
An Automatic Transformation of Event B Models Into
UML Using an Interactive Inference Engine THINKER

Leila Jemni Ben Ayed, Mohamed Nidhal Jelassi

Research Unit of Technologies of Information and Communication
ESSTT, 5, Avenue Taha Hussein, P.B. : 56, Bab Menara, 1008 Tunis, Tunisia

Faculty of Science of Tunis

Abstract. In this paper, we describe Thinker, which can be considered as an in-
teractive based-rules inference engine that supports inference rule where for
some selected concepts we can have different results. This is the case of interac-
tive transformation approach generating simultaneously different concepts from
initial ones. For example, the transformation of formal notations from semi-
formal ones, especially the application of rule-based approach translating B ab-
stract machines into UML class diagrams. In addition, Thinker allows us to se-
lect one solution from a set of proposed solutions and to modify previous selec-
tions if there an ambiguous choice. Our inference engine is also generic and can
be used in more than one domain. By the translation from B to UML class dia-
gram, we illustrate our tool.

Keywords. Event B, Inference engine, Interactivity, Modeling, UML, Transla-
tion

1 Introduction

The complementary characteristic of formal and semi-formal methods has incited
several research teams to propose approaches to integrate them. The integration of
UML and the B methods has been in particular an interesting topic of several works.
These two languages are complementary: UML [8] is a semi-formal method that is
more accessible to the untrained user and provides a rich array of concepts that clarify
the structure of a system. The B method, on the other hand, is a formal method based
on relatively few and precisely defined mathematical concepts, and is very adequate
for formal verification. B has been employed in different Security applications, re-
cently Invariant Checking based on event B of Secrecy in Group Key Protocols has
been proposed [4]. This distinction is also reflected in existing tool support: tools for
UML are centered around graphical editors, they often allow for simulation and code
generation, but otherwise offer rather limited (mostly syntactic) analysis techniques.
The B method [2] is supported by tools such as Atelier B and BToolkit that promi-
nently include a theorem prover to ensure the correctness of a development. It is there-
fore desirable to be able to propose a development approach which uses these two

Jemni Ben Ayed L. and Nidhal Jelassi M. (2009).
An Automatic Transformation of Event B Models into UML using an Interactive Inference Engine Thinker.
In Proceedings of the 7th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
119-124
DOI: 10.5220/0001998801190124
Copyright c© SciTePress

notations allowing user to go back and forth between B and UML. Previous works
have mostly focused on formalizing UML models in formal methods such as B, aim-
ing at the verification of UML designs and, consequently, at the elimination of incon-
sistencies and ambiguities. One problem with this approach is that such translations,
aiming to be as comprehensive as possible, tend to result in unnatural and cluttered B
specifications that are hard to understand and reason about. Another problem is the
traceability of errors detected at the B level back to the UML model. For this reason,
its interesting to propose a process that aims to construct an UML view of B models.
The additional structure offered by UML could help to clarify the B specification
better than the set theoretic language on which B is based.

Idani and Ledru [5] propose two steps to translate B specification into class dia-
grams: the first step gives a systematic transformation of a B specification into a class
diagram by applying some rules. This diagram contains a lot of classes since they are
derived from all the sets presented in the B machine. This work does not allow the
generation of classes from different B concepts because it limits itself to abstract sets.
The second step joins these classes to the B operations to keep the classes that seem to
be the most significant. In the same way, Tatibouet and Hammad [10] propose an
automatic transformation process (B2UML) of B machines into UML class and state-
chart diagrams. However it is not clear when to choose between the transformation
into a class diagram or a statechart one since a machine could be derived in two types
of diagrams. Because we really think that the parallel development of a class diagram
and statechart diagrams is more appropriate, and that because the same concept in B
models can have different corresponding results in UML class diagrams, it is not rea-
sonable to hope for a fully automatic translation. We adopt a different solution for the
derivation of UML models from B specifications.

Our contribution consists of an interactive transformation approach for generating
simultaneously different concepts of class and statechart-UML diagrams from the
features of an abstract B specification. We do not constrain the modeler to a specific
style of translation. The proposed approach is guided by heuristics which give to the
user different transformation possibilities and let him to choose the one that seems to
be adequate but which can be overridden by the modeler, subject to integrity con-
straints that ensure the coherence of the translation. In our previous work [3], we have
presented a first step in this direction by giving a rule-based approach for transforming
B abstract machines into UML diagrams. We evolve this work by giving in this paper
an interactive inference engine THINKER supporting the derivation of UML class
diagrams from event B models.

