

A FLEXIBLE EVENT-CONDITION-ACTION (ECA) RULE
PROCESSING MECHANISM BASED ON A DYNAMICALLY

RECONFIGURABLE STRUCTURE

Xiang Li, Ying Qiao and Hongan Wang
Intelligence Engineering Laboratory, Institute of Software, Chinese Academy of Sciences

No. 4, Zhong Guan Cun South Fourth Street, Hai Dian District, Beijing, China

Keywords: Event-condition-action rules, On-the-fly, Active database, Processing structure, Middleware.

Abstract: Adding and deleting Event-Condition-Action (ECA) rules, i.e. modifications of processing structures in an
active database are expected to happen on-the-fly, to cause minimum impact on existing processing
procedures of ECA rules. In this paper, we present a flexible ECA rule processing mechanism in active
database. It uses a dynamically reconfigurable structure, called unit-mail graph (UMG) and a middleware,
called Unit Modification and Management Layer (UMML) to localize the impact of adding and deleting
ECA rules so as to support on-the-fly rule modification. The ECA rule processing mechanism can continue
to work when the user adds or deletes the rules. This makes active database to be able to react to external
events arriving at the system during rule modification. We also use a smart home environment to evaluate
our work.

1 INTRODUCTION

1.1 Motivations

Event-condition-action (ECA) rules play very
important roles in active database since they specify
how the active database performs suitable actions in
response to events that happened. ECA rule
processing mechanism is responsible to execute the
predefined ECA rules to find the actions taken to
react to external events arriving at the system.

In some responsive system, such as many real-
time monitoring systems (e.g., the fire monitoring
system, the flood monitoring system etc.), ECA
rules need to be modified to reflect the user
requirement changes about how to react to occurring
events in the system. To guarantee the dependability,
the system should still respond to the events that
occur during ECA rule modifications. This means
the ECA rules should be modified on the fly. In
another word, the ECA rules should be added or
deleted without stopping the ECA rule processing
mechanism.

In this paper, we present a flexible ECA rule
processing mechanism based on a dynamically
reconfigurable structure. The mechanism is to enable

the user to modify ECA rules on the fly in active
database. The ECA rules can be added and deleted
without stopping ECA rules processing mechanism
so that the active database is still able to react to
external events arriving at the system during rule
modification. The rule processing mechanism
converts the specified ECA rules into a dynamically
reconfigurable structure, called unit-mail graph
(UMG). Furthermore, a middleware, called UMML
is developed to modify the UMG according the user
command. All these efforts will localize the impact
of adding and deleting ECA rules so that allow the
dynamical adding and deletion of ECA rules without
stopping the ECA rules processing mechanism.

1.2 Related Work

The internal structures used by current ECA rule
processing mechanism (Gatziu, 1994) (Dittrich,
2000) (Chakravarthy, 1999) (Chakravarthy, 1993)
(Chakravarthy, 1994) (Gehani, 1992)
(Krishnaprasad, 1994) are holistic. In such holistic
structure, ECA rules cannot be modified on the fly.
This makes current ECA rule processing mechanism
not suitable for the applications in which both 24
hours and 7 days running and modification of ECA
rules are needed.

 291
Li X., Qiao Y. and Wang H. (2009).
A FLEXIBLE EVENT-CONDITION-ACTION (ECA) RULE PROCESSING MECHANISM BASED ON A DYNAMICALLY RECONFIGURABLE STRUC-
TURE.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
291-294
DOI: 10.5220/0001987402910294
Copyright c© SciTePress

The rest of the paper is organized as follows:
section 2 addresses the framework of the ECA rule
processing mechanism; section 3 evaluates UMG
and UMML via a smart home environment;
conclusions and future works are stated in section 4.

2 FRAMEWORK OF THE ECA
RULE PROCESSING
MECHANISM

The framework of the ECA rule processing
mechanism is shown in Figure 1. The ECA rule
processing mechanism has three layers, i.e., user
interface layer, middleware layer and a processing
layer. In user interface layer, a visual specification
tool, called VST, is provided for the user to specify
ECA rules (Qiao, 2007), (Liu, 2008). Furthermore,
the user can send the command of adding rules or
deleting rules via a command interface.

The XML streams of specified ECA rules and
user commands are sent to middleware layer which
is also called Unit Modification and Management
Layer (UMML). UMML will convert the XML
stream of the specified ECA rules into a rule graph,
in which the event branch is same to that used in
Snoop (Chakravarthy, 1993) (Chakravarthy, 1994)
(Chakravarthy, 1999) and the condition branch is
equivalent to a Boolean tree. After then, UMML will
further convert the rule graph into a modularized and
loose-coupling structure for ECA rule processing,
called Unit-Mail Graph (UMG), by packing each
vertex in the rule graph into unit. When UMML
receives the XML stream for the command of
adding rules, it converts the rules to be added into
temporary UMG and will merge the temporary
UMG with the existing UMG by dynamically adding
units in the temporary UMG to the unit warehouse.
In the same way, when UMML receive the XML
stream for the command of deleting rules, UMML
will modify the existing UMG by deleting unused
units form the Unit Warehouse according to the
command.

