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Abstract: This paper combines the advantages of symbolic execution with search based testing to produce 
automatically test data for JAVA programs. A framework is proposed comprising two systems which 
collaborate to generate test data. The first system is a program analyser capable of performing dynamic and 
static program analysis. The program analyser creates the control flow graph of the source code under 
testing and uses a symbolic transformation to simplify the graph and generate paths as independent control 
flow graphs.  The second system is a test data generator that aims to create a set of test cases for covering 
each path. The implementation details of the framework, as well as the relevant experiments carried out on a 
number of JAVA programs are presented. The experimental results demonstrate the efficiency and efficacy 
of the framework and show that it can outperform the performance of related approaches.  

1 INTRODUCTION 

Many researchers have used control flow graphs to 
examine features of software and combine program 
analysis with other techniques such as the testing, 
slicing and optimisation. Recent research focuses on 
test data generators, systems that can generate test 
cases in relation to a testing coverage criterion. Most 
of the test data generators are either random (P. 
Godefroid, Klarlund, & Sen, 2005), if they generate 
test cases randomly, or dynamic, if they adapt their 
behaviour based on the generated data (Bertolino, 
2007). Several authors use optimisation algorithms 
to guide the search process as the problem of 
generating test data is formulated as an optimisation 
problem (Pargas, Harrold, & Peck, 1999).  

The problem, however, is that in some cases 
even optimisation algorithms may not be able to 
generate an adequate set of test cases with respect to 
the selected coverage criterion. This may be the 
result of the program complexity; for example 
executing a path may be more complicated if the 
path contains quite a few multiple conditions and 
hence the optimisation algorithm cannot achieve the 
desired value in each condition. 

This paper addresses the complexity challenge of 
programs and aims to develop an efficient algorithm 

that can simplify this complexity and work together 
with a test data generator to produce the target set of 
test cases. We present the design and 
implementation details of a framework that utilises 
symbolic execution with evolutionary algorithms to 
generate test cases for JAVA programs. The 
symbolic execution, which is embedded in the 
program analyser of the framework, transforms the 
original program to a set of simple paths, the 
individual testing of which is equivalent to the 
testing of the original program. The paper also 
presents a set of experiments that demonstrate the 
successful performance of the framework in terms of 
coverage adequacy. The framework is compared 
with a similar method found in the relevant literature 
and the results show that the framework can achieve 
better coverage with respect to the criterion selected.  

The rest of the paper is organized as follows: 
Section 2 presents some related work on this subject, 
while section 3 describes the proposed testing 
framework. Section 4 evaluates the efficacy of our 
testing approach and provides experimental results 
on a number of sample programs, as well as some 
commonly known programs that are used as 
benchmarks for comparison purposes. Finally, 
Section 5 concludes the paper and suggests future 
research steps. 
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2 RELATED WORK 

This paper proposes a hybrid software test data 
generation algorithm that utilizes symbolic 
execution to optimize (lower) the complexity of the 
programs under testing, and computational 
intelligent algorithms to generate test cases.  Most 
test data generation approaches use the source code 
to analyze the program and guide the test process 
(Bertolino, 2007; McMinn, 2004; A. Sofokleous & 
Andreou, 2008). 

