
I.M.P.A.K.T.
An Innovative Semantic-based Skill Management System Exploiting Standard SQL

Eufemia Tinelli1,2, Antonio Cascone3, Michele Ruta1,Tommaso Di Noia1

Eugenio Di Sciascio1 and Francesco M. Donini4

1Politecnico of Bari, via Re David 200, I - 70125 Bari, Italy
2University of Bari, Orabona 4, I - 70125 Bari, Italy

3DOOM s.r.l, Paganini, 7 - 75100 Matera, Italy
4University of Tuscia, S. Carlo, 32 - 01100 Viterbo, Italy

Keywords: Skill Management, Logic-based Ranking, Match Explanation, Soft constraint.

Abstract: The paper presents I.M.P.A.K.T. (Information Management and Processing with the Aid of Knowledge-based
Technologies), a semantic-enabled platform for skills and talent management. In spite of the full exploitation
of recent advances in semantic technologies, the proposed system only relies on standard SQL queries. Distin-
guishing features include: the possibility to express both strict requirements and preferences in the requested
profile, a logic-based ranking of retrieved candidates and the explanation of rank results.

1 INTRODUCTION

We present I.M.P.A.K.T. (InformationManagement
and Processing with theAid of Knowledge-based
Technologies), an innovative application based on a
hybrid approach for skill management. It uses an in-
ference engine which performs non-standard reason-
ing services (Di Noia et al., 2004; Colucci et al., 2005)
over a Knowledge Base (KB) by means of a flex-
ible query language based on standard SQL. Note-
worthy is the possibility for the recruiter to explicit
mandatory requirements as well as preferences dur-
ing the matching process. The former will be con-
sidered asstrict constraintsand the latter assoft con-
straintsin the well-known sense of strict partial orders
(Kießling, 2002). Moreover, the proposed tool is able
to cope also with non-exact matches, providing a use-
ful result explanation. I.M.P.A.K.T. exploits a specific
Skills Ontologymodeling experiences, certifications
and abilities along with personal and employment in-
formation of candidates. It has been designed and im-
plemented using (a subset of) OWL DL1 and, in order
to ensure scalability and responsiveness of the sys-
tem, the deductive closure of the ontology has been
mapped within an appropriate relational schema.

1http://www.w3.org/TR/owl-guide/

2 LANGUAGE AND SERVICES

Our framework aims to efficiently store and retrieve
KB individuals taking into account theirstrict and
soft constraints and only exploiting SQL queries
over a relational database. In what follows we report
details and algorithms of the proposed approach
assuming the reader be familiar with basics of
Description Logics (DLs), the reference formalism
we adopt here. W.r.t. the domain ontology, we
define: main categoriesand entry points– Given
a concept nameCN, if CN ⊑ ⊤, then it is defined
as amain categoryfor the reference domain. For
what concerns role names, we define anentry point
R as a role whose domain is⊤ and whose range is a
main category. Furthermore, for each main class the
relevance for the domain is expressed as an integer
valueL; relevance classes– For each concept name
CN, a set ofrelevance classeseither more generic
thanCN or in some relation withCN can be defined.
For example, in the ICT Skill Management domain,
the conceptJ2EE could have as relevance classes
Ob ject OrientedProgramming and Java among
others. The reference domain ontology is modeled as
anAL(D) one and the following axioms are allowed:

224 Tinelli E., Cascone A., Ruta M., Di Noia T., Di Sciascio E. and Donini F. (2009).
I.M.P.A.K.T.: An Innovative Semantic-based Skill Management System Exploiting Standard SQL.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Artificial Intelligence and Decision Support Systems, pages
224-229
DOI: 10.5220/0002008802240229
Copyright c© SciTePress



CN0 ⊑ CN1⊓ . . .CNm

CN0 ≡ CN1⊓ . . .CNm

CN1 ⊑ ¬CN2

∃R.(CN1⊓ . . .⊓CNk) ⊑ ∀S.C

where R and S are entry pointswhereasC is an
AL(D) concept defined as2:

C,D → CN

∃R⊓∀R.CN

≤n a

≥n a

=n a

C⊓D

All the requests submitted to the system as well as
the description ofcurricula can be represented as DL
formulas to be mapped in standard SQL queries. In
such queries,WHERE clause is used for select relevant
tuples andGROUP BY/ORDER BY operators to compute
the final score. Notice that we do not use a specific
preference language as in (Kießling, 2002; Chomicki,
2002; P. Bosc and O. Pivert, 1995) but we only exploit
a set ofad-hocSQL queries built supposing the fol-
lowing DL template for expressing user requirements
(soft and strict constraints) and a candidate profile:

