An Automatic Transformation of Event B Models I nto
UML Using an Interactive Inference Engine THINKER

Leila Jemni Ben Ayed, Mohamed Nidhal Jelassi

Research Unit of Technologies of Information and Communication
ESSTT, 5, Avenue Taha Hussein, P.B. : 56, Bab Menara, 1008 Tunis, Tunisia
Faculty of Science of Tunis

Abstract. In this paper, we describe Thinker, which can be considered as an in-
teractive based-rules inference engine that supports inference rule where for
some selected concepts we can have different results. This is the case of interac-
tive transformation approach generating simultaneously different concepts from
initial ones. For example, the transformation of formal notations from semi-
formal ones, especially the application of rule-based approach translating B ab-
stract machines into UML class diagrams. In addition, Thinker allows us to se-
lect one solution from a set of proposed solutions and to modify previous selec-
tions if there an ambiguous choice. Our inference engine is also generic and can
be used in more than one domain. By the translation from B to UML class dia-
gram, we illustrate our tool.

Keywords. Event B, Inference engine, Interactivity, Modeling, UML, Transla-
tion

1 Introduction

The complementary characteristic of formal and semi-formal methods has incited
several research teams to propose approaches to integrate them. The integration of
UML and the B methods has been in particular an interesting topic of several works.
These two languages are complementary: UML [8] is a semi-formal method that is
more accessible to the untrained user and provides a rich array of concepts that clarify
the structure of a system. The B method, on the other hand, is a formal method based
on relatively few and precisely defined mathematical concepts, and is very adequate
for formal verification. B has been employed in different Security applications, re-
cently Invariant Checking based on event B of Secrecy in Group Key Protocols has
been proposed [4]. This distinction is also reflected in existing tool support: tools for
UML are centered around graphical editors, they often allow for simulation and code
generation, but otherwise offer rather limited (mostly syntactic) analysis techniques.
The B method [2] is supported by tools such as Atelier B and BToolkit that promi-
nently include a theorem prover to ensure the correctness of a development. It is there-
fore desirable to be able to propose a development approach which uses these two

Jemni Ben Ayed L. and Nidhal Jelassi M. (2009).

An Automatic Transformation of Event B Models into UML using an Interactive Inference Engine Thinker.

In Proceedings of the 7th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
119-124

DOI: 10.5220/0001998801190124

Copyright © SciTePress



120

notations allowing user to go back and forth betwBeand UML. Previous works
have mostly focused on formalizing UML models imnfi@l methods such as B, aim-
ing at the verification of UML designs and, conseafly, at the elimination of incon-
sistencies and ambiguities. One problem with tpigreach is that such translations,
aiming to be as comprehensive as possible, tengstdt in unnatural and cluttered B
specifications that are hard to understand andoreabout. Another problem is the
traceability of errors detected at the B level backhe UML model. For this reason,
its interesting to propose a process that aimststeuct an UML view of B models.
The additional structure offered by UML could hetp clarify the B specification
better than the set theoretic language on whichligased.

Idani and Ledru [5] propose two steps to transkatepecification into class dia-
grams: the first step gives a systematic transfoomaf a B specification into a class
diagram by applying some rules. This diagram costai lot of classes since they are
derived from all the sets presented in the B maxhirhis work does not allow the
generation of classes from different B conceptsabse it limits itself to abstract sets.
The second step joins these classes to the B aperab keep the classes that seem to
be the most significant. In the same way, Tatibared Hammad [10] propose an
automatic transformation process (B2UML) of B maelsi into UML class and state-
chart diagrams. However it is not clear when toodgobetween the transformation
into a class diagram or a statechart one sincechimacould be derived in two types
of diagrams. Because we really think that the felrdevelopment of a class diagram
and statechart diagrams is more appropriate, amtdbtcause the same concept in B
models can have different corresponding resultdNfi class diagrams, it is not rea-
sonable to hope for a fully automatic translatidfe adopt a different solution for the
derivation of UML models from B specifications.

Our contribution consists of an interactive transfation approach for generating
simultaneously different concepts of class andestart-UML diagrams from the
features of an abstract B specification. We doaootstrain the modeler to a specific
style of translation. The proposed approach iseaglidy heuristics which give to the
user different transformation possibilities andHah to choose the one that seems to
be adequate but which can be overridden by the lgdgubject to integrity con-
straints that ensure the coherence of the traasldith our previous work [3], we have
presented a first step in this direction by givingule-based approach for transforming
B abstract machines into UML diagrams. We evolis Work by giving in this paper
an interactive inference engine THINKER supportthg derivation of UML class
diagrams from event B models.

2 Trandation Approach

Our approach is composed of three steps. The divstinvolves the generation of
classes from some features of B specification tplyémy some rules from which it
generates attributes, associations, states and wladions (heritance, composition,
dependence). The second step enriches this didgyadding new classes and gene-
rating statechart diagrams for certain classes.tfing step transforms operations. It
depends on the model produced by the preceding siegenerate methods for classes



121

and transitions of object states. This transforomatepends precisely on transforma-
tions done on variables used in these operatimrse¥ample, if the variables used are
transformed in states then the corresponding dperatill be transformed into a
transition between states obtained from the prelition and states obtained from the
post-condition. On the other hand, if these vadakdre transformed into attributes,
then B operations will be transformed into operagit the corresponding class in the
class diagram. Corresponding translation rulegaen in [3].

