
AUTOMATIC DERIVATION OF SPRING-OSGI BASED WEB
ENTERPRISE APPLICATIONS

1Elder Cirilo, 2Uirá Kuleza and 1Carlos Lucena
1Computer Science Department, Pontifical Catholic University of Rio de Janeiro - PUC-Rio, Brazil

2Computer Science Department, Federal University of Rio Grande do Norte – UFRN, Brazil

Keywords: Component-based Technologies, Software Product Lines, Product Derivation.

Abstract: Component-based technologies (CBTs) are nowadays widely adopted in the development of different kinds
of applications. They provide functionalities to facilitate the management of the application components and
their different configurations. Spring and OSGi are two relevant examples of CBTs in the mainstream
scenario. In this paper, we explore the use of Spring/OSGi technologies in the context of automatic product
derivation. We illustrated through a typical web-based enterprise application: (i) how different models of a
feature-based product derivation tool can be automatically generated based on the configuration files of
Spring and OSGi, and Java annotations; and (ii) how the different abstractions provided by these CBTs can
be related to a feature model with the aim to automatically derive an Spring/OSGi based application or
product line.

1 INTRODUCTION

Component-based technologies (CBTs) are
nowadays widely adopted in the development of
different kinds of enterprise applications. They
enable the management – assembling, adapting and
connecting – of the application components and their
different configurations.

Over the last years, two important CBTs have
been adopted by the Java development community:
Spring frameworks (http://www.springframework.
org) and OSGi (http://www.osgi.org). These CBTs
provide specific mechanisms and abstractions to
specify and manage the system components. Spring
framework (http://www.springframework.org)
allows defining an application as a set of
components implemented as simple classes. It
provides ways: (i) to link the application
components by means of the dependency injection
mechanism (Johnson, 2002); and (ii) to extend their
base functionality using aspect-oriented techniques.
On the other hand, the OSGi specifies the
application components as a set of Bundles. Each
Bundle aggregates a set of classes, interfaces,
aspects and files that implement the services
provided by that component. One of the main
benefits of OSGi is to provide an environment to
dynamically install, deploy and remove Bundles.

Recently, the Spring Dynamics Modules (SDM)
(http://www.springframework.org/osgi) has been
proposed with the aim to integrate both Spring and
OSGI technologies. Spring DM enables the
development of Spring applications that can be
deployed in an OSGi execution environment,

Despite the benefits that CBTs can bring to the
development and management of components in
enterprise applications, it also contributes to improve
their complexity due to: (i) the big amount of new
code assets (configuration files, annotations) that
applications need to deal with: and (ii) the need to
specify and configure each of the application
components and their respective relationships.
Additionally, the increasing demand for producing
flexible and customizable enterprise applications or
software product lines (Clements and Northrop,
2001) in order to address different market segments
also contributes significantly to bring difficulties to
this scenario.

Modern software engineering approaches
motivate the use of model-driven techniques (Stahl
and Voelter, 2006) to help both the processes of
development and automatic instantiation of
customizable application and software product lines.
Domain-specific languages (Czarnecki et al., 2000)
and code generators (Czarnecki et al., 2000) are the
main technologies that contribute to address these
aims. While these approaches can clearly bring

228 Cirilo E., Kuleza U. and Lucena C. (2009).
AUTOMATIC DERIVATION OF SPRING-OSGI BASED WEB ENTERPRISE APPLICATIONS.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
228-233
DOI: 10.5220/0002013502280233
Copyright c© SciTePress

benefits to the development of enterprise application
and software product lines, there is no systematic
method or technique that show how mainstream
CBTs can take advantage of them.

In this context, this paper presents an approach
for automatic derivation of enterprise applications or
software product lines implemented using the Spring
and OSGi technologies. We extend the GenArch, a
model-based product derivation tool previously
proposed (Cirilo et al., 2007), to incorporate
functionalities that allow automatically instantiate
Spring/OSGi enterprise based applications
developed over the SDM platform.

The remainder of this paper is organized as
follows. Section 2 presents the new mainstream
CBSE technologies Spring and OGSi, and how this
two technologies work together in the SDM. Section
3 describes an overview of GenArch, a model-based
product derivation tool developed by our research
group. Section 4 describes the extensions proposed
to the GenArch tool in order to address Spring-OSGi
model-based applications. And, finally, on the
section 5 we present our conclusions.