∃R1.C1⊓ . . .⊓∃Rn.Cn (1)

whereR1, . . . ,Rn areentry pointsandC1, . . . ,Cn are
AL(D) concepts defined w.r.t. the syntax reported
above. Similarly to the approach adopted in Instance
Store (iS), we use role-free ABoxes,i.e., we reduce
reasoning on the ABox to reasoning on the TBox
(Bechhofer et al., 2005). Furthermore, individuals in
the knowledge base are normalized w.r.t. a Concept-
Centered Normal Form (CCNF). In order to store both
the classified TBox and the normalized ABox we have
modeled a proper relational schema. It is also opti-
mized for individual instances retrieval and ranking
(in case of strict and soft matches) and for providing
match explanations. The E-R model of the reference
database is sketched in Figure 1 where theprofile
table maintains the so calledstructured info, exploited
to take into account non ontological information re-
ferring to a specific curriculum vitae (CV) descrip-
tion.

In Figure 1(a) tables referring to the TBox are re-
ported. Theconcept table stores primitive and de-
fined concepts along with data and object properties.
Actually, also descriptions in the form∀R.∀S. . .∀T.C,
beingC a primitive concept name, are stored in the
concept table itself. For each defined conceptC

2Observe that in the currentSkills Ontologywe do not use disjunction

axioms. In fact, in the recruitment domain it is quite rare toassert thatif you

know A then you do not know B.

Figure 1: KB schema.

in concept, the desconcepts table will store the
atomic elements belonging to theC CCNF. parent
andchild tables will respectively store parents and
children of a given concept and, finally, thedisjoint
table maintain disjunction sets3. EachpropertyR
table (R = 1, . . . ,N) refers to a specificentry point
among theN ones defined in the domain ontology.
Each of them will store features of normalized in-
dividuals referred to a specified ontology main cat-
egory. In Figure 1(b) the auxiliary tables are modeled
(not fully represented here due to the lack of space)
needed to store intermediate match results with their
relative score. Since the ontology contains classes and
object properties (i.e., qualitative information), and
datatype properties (i.e., quantitative information), in
order to rank final results w.r.t. an initial request we
have to manipulate in two different ways qualitative
and quantitative data. To assign a score to each indi-
vidual data propertya, specifications in the form≥n a
are managed by the function in Figure 2(a) whereas
properties in the form=n a will be managed by the
one in Figure 2(b) respectively4. n is the value the
user imposes for a given data propertya whereas, in
both functions, we indicate withnm% the threshold
value for accepting the individual features containing
a. nm% is a cut-coefficient calculated according to the
following formula:

nm% = n± [(Max−min)/100]∗m (2)

whereMax andmin are the maximum and the mini-
mum value stored invalue attribute for the data prop-
ertya in the relatedpropertyR table.

In order to cope with soft and strict constraints
I.M.P.A.K.T. performs a two step matchmaking
process. It starts computing a Strict Match and, in
case, it exploits obtained results as initial profile set
for computing the following Soft Matches. A Strict
Match is similar to anExact one (Di Noia et al.,

3As stated before, in the Skills domain this table was empty.
4For query features containing concrete domains in the form≤n a , we

will use a scoring function which is symmetric w.r.t. the onein Figure 2(a).

I.M.P.A.K.T.: An Innovative Semantic-based Skill Management System Exploiting Standard SQL

225



min maxnnm% value

0

1

min nnm%- value

0

1

nm%+ max

(a) (b)

Score Score

(n – nm%) 

(max – nm%)

Figure 2: Score functions.

2004), whereas a Soft Match is a revised version of a
Potentialone (Di Noia et al., 2004), which takes into
account information related to datatype properties.
Given a request containing a soft constraint on a
datatype property in the form{ ≤n a,≥n a,=n a } ,
I.M.P.A.K.T. will also retrieve resources whose value
for the propertya is in the rangen± nm%. This is
not allowed by a Potential Match as the resources
themselves are seen as carrying out conflicting
features w.r.t. the user request. The match process
is hereafter detailed. First of all, it separates soft
features f p from strict ones f s within the request
and it normalizes bothf p and f s in their corre-
spondingCCNF( f p) = ∃R.C andCCNF( f s) = ∃S.C
respectively. For each entry pointR in soft features
the corresponding setF P R = {∃R.C} is identified.
Similarly, for strict features, the setsF SS are
defined. If needed, soft and strict features can be
grouped to build the two setsF P = {F P R} and
F S = {F SS}. After this preliminary step, for each
element∃R.C ∈ F P a single queryQ or a set of
queriesQ a are built according to following schema:
a) if no elements of{ ≤n a,≥n a,=n a } occur inC5