The Processing Layer is responsible to receive
external events, detect composite events, evaluates
conditions and performs actions.

Figure 1: The structure of our flexible framework for ECA
rules processing.

2.1 UMG

In order to modularize the rule graph, we pack each
vertex in graph into a unit. Instead of direct edges
between units, each unit records the identification of
the unit that receives the information. (For
convenience, we call the unit that receives the
information as output unit). Therefore, in each unit,
there is an independent space to record output units.
Processing ECA rules are translated to passing and
processing mails in the UMG.

A unit has a processor to perform the detection
of composite events, evaluation of the conditions
and other necessary operations. It also has several
input ports that allow the processor to provide
different ways to process instances from different
sources. In addition, processors in units are only able
to process instances, but all instances are packed in
mails. Thus, a unit has to unpack a mail when it
receives the mail. Meanwhile, a unit needs to pack
instances to mails if it wants to send these instances
to other units. Figure 2(a) shows structure of a unit.

Mails are used to pass the information about
event or condition instances to other units. Figure
2(b) shows structure of a mail. A mail has five parts:

SYNTAX CHECKER
COMPILER

ADDING COMMAND QUEUE

UNIT
CREATOR

CACHE
MEMORY

MERGING
MODULE

ACTIVATION
MODULE

DELETING
MODULE

UNIT WAREHOUSE: UMG

INPUT
CACHE

POST
OFFICE

OUTPUT
CACHE

External
Events

Actions

TEXTUAL
PROCESSOR

UNIT
PRODUCER

STRUCTURE
MODIFICATION

USER INTERFACE A XML-based Specification

MIDDLEWARE:
 UMML

DELETING
COMMAND
QUEUE

ADDING COMMAND

PROCESSING
LAYER

CONDITION

Units

CACHE

Condition
Queries

Condition
Feedbacks

ICEIS 2009 - International Conference on Enterprise Information Systems

292

Figure 2: (a) The structure of a unit, and (b) the structure
of a mail.

UMG has two independent characters: 1) units
are independent of each other. 2) In each unit, the
output registry space is independent of the
processor.

2.2 UMML

In UMML, In order to add new units or delete
unused units correctly, two questions should be
considered: 1) how to ensure the correctness of the
processing structure in the Unit Warehouse in each
step, and 2) how to take the least effect on the
logical structure of existed units. Here, the
correctness has two aspects: a) in each step of
adding or deleting, the system should run correctly,
and b) if there are some errors, the framework
should repair the processing structure.

The UMML provides four mechanisms:
Loose Coupling mechanism means the two

independent characters.
Activation/Inactivation mechanism makes units

not be able to send mails to incorrect or unready
units.

Top-Down mechanism makes Merging Module
add units and the Deleting Module delete units in
top-down order.

Roll-Back mechanism makes the rule processing
mechanism avoid unexpected errors.

3 CASE STUDY

3.1 ECA Rules

In this section, we will evaluate our framework via
smart home system. We develop our processing
system with Java in Eclipse. We specify several
ECA rules used in smart home with specification
tools presented in (Liu, 2008). The detailed
requirements for ECA rules in the smart home
system are shown in Table 1. Rule1 and Rule 2 are
used in normal cases; Rule 3 and Rule 4 are used in
emergent cases.

Table 1: ECA rules.

Req1: On “1 hour after the cooker is on”
If “the cooker is still on”
Do “Trigger alarm”

Req2: On “ 30 minutes after the old man enter the bath
room”

If “the old man is still in the bath room”
Do “Trigger alarm”

Req3: On “2 hour after the cooker is on”
If “the cooker is still on”
Do “Trigger emergent alarm”

Req4: On “ 1 hour after the old man enter the bath room”
If “the old man is still in the bath room”
Do “Trigger emergent alarm”

3.2 Evaluations

In the first experiments, we add Rule 3 and 4 when
the system is processing Rule 1 and 2. Table 2
shows the results of the experiment.

Table 2: Evaluation Results for Experiment 1.

 Before adding new
ECA rules

After adding new ECA
rules

Rules in
processing
system

Rule 1 and Rule 2 Rule 1, Rule 2, Rule 3
and Rule 4

Number of
units 32 40

Input events
for cooker

Turn on the cooker Turn on the cooker
After 1 hour After 2 hour After 1 hour After 2 hour

Actions for
cooker Alarm None Alarm Emergent

alarm
Input events
for bath
room

Enter bath room Enter bath room
After 30
minutes After 1 hour After 30

minutes After 1 hour

Actions for
bath room Alarm None Alarm Emergent

alarm

In the second experiment, we will delete Rule 1
and 2 when the system is processing Rule 3 and 4.