Test data search can be utilized either on the 
complete program or according to a single path (A. 
Sofokleous & Andreou, 2007; Zhang, Xu, & Wang, 
2004). Generated data are usually evaluated 
according to testing criteria varying on the 
implementation complexity and the testing quality 
offered (Frankl & Weyuker, 1988); examples of the 
branch coverage criterion and the branch/condition 
coverage criterion are shown in (Soffa, Mathur, & 
Gupta, 2000), (A. A. Sofokleous & Andreou, 2008), 
respectively. Genetic Algorithms (GA) have been 
used with remarkable success in dynamic test data 
generation as they can efficiently search the huge 
input space and determine test cases for complicate 
programs (P. Godefroid, 2007). Part of GA’s success 
in this particular problem is the design of the fitness 
function; poor design of this function may misguide 
the search process and lead to over processing or 
even to the fitness landscape. The fitness landscape, 
which is one of the recent problems engaging 
researchers in this area, is a state of the GA where its 
fitness function gives the same value for almost all 
solutions; as a result, the search process cannot be 
guided to the right direction. Suppose the fitness 
function is designed to capture the distance from a 
search target, the fitness landscape may be caused in 
cases where more than one path can lead to a search 
target (i.e. path problem) or when one or more 
conditions take values from a small set of values (i.e. 
flag problem) (Baresel & Sthamer, 2003). To 
address the path problem, researchers in (McMinn, 
Harman, Binkley & Tonella, 2006) suggest 
generating test data for each path leading to its 
target, whereas to deal with the flag problem 
(Bottaci, 2002) a common way is to transform the 
program to multiple sub-programs that could 
maintain the same properties as the original version 
(Baresel, Binkley, Harman & Korel, 2004); in this 
case, generating test cases for each individual sub-
program is the same as generating test cases for the 
original program.  This paper uses both path 
isolation and symbolic program transformation to 
address efficiently both types of origins of the 

fitness landscape respectively. The advantage of our 
approach is that it addresses both the path and the 
flag problems using a novel, flexible method that 
combines symbolic execution with genetic 
algorithms.    

Symbolic testing was first reported by King et al. 
back in 1976 (King, 1976). The need for symbolic 
execution comes as a consequence of the increase of 
software complexity. Symbolic testing is an abstract 
definition which has two implementation methods. 
The first is Symbolic Execution and the second is 
Symbolic Evaluation. An example of the former, 
along with extended finite state machines, is used in 
(Zhang et al., 2004) to capture the program’s 
behaviour, extract feasible paths and generate test 
data for the program under testing. With the use of a 
control flow graph and symbolic execution, our 
approach extracts the paths of the program under 
testing and transforms each path to a set of 
equations. Each set of equations describes a set of 
conditions, the satisfaction of which implies the 
execution of the path. The combination of symbolic 
execution and control flow analysis has been also 
reported in (Kebbal, 2006), with some limitations, 
however, in the analysis of the graph which 
represents many statements in each block. The main 
problem with approaches following only symbolic 
testing is located in the loops; according to 
(Tillmann & Schulte, 2006), symbolic testing fails to 
reveal the needed test cases for executing a loop for 
a particular number of times. In our case, the 
equations describe the conditions that when satisfied 
can force such an execution for a specific loop, i.e. 
how to iterate k times the particular loop.  

3 SYMBOLIC 
TRANSFORMATION AND 
EVOLUTIONARY TEST DATA 
GENERATION  

This paper extends the Dynamic Test Data 
Generation Framework (DTDGF) described in (A. 
A. Sofokleous & Andreou, 2008). The DTDGF 
consists of two main systems, the Analysis and 
Testing systems. The former analyses programs, 
creates program representations such as control and 
data flow graphs, and simulates and reports the 
execution of a test case on the control flow graph. 
The Analysis System (AS) may be used by other 
systems performing testing, debugging, optimization 
and slicing. Currently, AS is integrated with a test 
data  generator,    a    system    that   utilizes   genetic
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Figure 1: The Symbolic Analysis & Transformation System between the Program Analysis System and the Test Data 
Generation System. 

algorithms to produce test cases in relation to control 
or data flow criteria.  

The system presented in this paper uses the 
control flow graphs produced by AS to transform 
paths to sets of symbolic equations. A new module, 
called Symbolic Analysis & Transformation System 
(SATS), works between the AS and a revised 
version of the Test Data Generation System (Figure 
1). 