2 NEW MAINSTREAM CBSE
TECHNOLOGIES

In this section we summarize Spring and OSGi
component technologies, showing, their differences
and how they are integrated in the context of Spring
DM. We also point out the advantages and
disadvantages that the union of these component
technologies can bring for feature modularization
and variability management.

2.1 Spring Framework

Spring (http://www.springframework.org) is an
open-source framework created to address the
complexity of Java enterprise application
development. Spring enables the development
through use of components based on POJOs (Plain
Old Java Objects), where each POJO contains only
business logic. The Spring framework is responsible
for addressing the additional features (transaction,
security, logging, etc), thus incrementing the base
functionality provided by POJOs and needed to
build enterprise applications.

Spring makes it possible to use a simple
component model to achieve things that were
previously only possible with complex component
models like Enterprise Java Beans (Burke and
Monson, 2006). In this way, server-side application,

like web information systems, can benefit from
Spring in terms of simplicity, testability, and loose
coupling. These benefits is reached by the inversion
of control principle (Johnson, 2002) (IoC) and
aspect-oriented container provided by the Spring
framework.

Spring framework uses a XML configuration file
to specify the application components metadata and
the dependency between then. This file is called
application context in the Spring terminology, and is
the primary unit of modularity of one Spring
application. It contains one or more Bean definitions
which typically specify the class that implements the
Bean, the Bean properties and the respective Bean
dependencies to be injected. Additionally, this
configuration file also defines which aspects will be
applied to each Bean of the application.

2.2 OSGi

The OSGi specification (http://www.osgi.org)
defines a framework that facilitates modularizing
Java applications into smaller and more manageable
pieces (Bundles). It defines a standardized module
packaging, life-cycle management and service
registration. A Bundle is deployed as a “plain” JAR
file that contains, besides other resources (e.g.,
classes, aspects, pictures), a MANIFEST file which
have some specific metadata. This information must
includes a symbolic name for the Bundle and,
optionally, can have the location of a activator class
which is called when the Bundle is started or
stopped, exported package, package and Bundle
dependencies, and general information about the
Bundle. Each Bundle represents an application
module that also can exports one or more services to
the end-user or other Bundles. The exported services
are registered in a specific OSGi service registry,
that expose this services for other Bundles to
discover and to use. A newly formed OSGi
Enterprise Expert Group is a initiative to introduce
OSGi on the server side. This group is looking for
extend the OSGi specification to support the needs
of Enterprise Java vendors and developers, such as:
distributed and extended service model, enterprise
life-cycle and configuration management.

2.3 Integrating Spring and OSGi for
SPL Architecture Implementation

In the context of SPL, the use of Spring and OSGi
implementation model can bring several advances
for enterprise application and SPL’s architecture
development process. In one hand, The Spring
dependence injection and AOP container provides a

AUTOMATIC DERIVATION OF SPRING-OSGI BASED WEB ENTERPRISE APPLICATIONS

229

flexible development approach in which optional
and alternatives features can be easily addressed by
components and aspect-oriented composition. On
the other hand, the OSGi module system can be used
to separate the application features on a single and
consistency Bundle, to promote a better separation
of concerns and to make easy the evolution and
maintenance of the SPL’s architecture.

The Spring DM is an initiative in the direction of
combine Spring and OSGi component model. It
makes easy to write Spring applications that can be
deployed in an OSGi execution environment, in such
way that applications can take advantage of the
services offered by Spring and the dynamic
environment provide by OSGi platform.

By the Spring DM implementation model, a
Bundle may contain a Spring application context, in
charge to describe and configure its Beans. Some of
these Beans may optionally be made public and
exported as OSGi services and thus made available
to end-user or other Bundles. Beans within the
Bundle may also be transparently injected with
references to OSGi services.

We have implemented some features of a Web
Shop application as Spring Beans and modularized
them in four OSGi Bundles: (i) eshop – core
implementation of the Web Shop application; (ii)
eshop.payment – modularizes a set of payment
methods and resources related to the payment
process; (iii) eshop.customer – modularizes the
customer service; (iv) eshop.shipment –
encompasses services to calculate taxes and resolve
the shipment process. Some Beans that realize
different application features (payment services,
shipment services and customer services) were made
public in order to be used by the eshop Bundle,
whose implements the application core features.
Spring DM was used to structure our application in
order to enable us to combine OSGi Bundles to form
different versions (customization). From the
viewpoint of SPL the Web Shop application satisfies
a large amount of variabilites (18 optional and
alternative features) and complex dependencies
between them.