then a single queryQ is built. W.r.t. the specificentry
point R, the match process will retrieve the profile
features containing at least one among syntactic
element occurring inC; b) otherwise a set of queries
Q a = {Qn,QNULL,Qnm%} is built. W.r.t. the specific
entry point R, Q a will retrieve the profile features
containing at least one among syntactic elements oc-
curring inC also satisfying –either fully or partially–
the data propertya according to the threshold value
nm% and the scoring functions in Figure 2. The
final result is theUNION of all the tuples retrieved by
queries inQ a. In the latter caseQn, QNULL andQnm%

represent respectively:- Qn retrieves only tuples
containing, for theentry pointR, both at least one
syntactic element occurring inC and the satisfied data
propertya. In this case, the structure ofQn changes
according to requested constraint (≤n a, ≥n a or
=n a) as well as the proper scoring function in Figure

5Recall that at this stageC has been translated in its normal form w.r.t.

the reference ontology

2 has to be used in order to opportunely weight each
feature;- QNULL retrieves only tuples containing, for
theentry pointR, both at least one syntactic element
occurring inC and not containing the data propertya,
i.e., it returns also tuples wherea, corresponding to
value attribute ofpropertyR table, isNULL; - Qnm%,
retrieves only tuples containing, for theentry point
R, both at least one syntactic element occurring in
C and a data property value fora within the interval
[nm%, . . . ,n]. Hence,nm% can be seen as threshold
value for accepting profile features6. The same above
considerations outlined forQn can be applied to the
syntactic structure ofQnm%. The above queries, to
some extent, grant the ”Open-World Assumption”
upon a database which is notoriously based on the
well-known ”Close-World Assumption”. The queries
Q and Q a are used in the Soft Match step of the
retrieval process. At the beginning of the retrieval
process, the Strict Match algorithm searches for
profiles fully satisfying all the formulas inF S . Fur-
thermore, starting from tuples selected in this phase,
the Soft Match algorithm, by means ofQ and Q a,
will extract profile features either fully or partially
satisfying a single formula inF P . Obviously, the
same profile could satisfy more than one formula
in F P . Candidate profiles retrieved by means of
a Strict Match have a 100% covering level of the
user request, whereas a measure has to be provided
for ranking profiles retrieved by means of a Soft
Match. To this aim, each tuple of apropertyR table
corresponding to one element ofC is weighted with
a specifiedR. Hence, for example, the profile feature
∃hasKnowledge.(Java⊓ =5 years⊓ =2008−12−10 lastdate
⊓ ∀skillType.programming) will be stored in
hasKnowledge table filling 4 tuples. By means
of Q a, the system assigns aµ ∈ [0,1] value only to
elements (tuples) in the form=n a according to the
scoring function related to user requested constraint
for a, usingQ andQ a, it will assign 1 to the other el-
ements inC. Once retrieved, these ”weighted tuples”
are so stored in proper tables namedpropertyR i
(i = 1, . . . ,M for a query where|F P R| = M) created
at runtime. In other words, thepropertyR i table
will store tuples (i.e., features elements) satisfying
the i-th soft requirement of the user request belonging
to F P R and having propertyR as entry point.
The propertyR i schema enriches thepropertyR
schema by means of two attributes, namelyscoreand
cover. The former is the score related to each tuple
(computed as described above), the latter marks each
feature piece as fully satisfactory or not. Thecover
attribute can only assume the following values:(a)

6It is similar to theλ-cut operator of SQLf language (P. Bosc and O.

Pivert, 1995).

