
A VISION FOR AGILE MODEL-DRIVEN ENTERPRISE
INFORMATION SYSTEMS

N. R. T. P. van Beest, N. B. Szirbik and J. C. Wortmann
Department of Business & ICT, Faculty of Economics and Business, University of Groningen

 Landleven 5, P.O. Box 800, 9700 AV Groningen, The Netherlands

Keywords: Enterprise information system, Model-driven development, Flexibility, Agility, Workflow, ERP.

Abstract: Current model-driven techniques claim to be able to generate Enterprise Information Systems (EISs) based
on enterprise models. However, these techniques still lack – after the initial deployment – the long-time
desired flexibility, which allows that a change in the model can be immediately and easily reflected in the
EIS. Interdependencies between models are insufficiently managed, requiring a large amount of human
intervention to achieve and maintain consistency between models and the EIS. In this position paper a
vision is presented, which describes how model-driven change of EISs should be structured in a coherent
framework that allows for monitoring of interdependencies during model-driven change. Therefore,
proposing fully automated consistency and pattern checks, the presented agile model-driven framework will
reduce the amount of required human interventions during change. As a result, the cost and time span of
model-driven EIS change can be reduced, thereby improving organizational agility.

1 INTRODUCTION

This is a position paper, which presents a vision of
how model-driven change of Enterprise Information
Systems (EISs) – after the initial deployment –
should be structured in a coherent framework. EISs
are interactive systems that offer support for certain
parts of the workload of employees and comprise a
vast array of functionality. Depending on the
industry context, two of the most typical categories
of EISs are realized via the deployment of Enterprise
Resource Planning (ERP) systems and Workflow
Management (WfM) systems (Van der Aalst et al.,
2002; Cardoso et al., 2004; Olson, 2004).

However, when both an ERP and a WfM system
are used in the same organization to support
processes that have overlapping areas or are related
via data exchanges and task triggers, the flexibility
of the WfM system could be lost and changes can
become extremely costly in terms of budget and
manpower (Reijers, 2006).

In an attempt to increase flexibility, while
reducing development, implementation and integra-
tion efforts, model-driven development (MDD)
emerged as a possible solution using the Model-
Driven Architecture (MDA) (Kleppe et al., 2003;

OMG, 2003). Nowadays, MDD approaches exist,
which enable a partial automatic generation of EISs
based on models of the organization (OMG, 2003;
Atkinson et al., 2003). Although these techniques
are currently used in the first deployment phase of
an EIS, the flexibility with respect to later changes
still remains a desired feature.

In this paper, an agile MDD framework will be
proposed, which increases model-driven EIS
flexibility and, therefore, organizational agility. The
proposed framework comprises a formal validation
of interdependencies, in order to reduce the amount
of human intervention. Furthermore, it is envisioned
that the framework will enable the automatic preser-
vation of consistency of the EIS during change.

Throughout this paper, EIS refers to that
software component, which is specific for an
organization. It does not contain the hardware, the
network or the standard applications. The remainder
of this paper is structured as follows. Section 2
discusses the background concerning ERP and WfM
integration. Next, section 3 presents the contribution
of current MDD techniques to increase the flexibility
related to EIS development. Section 4 explains the
framework that envisages how to achieve flexibility
after deployment. Finally, section 5 concludes the
paper.

 188 van Beest N., Szirbik N. and Wortmann J. (2009).
A VISION FOR AGILE MODEL-DRIVEN ENTERPRISE INFORMATION SYSTEMS.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
188-193
DOI: 10.5220/0002001201880193
Copyright c© SciTePress

2 BACKGROUND

There are many real-life situations where an EIS is
formally based on both database schemas and
executable process models that are interrelated. This
situation is typical for organizations that use an ERP
system and – on top of that – one or more WfM
systems that work together with some parts of the
ERP system (Szirbik et al., 2004). The operational
link between these working systems can be
implemented easily in a lightweight manner via a
loose connection, by just having the same human
user for both systems. A more costly alternative is to
couple the systems in a heavyweight manner, by
building a full-featured integration (via formal
interfaces and semi-automated procedures). In this
situation the process execution has to be integrated
in the ERP system and the data from the ERP
database has to be used and changed directly by the
WfM systems. However, these integration attempts
have been always marked by one or more of the
following problems: the difference between explicit
/ implicit models of data and process used in both
systems, the redundancy of representation,
concurrent transactions and loss of flexibility
(Reijers, 2006).