The SPL derivation process demands the
resolving of all feature dependencies in both
problem space and solution space in order to
guarantee the reliability of the derived product.
Looking for the derivation of the Web Shop case
study, if we desire a product with registered
checkout feature, it also must have the register
customers feature. Looking for this constraint on
solution space, the components that implement the
registered checkout feature depend, indirectly, on

the components that implement the customer
services. To derive a product from the Web Shop
application the application engineer may configure,
by hand, four Spring application context and
MANIFEST files, one of these for each Bundle,
resolving the dependencies and configuration.
Moreover, he needs to know how to separate the
SPL’s implementations elements in their respective
Bundles.

Without the aid of an automated tool, is evident
that the number of variabilites, dependencies
between features, and the amount of configuration
files and code assets become the manually process
of derive a Spring/OSGi product time consume and
non trivial. Thus, it is clear that we need
appropriated mechanism for enable automatic
product derivation of Spring/OSGi applications and
product lines.

In this context, section 4 details an extension of
the GenArch tool specific for automate product
derivation and variability management of
Spring/OSGi based applications and product lines.
Firstly, in next section, we give an overview of our
model-based product derivation approach.

3 GENARCH – A MODEL-BASED
PRODUCT DERIVATION TOOL

GenArch (Cirilo et al., 2007) is a model-based tool
that enables the mainstream software developer
community to use the concepts and foundations of
the SPL approach in the product derivation process
(Czarnecki and Eisenecker, 2000). The main idea is
to provide conveniences for developers create a set
of simple derivation models from existing
implementation assets made available during the
SPL development. In this section, we give an
overview of the derivation approach implemented by
GenArch tool.

3.1 Approach Overview

GenArch implements a model-based software
product line derivation approach founded on
generative programming (Czarnecki and Eisenecker,
2000). Based on three main steps: (i) automatic
models construction; (ii) artifacts synchronizations;
and (iii) product derivation; our approach offers a
code-oriented variability management which
supports automatic product derivation. The
variability management in GenArch is accomplished
by three models: (i) implementation model (solution
space); (ii) feature model (problem space); and (iii)
configuration model (configuration knowledge).

ICEIS 2009 - International Conference on Enterprise Information Systems

230

The implementation model defines a visual
representation of the SPL implementation elements
(classes, aspects, templates, configuration and extra
files) in order to relate them to feature models.
Feature models (Czarnecki and Eisenecker, 2000)
are used in our approach to represent the variabilities
that exist in SPL architectures. The configuration
model is responsible to define the mapping between
features and implementation elements. It represents
the configuration knowledge from the generative
programming (Czarnecki and Eisenecker, 2000),
being fundamental to link the problem space
(features) to the solution space (implementation
elements).

The approach steps were implemented in
GenArch through three modules: (i) importing
module; (ii) synchronizer module; and (ii) derivation
module. The importing module enables the creation
of initial versions of the derivation models by
parsing the code assets that implement the SPL
architecture. Initially, in the importing process, the
domain engineers are responsible to annotate the
existing code (classes, interfaces and aspects) of
SPL architectures using GenArch annotations. Two
kinds of annotations are supported by our tool

@Feature and @Variability.
During the importing process, the GenArch tool

parses all the implementation elements from specific
directories, including all the annotations created
inside the implementation elements, and it generates
initial versions of the derivation models. In this
parsing step, each @Feature annotation
encountered demands the creation of: (i) a new
feature in the feature model; and (ii) a mapping
relationship between the feature created and the
respective implementation element annotated, in the
configuration model. The GenArch tool also
generates code templates based on the
@Variability annotation. Code templates are used
to implement variabilities which will be customized
based on information collected by models instances
during application engineering. Every code template
created by our tool is included in the product line
implementation model and a dependency
relationship with a feature is created in the
configuration model. The feature related with the
code template is specified directly in the
@Variability annotation. After the generation of
the initial versions of GenArch derivation models,
the domain engineer can refine them by including,
modifying or removing any feature, implementation
element or mapping relationship. The GenArch tool
defines a specific module, called synchronizer, to
keep the consistency between its derivation models
and the code assets that implements the SPL
architecture. The synchronizer is responsible to

observe changes in the code assets and automatically
reflects these changes to the models.