ICEIS 2009 - International Conference on Enterprise Information Systems

226



cover = 1 in case the tuples have been retrieved by
Qn, QNULL or Q queries;(b) cover = 0.5 in case
the tuples have been retrieved by aQnm% query and
they represent a data propertya. The overallscore
andcovervalues of a retrieved profile are calculated
combining score and cover values of each tuple.
The whole Soft Match process can be summarized
in the following steps. Here, we introduceLi as the
relevance level the user assigns to the i-th soft feature
of a request belonging toF P R.step I: for each
∃R.C ∈ F P the ”weighted tuples” ofpropertyR i
tables are determined and, for each retrieved feature,
the score valuesi is computed by adding thescore
value of each tuple. In the same way the cover
valueci will be computed;step II: for each profile
and for eachpropertyR i table, only features with
the maximumsi value are selected;step III: the
profile features belonging to the same levelLi are
aggregated among them. For each retrieved profile,
the system provides a global scoresLi adding the
scoressi of features belonging to a givenLi ; step IV:
the retrieved profiles are ranked according to a linear
combination of scores obtained at the previous step.
The following formula is exploited:

score= sL1 +
N−1

∑
i=1

wi ∗ sLi+1 (3)

wherewi are heuristic coefficients belonging to the
(0,1) interval andN is the number of levels defined
for the domain ontology (L1 is the most relevant one).
PropertyRi tables are also exploited for score expla-
nation and to classify features of each retrieved pro-
file. They can be divided into:Fulfilled (fully satis-
fying the corresponding request features);Conflicting
(containing a data property value slightly conflicting
with the corresponding request feature)7; Additional
(either more specific than required ones or belong-
ing to the first relevance level but not exposed in the
user request);Underspecified(absent in the profile –
and then unknown for the system– but required by the
user). Observe that features with a non-integer value
for ci are conflicting by definition. The request re-
finement process follows the match computation one.
To this aim the score explanation is used. In fact, by
analyzing fulfilled and conflicting features, a recruiter
can decide to negotiate either features themselves or
data property values, and she can also enrich the orig-
inal request by adding new features taken from the
additional ones. About the refinement process, the
following result ensues. Consider a requestQ, and let
us supposeQ allows to retrieve profilesp1, p2, . . . , pn

7The possibility to identify and extract components in a slight disagree-

ment with the request is an added value w.r.t. approaches based on Fuzzy

Logic.

by means of the Soft Match –exactly in the reported
order. pi ≺Q p j denotes that profilepi is ranked by
Q better thanp j . Hence, in the previous case,p1
is ranked better thanp2 and so on. Now, ifQf p is
obtained by adding toQ another featuref p asnego-
tiable one, we can divide the previousn profiles into
the ones which fulfillf p, the ones which do not and
the ones for which data propertya is unknown. If
pi , p j both belong to the the same class, thenpi ≺Q p j
iff pi ≺Qf p p j . This can be proved by considering the
rank calculation procedure. Thanks to the above prop-
erty, the user can refineQ asQf p knowing that, when
browsing results ofQ, the relative order among pro-
files that agree ona is the same she would find among
the ones deriving fromQf p.

3 IMPLEMENTATION DETAILS

I.M.P.A.K.T. is a multi-user, client-server applica-
tion implementing a scalable and modular architec-
ture. It is developed in Java 1.6 (exploiting J2EE
and JavaBeans technologies) and it uses JDBC and
Jena as main foreign APIs. Furthermore, it embeds
Pellet (pellet.owldl.org) as reasoner engine to classify
more “complex” ontologies. If the reference ontol-
ogy does not present implicit axioms, it is possible
to disable the reasoner services so improving perfor-
mances. I.M.P.A.K.T. is built upon the open source
database system PostgreSQL 8.3 and uses:(1) aux-
iliary tables and views to store the intermediate re-
sults with the related scores and(2) stored proce-
dures and b-tree indexes on proper attributes to re-
duce the retrieval time. Moreover, the compliance
with the standard SQL makes I.M.P.A.K.T. available
for a broad variety of platforms. In the current im-
plementation, all the features in the user request are
considered as negotiable constraints by default. The
exploited reference Skills Ontology basically mod-
els ICT domain. It owns seven entry points (hasDe-
gree, hasLevel, hasIndustry, hasJobTitle, hasKnowl-
edge, knowsLanguageand hasComplementarySkill),
six data properties (years(meaningyears of experi-
ence), lastdate, mark, verbalLevel, writingLeveland
readingLevel), one object property (skillType) and
nearly 3500 classes. The skill reference template fol-
lows the above structure. Notice that the data property
lastdateis mandatory only when the data property
years is already defined in a profile feature. More-
over, data properties in the form{ ≤n a,≥n a,=n a
} are usable only in the retrieval phase whereas in
the profile storing phase only=n a is allowed. Fi-
nally, only theknowsLanguageentry point –referred
to the knowledge of foreign languages– follows an

I.M.P.A.K.T.: An Innovative Semantic-based Skill Management System Exploiting Standard SQL