3 THINKER: An Interactive Inference Engine

THINKER is an interactive inference engine suppaytthe derivation of UML class
diagrams from event B models, which at each stEpvalus to select one solution
from set of proposed solutions if there is an ambig choice and to modify previous
decisions. Different inference engines have beereldped for the construction of
rules or object based expert systems such as QUidtison, 1994), PROLOG [9] or
JESS [7]. Despite the different characteristicgthafse inference engines, there is a
common failure point: the lack of interactivity laeten the user and the engine in the
case of ambiguity between several rules. We neezhett derivation step to choose
one rule if there are different rules with the samemise and also to backtrack to
change previously selected rules. THINKER is aaranttive inference engine operat-
ing by forward chaining. It employs a top-down noethwhich takes facts as they
become available and attempts to draw conclusioos (satisfied conditions in rules)
which lead to actions being executed. The knowldafge of an inference engine is
composed of a set of production ruffRand a set of factSF. The seSFis generated
from a B model using a developed parser 8Rs the set of formalized translation
rules. After loadingSF andSR THINKER starts its execution by extracting thé ale
rules that can be applieRuleApp

The conflict resolution strategy of THINKER is tiwef the rule which the system
designer defined first. Forward chaining continuesl it encounters an ambiguity,
i.e, in RuleAppwe find several rules with the same set of presise this case, the
interactivity between THINKER and the user is reqdi The user decides which rule
to apply. In addition, the user is shown the restitach candidate rule before choos-
ing one of them. Note that after each applicatibm oule, SF is incremented with
potential new results. The set of facts is presktdehe user as a result of his choice.
After the first ambiguity, a boolean variatRebwhich is initialized to 0 changes of
value to 1. This is used to know when we must psepto the user the possibility of
backtracking. So, wheReb = 1 after every application of a rule, Thinker aske t
user if he wants to backtrack. If the answer igrattive, our engine proposes to de-
fine theLevelof backtrackingSRcan be decomposed &R, ... SR, that is, we de-
fine n levels of inference. The user defirfesel = i if the concerned ambiguity is in
the rulesSR; after the user selects a Level, our inferencénengstoreSF by remov-
ing all facts added after the Level point. We mbgrievel point, the ambiguity that
Thinker will represent to the user for reviewing bhoice.
If the required level is different from the actwade, Thinker will reload all the rules
of the SR corresponding to level. Moreover, in the procesbaxktracking, Thinker



122

analyzes the rules which were carried out and whaoke a link with the conclusions
of the last rule executed before the request dftbacking. Thus, the rule re-presented
by Thinker to the user, depends directly or indlyecf the last facts added. Thinker is
a program which terminates since the number ofsSsbunded and the set of rules in

eachSRis also bounded.

4 Case Study

We present in Figure
to buildings.

1 the B specification of aesysto control the access of persons

MACHINE Batiment

sir
INVARIANT
awt € PERS «+ BAT ~ com € BAT «— BAT A
£t € PERS — BAT rostt Saur o comnid{BAT) ={}
s

P-
o (sir(p). B) = com
sit{p) =p

Fig. 1. The running example

Machine(BUILDING)
Abstract_set(PERS;a;b)
Abstract_set(BAT;a;b)
Relation(aut;PERS;BAT)
Relation(com;BAT;BAT)
Function(sit ;PERS ;BAT)
Inclusion(sit ;aut)
Constant(aut ;BUILDING)
Con-

stant(com ;BUILDING)
Variable(sit ;BUILDING)
Type(aut;belong)
Type(com;belong)
Type(sit;belong)
Type(sit;included)

R1 abstract_set(!A;In;Im) > set('A)

R2 relation(!x;!A;!B), set('A) > class(!A)

R3  function(!x;!A;!B), set(!A) > class(!A)

R4  relation(!x;!A;!B), class(!A), class(!B) >saociation(!x;!A;!B)

R5 function(!x;!A;!B), class(!A), class(IB) >saociation(!x;!A;!B)

R6  constant(!x), association(!x;!A;'B) > is_fen('x)

R7  machine(!m), variable(!x;!m), type(!x; belong)xtass(!m),
attribute_1_value('x;'m)

R8  machine(!m), variable(!x;!m), type(x; includes)class(!Im),
attribute [0 value('x;!m)

R9  machine(m), constant(Ix;!m), type(!x; belongtlass('m),
attribute_1_value(!x;'m)

R10 variable('A;!m), inclusion(!A;!B), associatidi(!C;!D) >
association(!A;!C;!D)

R11 variable('A;!m), inclusion(!A;!B), associatidB(!C;!D) >
attribute(!A;!C), type_attribut(!A;!D)

R12 variable('A;!m), inclusion(!A;!B), associatidi(!C;!D) >
class_association(!B;!C;!D), attribute(!A;!B), typattribut('A;
booleen)

R13 variable('A;!m), inclusion(!A;!B), relation(!BC;!D)
>class_asociation(IC_!D;!C;!D), attribut(!A;!C_ID)

R14 machine(!m), class(!m), set(!A), class(!A) >hgmsi-
tion_relation(!A;!m)

Fig. 2. Initial SF of the

running example Fig. 3. The initial set of rules




123

Persons and buildings are represented respectselgbstract sets PERS and
BAT, the authorization of persons to access todingls and the communication be-
tween buildings are represented respectively by damstant relationaut andcom
For safety, the situation of a person can be anlgn authorized building; also a per-
son can pass from a building to another only iséhewo buildings communicate and
if the second building is authorized for this persdhe situation of a person is
represented by a total functisit.