Symbolic Analysis & Transformation System 
(SATS) aims to reduce the complexity of finding 
test cases to a simple problem of solving a set of 
equations. Specifically, SATS transforms each path 
to a set of equations with respect to the input 
variables; to cover a path, the set of equations must 
be solved by assigning values to the input variables.  
This set essentially describes the conditions that lead 
to the execution of a particular path. SATS works as 
follows: 

Path Localization. Initially SATS utilizes 
DTDGF’s control flow graph, on which a depth first 
search algorithm extracts all possible paths of the 
program under testing. Suppose that the control flow 
graph of a program under testing is G, then the set of 
extracted paths is expressed as 

{ }1 2,  ,  ....,  nP p p p= , where n is the total 

number of paths and path ip , where 1 ≤ i ≤ n, is 
also a sub-graph of the original graph G; note that a 
path must consist of at least one edge and two 
vertices. SATS saves each path as a sequence of 
numbers, e.g. { }3, 4, 5, 6ip = , where each number 

represents a particular node from the nodes of the 
original control flow graph G. Then the user can 
decide on which paths the generator should run; the 
user can choose for testing either all paths or a 
specific path. The next two steps, Path Selection and 
Symbolization, are executed consecutively, once for 
each selected path. 

Path Selection. SATS creates a new control flow 
graph for path ip .  The new control flow graph is a 
sub-graph of the original graph. Both graphs are 
stored by the system, while the graph in use is the 
one representing the selected path; this graph will be 
analysed in the next step .   

Path Symbolization. Symbolic Execution of path 
step ip involves transforming all local variables to 
their symbolic counterpart. A symbolic value is 
essentially the equivalence of a variable expressed as 
a function of only the input parameters of the 
program. This transformation is executed with an 
up-down algorithm that starts from the first node of 
the selected control flow graph and symbolically 
replaces each node’s expressions using equivalent 
expressions that include the input variables. The 
objective is to reduce the nodes to a set of nodes that 
include only constraints expressed in relation to the 
input variables. When all the transformations have 
been made, the algorithm focuses on remaining 
nodes, which are path constraints. These constraints 
are converted to their TRUE equivalents; an example 
is shown in Table 1, where A and B are conditions, 
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e.g. AؠX>10 and BؠY൏20‐X,  where  variables X 
and Y are the input parameters.  

Table 1: Predicate transformation. 

Original Path Constraint 
 

Path Constraint 
Converted to its TRUE Equivalent

A && B ֜ !(A&&B) ؠ !A || !B

A || B ֜ !(A||B) ؠ !A && !B

Test Data Generation. The test data generator 
utilises a genetic algorithm for each selected path. 
Note, that if during the execution of a path pi, a test 
case is found for another path from the selected list 
of paths, say pz, then the test data generator removes 
path pz from the list and continues with the rest of 
the unexecuted paths. 

The encoding of a chromosome in the GA 
represents a solution as a series of k genes, with k 
being the number of input parameters embedded in 
the set of path constraints. The objective is to 
determine the values of the parameters that can solve 
the equations. For a given path Ppz ∈ , the fitness 
function is expressed as 

∑= +
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where C is the chromosome to be evaluated and PC 
is the set of equations of path zp , i.e. the  path 
constraints as provided by the symbolic execution; 
pci represents the ith constraint (or equation) 
and PCpci ∈ . The expression )( ipcpf  evaluates 
each constraint according to the value (i.e. test case) 
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If path constraint pci consists of two predicates 
connected with the logical operand “AND” (&&) 
then the value of pf(pci) is the minimum between 
pf(A) and pf(B), as  pci can be evaluated to TRUE if 
and only if each part is evaluated to true. If path 
constraint pci consists of two predicates connected 
with the logical operand “OR” (||) then the value of 
pf(pci) is the summation of pf(A) and pf(B), as pci 
can be evaluated to TRUE if and only if at least one 
of the parts is evaluated to TRUE. If path constraint 
pci consists of only one predicate, i.e. pci = A, then 
pf(pci) is the value of distance ds(A). For ds(A), if 

the evaluation of A is FALSE, then we transform 
constraint A to the form of C≥0, or C>0, or C≠0, or 
C=0, e.g., if A=x>y then A≡x-y>0. Therefore, ds(A) 
may be expressed as: 
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SATS starts with the Initial Population 
Generation, where it generates chromosomes 
according to the structure of the selected path. Then 
a repetitive cycle of Evaluation, Reproduction 
(Crossover & Mutation) and Selection follows. 
Repetition of computation cycles is terminated either 
when the maximum number of generations has been 
reached or a test case that executes completely the 
path has been found. If the GA fails to find a 
suitable test case then the path is marked as 
infeasible (possible dead path). SATS continues to 
the next path, if there is one, otherwise it terminates 
the testing process and calculates the coverage. 