227



autonomous match query structure w.r.t. the others
ones. In fact the three possible data properties for
expressing oral, reading and writing language knowl-
edge have to be tied to the language itself. In this
case, each data property is an attribute whose domain
is theLanguagemain category and whose range is the
set{ 1,2,3} where 3 represents an excellent knowl-
edge and 1 a basic one. Thanks tolastdatedata prop-
erty, we can say for example that ”John Doe was 4
years experienced of Java but this happened 4 years
ago and at the present time he knows DBMS by 2
years”. In other words, our system can handle a tem-
poral dimension of knowledge and experience consid-
ering time intervals as for example “now”, “long time
ago” to improve the score computation process. Ac-
tually I.M.P.A.K.T. uses a step function to weigh the
effective value of the experience according to the for-
mula nt = wt ∗ n. A trivial example will clarify this
feature. Assertions as ”now” or ”one year ago” have
bothwt = 1, hence the value of the related experience
is the same. On the contrary, a time interval repre-
sented as ”two years ago” haswt = 0.85, i.e., the con-
crete value of experience is decreased w.r.t. the pre-
vious cases. When a temporal dimension is specified
in the stored profile, I.M.P.A.K.T. retrieves the best
candidates and calculates the related score according
to the experience valuent and not trivially taking into
accountn. The adopted ontology has three relevance
levels. The following rules ensue: the entry pointhas-
Knowledgebelongs to theL1 level, the entry points
hasComplementarySkill, hasJobTitle, hasIndustrybe-
long to theL2 level and the entry pointshasLevel, has-
Degree, knowsLanguagebelong to theL3 level. Ob-
viouslyL1 is the most important level andL3 the least
significant one. In the current implementation, the
formula (2) fixesm = 20, i.e., I.M.P.A.K.T. consid-
ers as possible a deviation of 20% w.r.t.n for yearsor
mark features requested by the user. Moreover, in the
formula (3):N = 3, w2 = 0.75 andw3 = 0.45. These
values have been determined in several tests involv-
ing different specialist users engaged in a proactive
tuning process of the software.

4 I.M.P.A.K.T. GUI

“I’m looking for a candidate having an Engineering De-
gree (preferably in Computer Science with a final mark
equal or higher than 103 (out of 110)). A doctoral De-
gree is welcome. S/He must have experience as DBA, s/he
must know the Object-Oriented programming paradigm
and techniques and it is strictly required s/he has a good
oral knowledge of the English language (a good familiarity
with the written English could be great). Furthermore s/he

should be at least six years experienced in Java and s/he
should have a general knowledge about C++ and DBMSs.
Finally, the candidate should possibly have team working
capabilities”.
The previous one could be a typical request of a
recruiter. It will be submitted to the I.M.P.A.K.T.
by means of the provided Graphical User Interface
(GUI). The above requested features can be summa-
rized as: (1) strict ones: 1.1) Engineering degree;
1.2) DBA experience; 1.3) OO programming; 1.4)
good oral English;(2) preferences: 2.1) Computer
science degree andmark≥ 103; 2.2) doctoral degree;
2.3) Java programming andexperience≥ 6years; 2.4)
C++ programming; 2.5) DBMSs; 2.6) team work-
ing capabilities; 2.7) good written English. They are
shown in the (e) panel of Figure 3 whereas deriving
ranked results are reported in Figure 4. The GUI for
browsing the ontology and to compose the query is
also shown in Figure 3. Observe that the interface for
defining/updating the candidate profile is exactly the
same.

(a)

(b)

(c) (d) (e)

Figure 3: Query composition GUI.

(a)

(b)

(c)

Figure 4: Results and score explanation GUI.

W.r.t. Figure 3, (a), (b) and (d) panels allow the
recruiter to compose her semantic-based request.