The derivation module is responsible to produce
an instance of the derivation models and customize
the requested product. In the first step of the
derivation process the application engineer must
choose and configure features by means of the
specification of a feature model configuration. The
customization and compositions of the SPL
architecture are driven by this feature model
configuration, in a next step. GenArch perform this
step by deciding which implementation elements
must to be instantiated to constitute the product and
by customizing classes, aspects or configuration
files. Each element that must be customized is
represented by a template. Each template uses
information collected by the instance of the
derivation models to customize its respective
variable parts of code. The derivation process in
GenArch is concluded with code generation based
on the processing of templates. Both selected and
generated code assets are loaded in a specific source
folder of a specified Eclipse Java project. The
complete algorithm used by GenArch tool can be
found in (Cirilo et al., 2007) .

Figure 1: EShop Spring-OSGi architecture model.

4 INTEGRATING SPRING/OSGI
IN THE GENARCH TOOL

Section 3 illustrated how SPL architectures based on
the adoption of typical code assets (classes, interfa-

AUTOMATIC DERIVATION OF SPRING-OSGI BASED WEB ENTERPRISE APPLICATIONS

231

ces, aspects and extra files) can be addressed by
GenArch tool. In this section, we describe how our
tool was extended to address the derivation of
Spring/OSGi based enterprise applications.

4.1 Extending GenArch Tool to
Support Spring/OSGi

In order to enable automatic product derivation of
Spring/OSGi applications, we extended the GenArch
tool to incorporate a Spring-OSGi-specific
architecture model (Figure 1). This model provides:
(i) a vision of the SPL architecture implementation
in the level of Spring/OSGi components; and (ii) a
concise way to document and trace Spring/OSGi
architecture level variability. Tracing features in
SPL development at different levels can help
engineers to better analyze the features covering and
the impact of changing requirements. The use of
Spring-OSGi architecture models also allows
GenArch working not only with Java and AspectJ
elements, as described in Section 3, but also with
Beans, Bundles and the respective Spring and OSGi
configuration files in the derivation process.

The Spring-OSGi architecture model (Figure 2)
expresses OSGi Bundles by means of their name,
contents and dependency Bundles. The Bundle’s
content encompasses components, classes, folders,
files and configuration files. If the Bundle depends
on other existing ones, the list of required Bundles
can also be specified. This last property is essential
for GenArch figures out which Bundles need to be
part of the application under customization. Spring
Beans are expressed by their variants, where each
variant is identified by a name and can be related
with other dependent Beans. GenArch uses the
concept of Bean Variant to distinguish between
different implementations of an interface.

Figure 1 shows the Spring-OSGi architecture
model instantiated for the EShop application. It
encompasses the four Bundles that modularize this
application. For the eshop Bundle, for example, the
model describes: (i) the packages (components) and
folder that implement it; (ii) the required Bundles;
and (iii) the Spring Beans that are modularized by
the Bundle.

The Spring/OSGi extension also allows the
domain engineer to define different levels of
configuration. Fine-grained configurations can be
created by the default mapping relationships of
specific implementation elements (classes, aspects,
GIF files) to any product line feature (Cirilo et al.,
2007). Cross-grained mapping relationships of both
Spring Beans and OSGi Bundles to product line

features can be defined by domain engineers in a
new view into the configuration model (Figure 2).
Figure 2 shows, for example, that the
eshop.payment Bundle depends on the Payment
optional feature and that the CreditCardService,
DebitCardService, and PayPalService
payment services Bundles depend on, respectively,
the Credit Card, Debit Card and PayPal alternative
features.

Figure 2: Spring-OSGi configuration knowledge.

This knowledge is used during the derivation
process and enables GenArch to customize
applications at different levels, such as: (i) the
definition of resources (classes, files, etc) that
compose the Bundles, specified on the traditional
view; and (ii) the definition of Bundles and Beans
that will be part of the final application. In section
4.3, we describe how GenArch use them to
automatically derivate customized products.

4.2 Automatic Parsing of Spring/OSGi
Applications

Once the main target of GenArch approach is to
provide functionalities for parsing code assets
metadata in order to automatic generate an initial
version of the derivation models. We have extended
this mechanism to also accomplish parsing of both
Spring/OSGi specific code assets (Spring application
context and OSGi Manifest configuration files) and
Spring-specific Java annotations.

We created a new Java annotation, called
@SpringBean. It is used to specify the Bean name,
a version name, and the Bundle name. Thus, based
on this metadata, Spring Bean abstractions can be
created in the Spring-OSGi architecture model by
parsing the Java classes marked with this annotation.
It follows the same approach described in Sction 3.
The use of this annotation also informs for GenArch
that the annotated class is the realization of a
specific Bean. So, based on this information,

ICEIS 2009 - International Conference on Enterprise Information Systems

232

GenArch can also infer mapping between Beans and
class elements.