The ERP system is deployed from its
characteristic data perspective (Olson, 2004) and the
WfM system is deployed from its characteristic
process perspective (Van der Aalst et al., 2002). The
ERP system always has an explicit data
representation (its database schema) but only an
implicit process perspective that is merely employed
as a useful attachment for managers (Ami et al.,
2007). Moreover, one of the well-known drawbacks
of ERP is process rigidity after deployment (Botta-
Genoulaz et al., 2005).

The WfM system, on the other hand, has an
explicit process model, but there is no strict
requirement for a data model. Nonetheless, the use
of some data is inevitable for any workflow
implementation. Furthermore, a database can exist
externally of the enactment engine, and provides a
formal interface with this database (Ceri et al.,
1997). Taken in isolation, a WfM system commonly
enacts a number of process models, each controlling
a multitude of running cases. These process models
can be changed rather easily (Stohr et al, 2001) if
attention is given to the versioning of the cases that
are executed during the change. Sometimes, manual
intervention is required (Van der Aalst, 2001).

Several problems can arise after integration. For
example, conditional execution of activities (XOR
splits in the process) depends on certain data. Based
on that data, the condition is evaluated for each case
and a decision is made whether the activities are
executed or not for that particular case. Neverthe-
less, if this data is changed by a concurrent process,
the activities that are executed after the XOR-split
may be based on an incorrect condition and there is
no trigger to notify the erroneous execution of these
activities.

However, the main problem of ERP and WfM
integration is the well-known problem of frozen
process representations. After the integration, the
result is often a redundantly specified system. That
is, some database areas will be specified in both the
ERP and the WfM system. In addition, some process
enactment logic is replicated in the ERP system as
well. This is necessarily so, because the ERP system
always contains some process logic that overlaps
with the explicit process definition of the workflow.
Similarly, the WfM system should be ‘aware’ of the
entities that are used in the WfM system and which
already exist in the database structure of the ERP
system.

This redundancy between process and data
specifications frequently results in problems,
especially if there is no clear awareness and there are
no procedures in place to tackle it (Rayhupathi et al.,
2008). Necessary changes in the process model of
the WfM will induce costly changes of the business
logic in the ERP system. In some cases, a process
change includes a change of the data structure used
by the process. If this data is also represented in the
ERP database, this leads to changes to the database
structure and, implicitly, to adaptation of the
business logic.

As a result, any WfM system that is linked to a
legacy system – in this case the ERP system – makes
the change in the process model of the WfM system
almost impossible, especially if the degree of
integration is high (Reijers, 2006).

The problems that arose during ERP and WfM
integration did not disappear with the new trends in
MDA-based EIS and MDD-change. The point is,
that the integration, specification redundancy, and
especially consistency of data and process models is
affected when change of data models or process
models (or both) is effectuated in order to support
change in an organization and its business processes.

A VISION FOR AGILE MODEL-DRIVEN ENTERPRISE INFORMATION SYSTEMS

189

Figure 1: Schematic representation of a flexible model-driven EIS. Initial generation (right side) and subsequent change
(left side).

3 BESPOKE FLEXIBILITY

MDD emerged as a possible solution to increase
flexibility by using MDA. Nowadays, MDD
approaches exist, which enable a partial automatic
generation of EISs.

In this paper, flexibility of an EIS is referred to
in two different ways. Firstly, it can be seen as the
MDD-based capability of a system to be specified
according to the exact requirements of the business
process and structure. That is, the software should be
bespoke and provide a one-on-one match with
reality and the business requirements. Secondly,
flexibility can be defined as the capability of an
existing EIS to be adjusted to changing business
requirements as fast and inexpensive as possible.

If during initial design time the process descrip-
tion is seamlessly integrated with the required data,
redundancy issues can be resolved initially, as no
longer two distinct systems have to be integrated.
Using MDD, a complete system specification can be
provided based on the requirements (see the left-
hand side of Figure 1) (OMG, 2003). With respect to
modeling abstraction, MDA concerns three different
layers of abstraction, including Computation Inde-
pendent Model (CIM), Platform Independent Model
(PIM) and Platform Specific Model (PSM).
However, the view of this paper abstracts from these
layers and refers only to an enterprise model specifi-

cation, which consists of both a process and data
specification (this holds for every layer in MDA).