ICEIS 2009 - International Conference on Enterprise Information Systems

228



In fact, in the (a) menu all the entry points are
listed, the (b) panel allows to search for ontology
concepts according to their meaning, whereas the
(d) part enables the user to explore both taxonomy
and properties of a selected concept. The related
panel is dynamically filled. The (e) panel in Figure 3
enumerates all the composing features. For each of
them, the I.M.P.A.K.T. GUI allows:(1) to define the
“kind” of feature (strict or negotiable);(2) to delete
the whole feature;(3) to complete the description
showing all the elements (concepts, object properties
and data properties) that could be added to the
selected feature;(4) to edit each feature piece as well
as existing data properties. Finally, the (c) panel
enables searches as for example“I’m searching a
candidate like John Doe”. In this case, the job-seeker
fills the name field of the known candidate whose
profile is considered as starting request (features are
set as negotiable constraints by default). The user
can view the query –automatically generated– and
furthermore s/he can edit it before starting a new
search. In Figure 4 the results GUI is shown. Part
(a) presents the ranked list of candidates returned by
I.M.P.A.K.T. with the related score. For each of them,
the recruiter can ask for:(1) viewing the CV; (2)
analyzing the employment and personal information
and (3) executing the match explanation procedure.
Match explanation outcomes are presented in the (c)
panel, whereas in the (b) panel an overview of the
request is shown (differentiating strict constraints
from preferences). Observe that the system assigns
a numeric identifier –namelyID f eature– to each
query feature. It will be used in the explanation phase
to create an unambiguous relationship among the
features in the panel (b) and the ones in the panel (c).
Let us exploit the second ranked result to explain the
system behavior. It corresponds to “Mario Rossi” –as
shown in Figure 4– which totals 77% w.r.t. the above
formulated request. Why not a 100% score? Notice
that, at the present time, “Mario” has the following
programming competences:
1) ∃hasKnowledge.(Java⊓=5 years⊓=2008−07−21 lastdate);
2) ∃hasKnowledge.(VisualBasic⊓=5 years⊓ =2008−07−21 lastdate);
3) ∃hasKnowledge.(C + +⊓ =4 years⊓ =2008−07−21 lastdate).
Hence, if one considers the requested feature
∃hasKnowledge.(Java⊓ ≥6 years)(ID f eatures= 9), the
I.M.P.A.K.T. explanation returns the following:
a) ∃hasKnowledge.(Java⊓=5 years⊓ =2008−07−21 lastdate)

b) ∃hasKnowledge.(OOprogramming⊓ =5 years⊓=2008−07−21 lastdate)

as fulfilled features (they correspond to desired
candidate characteristics), but they are also inter-
preted as conflicting ones because the experience
years not fully satisfy the request. In particular,
the ∃hasKnowledge.(OOprogramming⊓ =2008−07−21

lastdate⊓ =5 years) is considered as a fulfilled feature
thanks to the “Mario’s” competence aboutVB.
Finally, besides the conflicting features, “Mario
Rossi” also has some underspecified ones and then,
he cannot fully satisfy the recruiter’s request. S/he
can enrich her/his original query selecting some
additional features among them displayed in the
related panel. The checked ones are automatically
added to the original query panel (part(e) in Figure 3)
and they can be further manipulated.

5 CONCLUSIONS

We presented I.M.P.A.K.T., a novel logic-based tool
for efficiently managing technical competences and
experiences of candidates in the e-recruitment field.
The system allows to describe features of a required
job position as mandatory requirements and prefer-
ences. Exploiting only SQL queries, the system re-
turns ranked profiles of candidates along with an ex-
planation of the provided score. Preliminary per-
formance evaluation conducted on several datasets
shows a satisfiable behavior. Future work aims at en-
abling the user to optimize the selection of requested
preferences by weighting the relevance of each of
them and at testing other strategies for score calcula-
tion in the match process. We are grateful to Umberto
Straccia for discussions and suggestions and Angelo
Giove for useful implementations.

REFERENCES

Bechhofer, S., Horrocks, I., and Turi, D. (2005). The OWL
Instance Store: System Description. Inproc. of CADE
’05, pages 177–181.

Chomicki, J. (2002). Querying with Intrinsic Preferences.
In proc. of EDBT 2002, pages 34–51.

Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F. M.,
and Mongiello, M. (2005). Concept abduction and
contraction for semantic-based discovery of matches
and negotiation spaces in an e-marketplace.Electronic
Commerce Research and Applications, 4(4):345–361.

Di Noia, T., Di Sciascio, E., Donini, F. M., and Mongiello,
M. (2004). A System for Principled Matchmaking in
an Electronic Marketplace.International Journal of
Electronic Commerce, 8(4):9–37.

Kießling, W. (2002). Foundations of preferences in
database systems. Inproc. of VLDB’02, pages 311–
322.

P. Bosc and O. Pivert (1995). SQLf: a relational database
language for fuzzy querying.IEEE Transactions on
Fuzzy Systems, 3(1):1–17.

I.M.P.A.K.T.: An Innovative Semantic-based Skill Management System Exploiting Standard SQL

229