2 Translation Approach

Our approach is composed of three steps. The first one involves the generation of
classes from some features of B specification by applying some rules from which it
generates attributes, associations, states and other relations (heritance, composition,
dependence). The second step enriches this diagram by adding new classes and gene-
rating statechart diagrams for certain classes. The third step transforms operations. It
depends on the model produced by the preceding steps to generate methods for classes

120

and transitions of object states. This transformation depends precisely on transforma-
tions done on variables used in these operations. For example, if the variables used are
transformed in states then the corresponding operation will be transformed into a
transition between states obtained from the pre-condition and states obtained from the
post-condition. On the other hand, if these variables are transformed into attributes,
then B operations will be transformed into operations in the corresponding class in the
class diagram. Corresponding translation rules are given in [3].

3 THINKER: An Interactive Inference Engine

THINKER is an interactive inference engine supporting the derivation of UML class
diagrams from event B models, which at each step allows us to select one solution
from set of proposed solutions if there is an ambiguous choice and to modify previous
decisions. Different inference engines have been developed for the construction of
rules or object based expert systems such as CLIPS (Johnson, 1994), PROLOG [9] or
JESS [7]. Despite the different characteristics of these inference engines, there is a
common failure point: the lack of interactivity between the user and the engine in the
case of ambiguity between several rules. We need at each derivation step to choose
one rule if there are different rules with the same premise and also to backtrack to
change previously selected rules. THINKER is an interactive inference engine operat-
ing by forward chaining. It employs a top-down method which takes facts as they
become available and attempts to draw conclusions (from satisfied conditions in rules)
which lead to actions being executed. The knowledge base of an inference engine is
composed of a set of production rules SR and a set of facts SF. The set SF is generated
from a B model using a developed parser and SR is the set of formalized translation
rules. After loading SF and SR, THINKER starts its execution by extracting the set of
rules that can be applied: RuleApp.

The conflict resolution strategy of THINKER is to fire the rule which the system
designer defined first. Forward chaining continues until it encounters an ambiguity,
i.e, in RuleApp we find several rules with the same set of premises. In this case, the
interactivity between THINKER and the user is required. The user decides which rule
to apply. In addition, the user is shown the result of each candidate rule before choos-
ing one of them. Note that after each application of a rule, SF is incremented with
potential new results. The set of facts is presented to the user as a result of his choice.
After the first ambiguity, a boolean variable Reb which is initialized to 0 changes of
value to 1. This is used to know when we must propose to the user the possibility of
backtracking. So, when Reb = 1, after every application of a rule, Thinker asks the
user if he wants to backtrack. If the answer is affirmative, our engine proposes to de-
fine the Level of backtracking. SR can be decomposed on SR1, … SRn, that is, we de-
fine n levels of inference. The user defines level = i if the concerned ambiguity is in
the rules SRi; after the user selects a Level, our inference engine restores SF by remov-
ing all facts added after the Level point. We mean by Level point, the ambiguity that
Thinker will represent to the user for reviewing his choice.
If the required level is different from the actual one, Thinker will reload all the rules
of the SR corresponding to level. Moreover, in the process of backtracking, Thinker

121

analyzes the rules which were carried out and which have a link with the conclusions
of the last rule executed before the request of backtracking. Thus, the rule re-presented
by Thinker to the user, depends directly or indirectly of the last facts added. Thinker is
a program which terminates since the number of SR is bounded and the set of rules in
each SR is also bounded.

4 Case Study

We present in Figure 1 the B specification of a system to control the access of persons
to buildings.

Fig. 1. The running example

 Fig. 2. Initial SF of the running example Fig. 3. The initial set of rules

R1 abstract_set(!A;!n;!m) > set(!A)
R2 relation(!x;!A;!B), set(!A) > class(!A)
R3 function(!x;!A;!B), set(!A) > class(!A)
R4 relation(!x;!A;!B), class(!A), class(!B) > association(!x;!A;!B)
R5 function(!x;!A;!B), class(!A), class(!B) > association(!x;!A;!B)
R6 constant(!x), association(!x;!A;!B) > is_frozen(!x)
R7 machine(!m), variable(!x;!m), type(!x; belong) > class(!m),

attribute_1_value(!x;!m)
R8 machine(!m), variable(!x;!m), type(!x; included) > class(!m),

attribute_∗_value(!x;!m)
R9 machine(!m), constant(!x;!m), type(!x; belong) > class(!m),

attribute_1_value(!x;!m)
R10 variable(!A;!m), inclusion(!A;!B), association(!B;!C;!D) >

association(!A;!C;!D)
R11 variable(!A;!m), inclusion(!A;!B), association(!B;!C;!D) >

attribute(!A;!C), type_attribut(!A;!D)
R12 variable(!A;!m), inclusion(!A;!B), association(!B;!C;!D) >

class_association(!B;!C;!D), attribute(!A;!B), type_attribut(!A;
booleen)

R13 variable(!A;!m), inclusion(!A;!B), relation(!B;!C;!D)
>class_asociation(!C_!D;!C;!D), attribut(!A;!C_!D)

R14 machine(!m), class(!m), set(!A), class(!A) > composi-
tion_relation(!A;!m)