Figure 2 presents the prototype software 
application, which was developed to support the 
whole process. At the right part of this figure the 
main screen of the application that creates the 
control flow graph of the program under testing is 
depicted; the lower part of Figure 2 presents the test 
cases that were generated. Users can interact with 
the application and select one or more test cases to 
inspect both graphically (i.e. on the control flow 
graph) and numerically (in percentage terms) the 
coverage achieved.   

 

 
Figure 2: The prototype software application. 
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Table 2: Experiments on a pool of randomly generated programs with varying LOC and complexity. 

AA LOC # If 
statements Complexity 

Our Algorithm 
edge 

coverage 
condition 
coverage 

edge/condition 
coverage 

1 5 1 multiple 
2 single Low 100% 100% 100% 

2 12 1 multiple 
2 single Low 100% 100% 100% 

3 14 2 multiple 
4 single Medium 100% 100% 100% 

4 11 2 multiple 
6 single Medium 100% 84.61% 92.3% 

5 16 3 multiple 
12 single High 100% 87.5% 93.75% 

6 16 3 multiple 
12 single High 100% 87.5% 93.75% 

7 16 3 multiple 
15 single Very High 100% 73.33% 86.66% 

 
4 EXPERIMENTAL RESULTS 

This section presents a list of experiments carried 
out with the proposed testing framework on a pool 
of standards and randomly generated JAVA 
programs. The JAVA programs used in experiments 
presented in this work can be retrieved from 
http://www.cs.ucy.ac.cy/~asofok/testing/9.html. 

A series of initial trial experiments led us to the 
following settings: The GA’s population size was set 
to 200 chromosomes, the probabilities of crossover, 
mutation and switch-mutation’s step equal to 0.45, 
0.10 and 0.50, respectively, and the maximum 
number of generations to 1000. The Roulette Wheel 
was defined as the selection operator and also the 
feature of elitism was activated, that is, the 
algorithm always passes the best chromosome 
unchangeable to the next generation. The testing 
framework run on a CENTRINO duo 1.83 GHz with 
1.50 GB Ram and JDK 1.5 operating with the 
Windows XP OS. 

As previously mentioned, through the proposed 
framework the user is able to select one or more 
paths to produce test data for. The framework runs 
consecutively a genetic algorithm for each selected 
path; if a test case that executes the path is found 
then the framework stores this test case and 
continues to the next path, if there is one. Testing 
adequacy was assessed using the edge, condition and 
combined edge/condition coverage criteria. Edge 
coverage is calculated as the number of edges 
executed over the total edges of the control flow 
graph of the program under testing. To find the 
executed edges, the framework iterates each test 
case found to execute a path and adds its executed 

edges. Likewise, condition coverage is calculated as 
the average number of conditions evaluated to TRUE 
and conditions executed to FALSE over the total 
number of conditions of the control flow graph of 
the program under testing. Note that a condition 
must be executed in order to evaluate to one of the 
two values (i.e. short circuiting, a state where the 
first condition of a multiple condition can determine 
the whole result and therefore the remaining 
conditions are not evaluated by the virtual machine). 
Finally, the edge/condition coverage is calculated as 
the average value of the edge coverage and the 
condition coverage.   

Table 2 shows the first set of experiments that 
involves seven randomly generated programs 
varying in terms of complexity expressed in relation 
to LOC (lines of code), number of conditions, and 
type and usage (complexity) of conditions (e.g. 
simple and multiple). The results show that the 
framework can achieve full edge coverage for every 
program listed in the table, while the lower condition 
coverage is 73.33% for the 7th program which is the 
largest in terms of LOC and the most complicated; 
complexity is expressed as a function of LOC and 
conditions.   