A change in the business requirements after the
initial deployment of the system requires a change in
the process model of the system or the data model of
the system (as indicated by the delta notation in the
right hand part of Figure 1). In a perfect situation,
the new business requirements should be fully
represented by both the process and data model,
which are continuously consistent with each other.
However, incomplete integration of processes and
data may result in some operational problems. For
example, the process may require data, which does
no longer exist. Similarly, the process may use data,
which is no longer accurate. Finally, the process
may execute incorrect activities due to a (correct)
change of data elsewhere in the process.

In most MDD approaches, process and data
models are kept separately on purpose, in order to
change one without affecting the other. As a result,
interdependencies are not explicitly described or
identified in current MDD languages (France et al.,
2006; Meijler et al., 2006). However, as a result of
the natural interdependencies between processes and
data, a change in the process model may affect the
data model. In addition, this enforced change of the
data model may also affect other parts in the
process, which are not accounted for. Essentially,
whenever an artifact changes (that is, a process or a

ICEIS 2009 - International Conference on Enterprise Information Systems

190

data object), this may affect some or all of its
interrelated artifacts. As a result, the cascade of
change spirals out of control. This problem is
referred to as the rampant roundtrip problem
(Hailpern et al., 2006; Rayhupathi et al., 2008).
Consequently, a change in a model-driven developed
EIS is still time-consuming and costly. For that
reason, the interdependencies need to be described
explicitly (by using novel syntactic constructs) in
order to prevent data-process inconsistencies in the
models and, therefore, lack of coherence in the
generated EIS.

Nonetheless, past research has primarily focused
on model-driven change in the context of change
that is required due to shifts in the metamodel
(Hearnden et al., 2006; Garcés et al., 2008) (e.g., a
shift from UML 1.5 to UML 2.0). However, change,
which is pushed by new business requirements,
remains largely ignored. In the remainder of this
paper, change will refer to the latter category.

The “ultimate” (not necessarily attainable) goal
of MDD can be identified as creating the ability to
change the EIS by redrawing a part of a model and
executing the model interpreter/generator only once
without any human intervention. This goal implies
that “perfect” (consistency ensures that none of the
mentioned problems occur) integration of both the
data and process model is essential.

As shown in Figure 1, the current MDD
techniques require the manual intervention at three
stages in the process. First, a considerable amount of
human intervention is required to translate the
business requirements – which may be a fuzzy
description of the business process, organizational
structure and resources, and the way employees of
an organization perform their work – into the models
to be used for either initial system development,
either for later change. Second, human intervention
is required to create consistency between the models
and make them appropriate to generate an EIS.
Third, human intervention is required during and
after system generation and validation, as some parts
have to be reworked later due to consistency and
interdependency issues. The interdependencies
between data and process models may trigger a
cascading effect of model changes and exception
handling during the interpreting runs, all of which
need to be identified eventually and solved
manually. Nevertheless, all the parts in Figure 1 that
are fully automated will increase the level of
flexibility. Therefore, a perceptible gain in terms of
flexibility can be achieved just by decreasing the
amount of required human intervention, without
necessarily aiming for complete automation.

4 THE AGILE MDD VISION

The new envisaged framework considers both a
formal process model and a formal data model,
which are integrated by a formal mapping.
Furthermore, the framework contains a number of
additional steps compared to the existing framework,
as shown in Figure 1. An overview of the envisaged
framework is represented graphically in Figure 2.

This framework contains a different procedure of
model-driven transformation of business require-
ments to an EIS. In this case, the dependencies
between data and processes should be identified in
an early stage during requirements analysis.

Next, these business requirements should be
translated into both a data model and a process
model. The design of the models is performed using
an MDD modeling toolset, which allows the system
architect to create both a data model and a process
model. The MDD modeling toolset should contain
syntax-driven constraints that enforce the explicit
definition of the relation between data objects and
activities as defined in the process model. That is,
each data object defined in the data model should in
some way be related (or mapped) to one or more
activities in the process model.