Machine(BUILDING)
Abstract_set(PERS;a;b)
Abstract_set(BAT;a;b)
Relation(aut;PERS;BAT)
Relation(com;BAT;BAT)
Function(sit ;PERS ;BAT)
Inclusion(sit ;aut)
Constant(aut ;BUILDING)
Con-
stant(com ;BUILDING)
Variable(sit ;BUILDING)
Type(aut;belong)
Type(com;belong)
Type(sit;belong)
Type(sit;included)

122

Persons and buildings are represented respectively by abstract sets PERS and

BAT, the authorization of persons to access to buildings and the communication be-
tween buildings are represented respectively by two constant relations aut and com.
For safety, the situation of a person can be only in an authorized building; also a per-
son can pass from a building to another only if these two buildings communicate and
if the second building is authorized for this person. The situation of a person is
represented by a total function sit.

The first step of the transformation of the B specification consists of using the
THINKER parser. This parser will provide all the initial facts of the SF illustrated by
Figure 2. Then, begin the inference process. Our inference engine analyzes the SR
rules (Figure 3), one by one, according rules order in SR.

The first facts added to SF are set(PERS) and set(BAT) as shown in Figure 4.
These are obtained by rule R1. Afterwards, THINKER will apply the rules R2 and R3
which transform PERS and BAT into classes. R4, R5 and R6 transform aut into a fro-
zen association between PERS and BAT. After the application of the rule R9,
THINKER will meet the first ambiguity, between R10, R11 and R12.

There are three possible representations for the variable sit.
All these possible representations offered by THINKER are illustrated by Figure

4. We suppose that the user choose the rule R12, i.e., the variable sit is transformed
into a Boolean variable in the class-association aut.

After choosing the rule which will be applied, our inference engine offers, before
analyzing next rules, the opportunity to the user to review his choice. If the user does
not want to backtrack, THINKER continues its exploration. The next rules applied are
R13 and R14 that add the facts: class-association(PERS_BAT;PERS;BAT) and at-
tribut(sit;PERS_BAT) to the SF.

Fig. 4. Different representations of the variable Sit

When the user loads a new SR, the level is incremented. The ambiguity is recorded
in a sort of history allowing the user to backtrack at each moment of the execution.
Every ambiguity found by the program is set up like a break point. Moreover,
THINKER records this ambiguity according the last fact found before the backtrack-
ing is requested and restore the state of the SF just before ambiguity (L).

123

The different representations of the variable sit are presented again to the user. We
suppose that the user will choose the rule R11 that transforms sit into an attribute of
the class PERS. The inference process continues as far as there is a rule that can be
applied.

5 Conclusions

In this paper we have presented an interactive inference engine THINKER. It is a
generic tool which can be used to support inference requiring user intervention to
select one rule from several rules having the same premises. THINKER uses back-
tracking to allow the modification of previous selected rules if there an ambiguous
choice. We have illustrated this tool over a translation process of B models into UML
diagrams. This case requires interactivity because we do not constrain the developer to
a specific style of translation. The translation is guided by heuristics which require
user validation.

References

1. Moore, R., Lopes, J., 1999. Paper templates. In TEMPLATE’06, 1st International Confe-
rence on Template Production. INSTICC Press.

2. Abrial, J.-R., 1996. Extending B without changing it (for developing distributed ystems). In
1st Conference on the B method, Putting into Practice Methods and Tools for Information
System Design. pp. 169-190, Nantes.

3. Fekih, H., Jemni Ben Ayed, L., Merz, S., 2006. Transformation of B Specifications into
UML Class Diagrams and State Machines. In: 21st Annual ACM Symposium on Applied
Computing, pp. 1840-1844, Dijon.

4. Gawanmeh, A., Tahar, S., Jemni Ben Ayed, L., 2008. Event-B based Invariant Checking of
Secrecy in Group Key Protocols, The 33rd IEEE Conference on Local Computer Networks
(LCN), Workshop on Network Security (WNS) (LCN 2008), Montreal

5. Idani, A., Ledru, Y., 2006. Dynamic graphical UML views from formal B specifications.
In Information and Software Technology, Vol 48, n°3. pp. 154-169.

6. Johnson, L.B., 1994 Third conference on Clips proceedings.
7. Jovanovic, J., Gasevic, D., Devedzic, V., 2004. A GUI for Jess. Expert Systems with Appli-

cations. Elsevier. pp. 625-637.
8. Object Management Group. Unified Modeling Language Specification, Version 2.0. Speci-

fication, OMG (2003). http://www.uml.org/.
9. Schnupp, P.H., 1989. Building Expert Systems in Prolog. Munich.
10. Tatibouet, B., Hammad, H, Voisinet, H.C., 2002. From an abstract B specification to UML

class diagrams. In 2nd IEEE Intl. Symp. Signal Processing and Information Technology
(ISSPIT'2002), Marrakech, Morocco.

124

