarities. The experimental parameter 
settings of PSO and GA algorithms are described in 
Table 3.   
 

 
Figure 1: Total no. of queries in execution during time 
optimization strategy. 

 
Figure 2: Total no. of queries in execution during cost 
optimization strategy. 

In our experiments, this randomly generated 
scenario was used for two reasons: (1) it is desirable 
to obtain data that demonstrate the effectiveness of 
the approach over a broad range of conditions, (2) it 
is not clear what characteristics a “typical” 
heterogeneous computing queries would exhibit.  So 
we conducted experiments for two different 
optimization strategies: 

1. Optimize for time (produce results as early 
as possible). 

2. Optimize for cost (produce results by 
deadline, but reduce cost) 

The number of queries in execution on resources 
(Y-axis) at different times (X-axis) during the 
experimentation is shown in Figure 1 and 2 for Time 
and Cost Optimization strategies respectively.  

For example, in bioinformatics databases, this 
provides consumers the ability to trade-off between 
time frame and cost that they would like to invest for 
solving the problem in hand. When the deadline is 
too tight and results are needed at the earliest 
possible time, then consumers should be prepared to 
spend more money. This can be shown in Figure 3, 
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the amount of budget consumed by Cost 
Optimization strategies.   
 

 
Figure 3: The total amount spent during cost optimization 
strategy. 

6 CONCLUSIONS 

Grid computing technologies are enabling the 
creation of virtual enterprises for sharing distributed 
resources and changing the way we compute, 
communicate, and interact with database systems 
and people. Current distributed database applications 
operating in heterogeneous settings, like 
computational Grids, tend to run queries with a sub 
optimal degree of partitioned parallelism, with 
negative consequences for performance when the 
queries are computation and data intensive. On the 
fly creation of Internet-scale virtual computing 
environments is becoming more of a reality than 
dream. Hence, the system managing resources in this 
complex environment need to be smart, adaptable to 
changes in the environment and user requirements. 
At the same time, they need to provide a scalable, 
controllable, measurable, and understandable policy 
for management resources. The main contribution of 
this work is the proposal of PSO resource scheduler 
that allows a near optimal degree of partitioned 
parallelism so as to complete the queries in a 
minimum time as well as utilizing the resources in a 
computational economy approach and compare it 
with genetic algorithm under the same condition. To 
the best of our knowledge, this is the first such 
proposal. 

From the simulated experiment, the results 
demonstrate that PSO algorithm can get better effect 
for a large scale optimization problem. Nowadays 
we are working with more complex scenarios, such 
as scenarios with changing levels of contention. 
Finally, another research direction is to create 
different heuristic based algorithms for problems 
arising in grid computing. 
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