The next step – which was already included in
the currently existing framework – should concern
the individual syntax check of the process model and
the data model. For instance, process models are
checked on deadlocks, livelocks etc.

Subsequently, interdependencies between the
process and data model should be checked on
consistency. All interdependencies will be
automatically identified during the design of the
models. This way, consistency between activities
and data structures can be ensured. Furthermore,
after a (manual) change to the process model, the
MDD editor should be able to track and pinpoint all
dependencies, showing possible alternatives and
solutions in case of inconsistencies. However, the
final decision is to be left to the system architect.
After a change of the data model, the affected
processes will be automatically detected and a
suitable change is proposed.

The process definition of the agile approach
should make use of the concept of workflow patterns
(Russell et al., 2006). After the automated checks on
the models, those workflow patterns, which poten-
tially result in erroneous execution of the business
process, must be identified. That is, every occurring
instance of data-dependent workflow patterns (like

A VISION FOR AGILE MODEL-DRIVEN ENTERPRISE INFORMATION SYSTEMS

191

Figure 2: Schematic overview of the “agile MDD vision”.

workflow constructs, which need external data to
proceed) are to be detected in the context of data
interconnected processes (parallel processes, which
use the same data at a particular point in time).

Prior to the conversion the models into an
executable EIS by the interpreter, the data-dependent
workflow patterns are to be replaced using formally
defined workaround patterns. Workaround patterns
specify an implementation solution, which is to be
used by the interpreter with respect to a certain
troublesome workflow pattern. In this way, the
system architect will no longer be required to keep
track of all potentially contradictory specifications,
as these are automatically identified and solved.
Finally, the models will be prepared to be executed
by the interpreter.

The left-hand side of Figure 2 represents the
MDD procedure in case of initial deployment. The
right-hand side presents the MDD procedure with
respect to change of the EIS as a result of a change
in business requirements. However, Figure 2 shows
that the model-driven change procedure is identical
to the procedure for initial deployment. The
automated checks concerning syntax and inter-
dependencies represented on the left-hand side are
replicated on the right-hand side. Therefore, the only
major issue that affects flexibility, which was not
discussed, is migration.

Two approaches can be considered with respect
to migration. The first approach is based on a
phasing out scheme of running cases that rely on old
process definitions. However, the main disadvantage
of this approach is that if changes occur frequently,
many versions of the process have to be kept.
Moreover, if process instances phase out too slowly,
an explosion of versions may occur.

The second migration approach (big bang) is a
complete migration of all process instances after
deployment of new models. Every running case is,
therefore, migrated to the new process definition.
The main disadvantage of this approach is that some
manual intervention may still be required, despite
automatic process and data migration. Moreover, big
bang deployments are costly in terms of manual
intervention.

As it appears, this poses a trade-off. In the
situation of process models that comprise a large
amount of short-lived cases, it is better to use the
phase-out method. On the other hand, if a few cases
with a long throughput time are running at a certain
moment in time, then a big bang migration is
preferred with some possible manual intervention.
Although migration of running cases is a serious
issue to take into consideration, it is not the focus of
this discussion. The vision presented in this paper
focuses on the modeling part of MDD and not on
migration.

ICEIS 2009 - International Conference on Enterprise Information Systems

192

5 CONCLUSIONS

Although many MDD techniques claim to be able to
generate EISs based on enterprise models, these
techniques still lack the long-time desired flexibility,
which allows that a change in the model can be
immediately and easily reflected in the EIS. In this
paper a position is presented about how the
flexibility of an MDD EIS can be achieved via a so-
called agile framework. In addition to existing MDD
approaches, this agile framework proposes three
additional validation checks based on a fully
integrated data and process description. The
envisaged framework leads to a need for a practical
mapping formalism between process and data.

The application of the framework will benefit
those organizations that tend to change their
business processes quite often. As a result of the
automated consistency and pattern checks, it is
expected that flexibility increases, by reducing the
amount of required human interventions during
change. Therefore, deployed EISs will not act as a
constraint on organizational agility.