The second set of experiments compares the 
performance of the framework against a symbolic 
testing approach called JCUTE (Sen, Marinov, & 
Agha, 2005). This set of experiments selected the 
first three randomly generated programs of Table 2 
and applied both approaches. The results of Table 3 
show that both frameworks have equivalent 
performance for the first two programs; as 
complexity  rises,   though,   our  framework  clearly 
outperforms the JCUTE approach as seen in the case 
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Table 3: Comparison of our algorithm against JCUTE (Sen et al., 2005). Experiments on three randomly generated 
programs with varying complexity. 

AA LOC # If 
statements Complexity 

JCUTE[REF] Our Algorithm 
edge 

coverage 
condition 
coverage 

edge/condition 
coverage 

edge 
coverage 

condition 
coverage 

edge/conditi
on coverage 

1 5 1 multiple 
2 single Low 100% 100% 100% 100% 100% 100% 

2 12 1 multiple 
2 single Low 100% 100% 100% 100% 100% 100% 

3 14 2 multiple 
4 single Medium 81.25% 

 75% 78.125% 100% 100% 100% 

Table 4: Comparison of our algorithm against JCUTE (Sen et al., 2005). Experiments on the TriangleClassification and the 
FindMaximum standard programs (benchmarks).  

Benchmark LOC #If 
statements Complexity 

JCUTE (Sen et al., 2005) Our Algorithm 
edge 

coverage 
condition 
coverage 

edge/condition 
coverage 

edge 
coverage 

condition 
coverage 

edge/condition 
coverage 

Triangle 
Classification 29 9 High 15.78% 14.7% 15.24% 95.73% 88.23% 91.48% 

FindMaximum 12 2 Low 85.71% 75% 80.35% 100% 100% 100% 
 
of the third program. In this case, our framework 
again, achieves full coverage in terms of the edge, 
condition and combined edge/condition criteria, 
whereas the other approach fails to reach this level 
of coverage in any of the aforementioned criteria. 

Table 4 shows the third set of experiments, 
which compares the two approaches over two well 
known standard programs, the 
TriangleClassification and the FindMaximum 
programs. The results show the efficiency of our 
framework which manages to outperform 
dramatically the performance of the other approach. 
For example, in the case of the 
TriangleClassification, our framework achieves 
91.48% edge/condition coverage, whereas the 
edge/condition coverage of the other approach is 
only 15.25%. In the case of the FindMaximum 
program, our framework manages to achieve full 
coverage in each of the three coverage criteria. 

5 CONCLUSIONS 

This paper presented a framework that combines the 
advantages of symbolic execution and evolutionary 
algorithms for solving the complicated problem of 
generating automatically an adequate set of test 
cases for a given program written in JAVA. The 
framework comprises a program analyser, a 
symbolic executer and a test data generator. The 
program analyser uses the source code of the 
program under testing for extracting information, 

such as variables name and scope, and creating 
program models, such as control flow graphs. The 
symbolic executer is responsible for simplifying and 
transforming a path to a set of path constraints. The 
test data generator solves the path constraints using 
genetic algorithms. The user tunes the genetic 
algorithm by specifying several preferences, such as 
input parameter boundaries, population size, number 
of evolutions etc.  

Coverage adequacy was assessed using three 
known criteria, namely condition, edge and 
combined condition/edge coverage. The proposed 
testing framework was evaluated using both 
standard and randomly generated JAVA programs. 
The results obtained using different sets of 
experiments demonstrated that the proposed 
framework performs efficiently on different types of 
programs in terms of size and complexity. Further 
results, which compared the performance of our 
framework against a similar approach revealed the 
superiority and efficiency of the proposed approach. 

Future work will carry out more experiments and 
will perform more comparisons of our framework. 
The experiments will use more standard programs 
richer in LOC and number of conditions. Future 
work will also consider improving the performance 
of the symbolic algorithm so as to be able to 
simplify further the path constraints and allow the 
test data generator to achieve full coverage even for 
programs with higher complexity that those listed in 
Table 2. Currently, we are developing an object 
oriented model that will be able to capture the 
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features of both object-oriented and graphically 
depict them on control flow graphs with processing 
via UML diagrammatical notations. Our future 
research steps will attempt to incorporate this model 
into the existing framework and extend the symbolic 
executer so as to be able to work with the features of 
the new model.  
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