Table 3: Evaluation Results for Experiment 2.

 Before deleting invalid
ECA rules

After deleting
unused ECA rules

Rules in
processing
system

Rule 1, Rule 2, Rule 3
and Rule 4 Rule 3 and Rule 4

Number of
units 40 24

Input events
for cooker Turn on the cooker Turn on the cooker

Actions for
cooker

After 1 hourAfter 2 hour After 1 hour After 2
hour

Alarm Emergent
alarm None Emergent

alarm
Input events
for bath room Enter bath room Enter bath room

Actions for
bath room

After 30
minutes After 1 hour After 30

minutes
After 1

hour

Alarm Emergent
alarm None Emergent

alarm

Mail Cache Memory

Instance Processor

Output Registry

…

Input
Ports

(a)

Source
Unit

Receivin
g Unit

Instance

Parameters

Receivin
g Port

(b)

A FLEXIBLE EVENT-CONDITION-ACTION (ECA) RULE PROCESSING MECHANISM BASED ON A
DYNAMICALLY RECONFIGURABLE STRUCTURE

293

Obviously, Rule 1 and Rule 3 share some units
and Rule 2 and Rule 4 share some units.

From Table 2 and Table 3, we can observe two
processes:
– Process 1: when adding Rule 3 and Rule 4, the

processing system keeps working correctly and
performs correct actions for Rule 1 and Rule 2.
Adding Rule 3 and Rule 4 does not affect any
existing units’ working, although Rule 3 and
Rule 4 reuse several existing units.

– Process 2: when deleting Rule 1 and Rule 2, the
processing system keeps working correctly and
performs correct actions for Rule 3 and Rule 4.
Deleting Rule 1 and Rule 2 does not affect valid
units’ working; meanwhile some unused units
are deleted from the processing system.
Here, the processing system keeps working

correctly in the process of adding and deleting. Thus,
UMG and UMML can ensure the correctness of the
processing system. In other words, the framework
with UMG and UMML is effective.

4 CONCLUSIONS AND
FUTURE WORKS

In this paper, we present a flexible Event-condition-
action (ECA) rule processing mechanism including a
dynamic reconfiguration structure UMG and a
middleware for modifying and managing UMG
called UMML. UMG has the two independent
characters. UMML provides four mechanisms to
ensure that the framework for rules processing keeps
working when ECA rules are modified.
Furthermore, we use a smart home system to
evaluate our work.

Units are independent, so the UMG can be used
easily in distributed environments. Using the UMG
and the UMML in distributed environments is our
future work.

ACKNOWLEDGEMENTS

This paper is supported by National Nature Science
Foundation of China (Grant No. 60873073) and
France Telecom (Grant No. 46135653).

REFERENCES

Gatziu, S., Dittrich, K.R., 1994. Detecting Composite
Events in Active Databases Using Petri Nets. In Proc.

of the 4th International Workshop on Research Issues
in Data Engineering: Active Database Systems. IEEE
Press.

Dittrich, K., Fritschi, H., Gatziu, S., Geppert, A., Vaduva,
2000. Technical report: SAMOS in Hindsight. In
Experiences in Building an Active Object-Oriented
DBMS.

Chakravarthy, S., Le, R., Dasari, R., 1999. ECA Rule
Processing in Distributed and Heterogeneous
Environments. In Symposium on Distributed Objects
and Applications. IEEE Press.

Chakravarthy, S., Mishra, D., 1993. Snoop: An Expressive
Event Specification Language For Active Databases.
Technical report, Dept. of Comp. and Info. Sci., Univ.
of FL, 1993.

Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim,
S.K., 1994. Composite events for active databases:
Semantics, contexts and detection. In Proceedings of
the 20th International Conference on Very Large
Databases.

N. H. Gehani, H. V. Jagadish, O. Shmueli, 1992. Event
Specification in an Object-Oriented Database. In
Proceedings International Conference on
Management of Data.

V. Krishnaprasad. Event Detection for Supporting Active
Capability in an OODBMS: Semantics, Architecture,
and Implementation. Master's thesis, Database
Systems R&D Center, CIS Department, University of
Florida, E479-CSE, Gainesville, FL 32611, March
1994.

Qiao, Y., Zhong, K., Wang, H., Li, X., 2007. Developing
Event-condition-action Rules in Real-time Active
Database. In Proceedings of ACM symposium on
applied computing, pp.511-516.

Liu, W., Qiao, Y., Li, X., Zhong, K., Wang, H., Dai, G.,
2008. A Visual Specification Tool for Event-
Condition-Action Rules Supporting Web-Based
Distributed System. In Proceedings of the Tenth
International Conference on Enterprise Information
Systems, pp.246-251.

ICEIS 2009 - International Conference on Enterprise Information Systems

294