Foreseen further work can be described as
follows. The observation of the process of EIS
change engineering requires the identification of
troublesome workflow patterns (albeit syntactically
and semantically correct, due to data coupling the
execution of these patterns may result in consistency
errors) and the development of workaround patterns.
All these are directed towards the issue of data
interconnected processes and data dependent
workflow patterns. By collecting and systematizing
these patterns, it is aimed to build a theoretical and
practical knowledge base that can stand as a
foundation for future MDD technologies that
provide the needed flexibility for EISs.

REFERENCES

Van der Aalst., W.M.P., 2001. Exterminating the Dynamic
Change Bug: A Concrete Approach to Support
Workflow Change. Information Systems Frontiers, 3,
3, pp. 297-317.

Van der Aalst, W.M.P., Van Hee, K.M., 2002. Workflow
Management: Models, Methods and Systems. MIT
Press, Cambridge, Mass.

Ami, T., Sommer, R., 2007. Comparison and evaluation of
business process modelling and management tools.
Int. J. of Services and Standards, 3, 2, pp. 249-261.

Atkinson, C., Kühne, T, 2003. Aspect-Oriented
Development with Stratified Frameworks. IEEE
Software, 20, 1, pp. 81-89.

Botta-Genoulaz, V., Millet, P.A., Grabot, B., 2005. A
survey on the recent research literature on ERP
systems. Computers in Industry, 56, 6, pp. 510-22.

Cardoso, J., Bostrom, R.P., Seth, A., 2004. Workflow
Management Systems and ERP Systems: Differences,
Commonalities, and Applications. Information
Technology and Management, 5, pp. 319–338.

Ceri, S., Grefen, P., Sanchez, G., 1997. WIDE - a
distributed architecture for workflow management. In
RIDE ’97, 7th Int. Workshop on Research Issues in
Data Engineering, High Performance Database
Management for Large-Scale Applications, pp. 76.

France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.,
2006. Model-Driven Development Using UML 2.0:
Promises and Pitfalls. Computer, 39, 2, pp. 59-66.

Garcés, K., Jouault, F., Cointe, P., Bézivin, J., 2008.
Adaptation of Models to Evolving Metamodels.
Technical Report, Institut National De Recherche En
Informatique Et En Automatique, ISSN 0249-0803.

Hailpern, B., Tarr, P., 2006. Model-driven development:
The good, the bad, and the ugly. IBM Systems J., 45,
3, pp. 451-461.

Hearnden, D., Lawley, M., Kerry, R. 2006. Incremental
Model Transformation for the Evolution of Model-
Driven Systems. In MoDELS 2006 Proc. of the 9th
International Conference, 4199/2006, pp. 321-335.

Kleppe, G., Warmer, J., Bast, W., 2003. MDA Explained:
The Model Driven Architecture: Practice and
Promise. Addison-Wesley,

Meijler, T.D., Postmus, D., Wortmann, J.C., 2006.
Towards Model-driven Evolvability of Enterprise
Information Systems. In 10th IEEE Int. Enterprise
Distributed Object Computing Conference
(EDOC'06), pp.413-416.

Olson, D.L., 2004. Managerial issues of enterprise
resource planning systems. New York: McGraw-Hill.

OMG, 2003. MDA Guide Version 1.0.1. www.omg.org.
Rayhupathi W., Umar A., 2008. Exploring a model-driven

architecture (MDA) approach to health care
information systems development. Int. J. of Medical
Informatics, 77, 5, pp. 305-314.

Reijers, H.A., 2006. Workflow Flexibility: The Forlorn
Promise. In WETICE'06, 15th IEEE Int. Workshops
on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 271-272.

Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P.,
Mulyar., N., 2006. Workflow Control-Flow Patterns:
A Revised View. BPM Center Report BPM-06-22,
BPMcenter.org.

Stohr, E. A., Zao, J. L., 2001. Workflow Automation:
Overview and Research Issues. Information Systems
Frontiers, 3, 3, pp. 281-296.

Szirbik, N.B., Wortmann, J.C., 2004. Bridging The Gap
Between ERP And WfM In Planning Using Agents. In
Proc. of the Int. IMS Forum, Cernobbio Italy, pp. 317-
324.

A VISION FOR AGILE MODEL-DRIVEN ENTERPRISE INFORMATION SYSTEMS

193