The first step of the transformation of the B sfieation consists of using the
THINKER parser. This parser will provide all thetial facts of the SF illustrated by
Figure 2. Then, begin the inference process. Oi@rénce engine analyzes tB&
rules (Figure 3), one by one, according rules oml&R

The first facts added t8F are set(PERS)and set(BAT)as shown in Figure 4.
These are obtained by rule R1. Afterwards, THINKER apply the rules R2 and R3
which transformPERSandBAT into classes. R4, R5 and R6 transf@utinto a fro-
zen association betwedRERS and BAT. After the application of the rule R9,
THINKER will meet the first ambiguity, between R1IR]11 and R12.

There are three possible representations for thablasit.

All these possible representations offered by THEWRKare illustrated by Figure
4. We suppose that the user choose the rule RL2the variablesit is transformed
into a Boolean variable in the class-association

After choosing the rule which will be applied, doference engine offers, before
analyzing next rules, the opportunity to the userelview his choice. If the user does
not want to backtrack, THINKER continues its explosn. The next rules applied are
R13 and R14 that add the factdass-association(PERS BAT;PERS;BARY at-
tribut(sit;PERS_BAT)o theSFE

* T

Exbrufes Langage Nide By T
ackiosioson

’ A
e SrTERI T e EAT

Fichier

Rule 1K 5 -|

|eom timznre

BeTZ FEREZ
= aulefromerax

cA echipzenan | pamimc BATIO

feom <inzansz

Huks 1196 1 =il

bATS FERS3

Fig. 4. Different representations of the varia®ie

When the user loads a n&R the level is incremented. The ambiguity is reeadrd
in a sort of history allowing the user to backtratkeach moment of the execution.
Every ambiguity found by the program is set up likebreak point. Moreover,
THINKER records this ambiguity according the lasttffound before the backtrack-
ing is requested and restore the state oSthgist before ambiguity (L).



124

The different representations of the variable t@esented again to the user. We
suppose that the user will choose the rule R11tthasforms sit into an attribute of
the class PERS. The inference process continués as there is a rule that can be
applied.

5 Conclusions

In this paper we have presented an interactiveranfee engine THINKER. It is a

generic tool which can be used to support inferemcpiiring user intervention to

select one rule from several rules having the spreenises. THINKER uses back-
tracking to allow the modification of previous setkd rules if there an ambiguous
choice. We have illustrated this tool over a tratish process of B models into UML

diagrams. This case requires interactivity becawesedo not constrain the developer to
a specific style of translation. The translationgisded by heuristics which require
user validation.

References

1. Moore, R., Lopes, J., 1999. Paper templateSTHMPLATE'06, 1st International Confe-
rence on Template ProductiofNSTICC Press.

2. Abrial, J.-R., 1996. Extending B without changingfar developing distributed ystemsi
1st Conference on the B meth@ulitting into Practice Methods and Tools for Infotina
System Desigrpp. 169-190, Nantes.

3. Fekih, H., Jemni Ben Ayed, L., Merz, S., 2006. Tfamation of B Specifications into
UML Class Diagrams and State Machinks. 21st Annual ACM Symposium on Applied
Computing pp. 1840-1844, Dijon.

4. Gawanmeh, A., Tahar, S., Jemni Ben Ayed, L., 200@nEB based Invariant Checking of
Secrecy in Group Key ProtocolBhe 33rdlEEE Conference on Local Computer Networks
(LCN), Workshop on Network Security (WNS) (LCN 20@@ntreal

5. Idani, A, Ledru, Y., 2006. Dynamic graphical UMiews from formal B specifications.
In Information and Software Technolodjol 48, n°3. pp. 154-169.

6. Johnson, L.B., 1994 Third conference on Clips proicegsd

7. Jovanovic, J., Gasevic, D., Devedzic, V., 2084GUI for Jess. Expert Systems with Appli-
cations Elsevier. pp. 625-637.

8. Object Management Grouphnified Modeling Language Specificatioviersion 2.0. Speci-
fication, OMG (2003)http://www.uml.org/

9. Schnupp, P.H., 1989. Building Expert Systems indyoMunich.

10. Tatibouet, B., Hammad, H, Voisinet, H.C., 2002. Framabstract B specification to UML
class diagramdn 2nd IEEE Intl. Symp. Signal Processing and Infation Technology
(ISSPIT'2002), Marrakech, Morocco.