Each MANIFEST file in the project demands the
creation of a Bundle element in the Spring-OSGi
architecture model. Each subelement of the Bundle
abstraction is created by parsing the Bundle-Name,
Require-Bundle, and Export-Package
properties. The content of the Export-Package is
used by GenArch to infer the relationship between
Bundles and implementation elements (package, in
this case). The Require-Bundle provides the list
of dependency Bundles. And, the Bundle-name is
used for both identify the Bundle element in the
Spring-OSGi architecture model and to name the
respective jar file during the derivation process.

After the creation of the initial version of the
derivation models, the domain engineers must verify
the adhesion of the generated models with the SPL
specification, and if necessary they can perform, by
hand, some activities such as: inclusion, moving or
exclusion of any model’s element and mapping
relationship between them.

4.3 Automatic Derivation of
Spring/OSGi Applications

Besides the tasks that are realized during the
common derivation process described in Section 3.1,
we incorporate new ones that are specific to
customize Spring/OSGi artifacts: (i) spring
configuration files; and (ii) OSGi MANIFEST files.

Each Spring configuration file (application
context) must be defined as a template in our
approach. During the product derivation process,
this template is processed to customize its respective
variabilities – XML tags that describe the Beans of
the SPL architecture. Spring applications context are
processed in two main steps: (i) decision of Beans
that will compose the final application; and (ii)
customization of the respective Bean’s tags – it
means that the code of a Bean tag, whose Bean class
depends on specific features, is only included in the
Spring configuration file of a product, if the
corresponding feature is selected.

During the derivation process, the GenArch tool
also decides based on the feature selection, which
Bundles will compose the final product. For each
Bundle to be included in the product being
generated, the GenArch tool proceeds in the
following way: (i) it creates an Eclipse plug-in
project; (ii) it loads the selected implementation
elements and template generated elements in this
Eclipse project; and finally, (iii) it customizes the
Require-Bundle and Export-Package fields in
the OSGi manifest file. Different from the previous

versions of GenArch, which demands the derivation
of only one Eclipse Java project, the OSGi extension
generates one Eclipse project per Bundle.

5 CONCLUDING REMARKS AND
FUTURE WORKS

In this paper, we presented an extension to GenArch,
a model-based tool, that addresses the product
derivation and automatic instantiation of product
lines or customizable applications implemented
using the mechanisms available in Spring and OSGi.
Automatic mechanisms are used to generate partial
version of these models based on the specific
artifacts (configuration and manifest files) and Java
annotations.

As future work, we are interested: (i) in studying
the incorporation in our approach of domain-specific
languages that models behavioral semantics -
currently, our approach is only involved with the
definition of languages that capture static semantics
of the requirements and features of the SPL
architecture; (ii) enable specific architecture models
composition. Finally, we intend to apply the tool in
more complex SPL case studies.

REFERENCES

Cirilo, Elder, Kulesza, Uirá and Lucena, Carlos. A Product
Derivation Tool Based on Model-Driven Techniques
and Annotations. Journal of Universal Computer
Science. 2007, Vol. 14, 8, pp. 1344-1367.

Czarnecki, Krzysztof and Eisenecker, Ulrich. Generative
Programming: Methods, Tools, and Applications. s.l. :
Adisson-Wesley, 2000. 0201309777.

Burke, Bill and Monson-Haefel, Richard. Enterprise
JavaBeans 3.0. s.l. : O'Reilly Media, Inc., 2006.
059600978X.

OSGi. [Online] http://www.osgi.org.
Spring Framework. [Online] http://www.spring

framework.org.
Spring Dynamic Modules. [Online] http://www.spring

framework.org/osgi.
Stahl, Thomas and Voelter, Markus. Model-Driven

Software Development: Technology, Engineering,
Management . s.l. : Wiley, 2006. 0470025700.

Johnson, Rod. Expert One-on-One J2EE Design and
Development (Programmer to Programmer). s.l. :
Wrox, 2002. 0764543857.

Clements, Paul and Northrop, Linda. Software Product
Lines: Practices and Patterns. s.l. : Addison-Wesley
Professional, 2001. 0201703327.

AUTOMATIC DERIVATION OF SPRING-OSGI BASED WEB ENTERPRISE APPLICATIONS

233

