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Abstract: This paper investigates the roundoff noise effect in the digital controller on the closed-loop output for a
discrete-time feedback control system. Based on a polynomial parametrization approach, a sparse controller
structure is derived. The performance of the proposed structure is analyzed by deriving the corresponding ex-
pression of closed-loop roundoff noise gain and the problem of finding optimized sparse structures is solved.
A numerical example is presented to illustrate the design procedure and the performance of the proposed
structure compared with those of some existing well-known structures.

1 INTRODUCTION

Finite word length (FWL) effects have been a well
studied field in the design of digital filers for more
than three decades (Mullis and Roberts, 1976),
(Hwang, 1977), (Roberts and Mullis, 1987), (Gevers
and Li, 1993). However, they have received less at-
tention in the area of digital control. Nowadays, many
researchers have recognized the importance of the nu-
merical problems caused by FWL effects in digital
controller implementation. The optimal FWL con-
troller structure design (Fialho and Georgiou, 1994),
(Li, 1998), (Wu et al., 2001), (Yu and Ko, 2003) has
been considered as one of the most effective methods
to minimize the effects of FWL errors on the perfor-
mance of closed-loop control systems. The basic idea
behind this approach is that for a given digital con-
troller, there exist different structures which have dif-
ferent numerical properties, and the optimal structure
problem is to identify those structures that optimize a
certain FWL performance criterion.

Generally speaking, there are two types of FWL
errors in the digital controller. The first one is the per-
turbation of the controller parameters implemented
with FWL, and the second one is the rounding er-
rors that occur in arithmetic operations, which are
usually measured with the so-called roundoff noise
gain. The effects of roundoff noise have been well
studied in digital signal processing, particularly in
digital filter implementation (Wong and Ng, 2000),
(Wong and Ng, 2001). However, it was not un-

til the late 1980s that the problem of optimal con-
troller realizations minimizing the roundoff noise gain
was addressed. The roundoff noise gain was de-
rived for a control system with a state-estimate feed-
back controller and the corresponding optimal real-
ization problem was solved in (Li and Gevers, 1990),
while the roundoff error effect on the linear quadratic
regulation (LQG) performance was investigated in
(Williamson and Kadiman, 1989) and the optimal so-
lution was obtained by Liuet al(Liu et al., 1992). The
problem of finding the optimum roundoff noise struc-
tures of digital controllers in a sampled-data system
has been investigated in (Li et al., 2002).

It has been noted that the optimal controller real-
izations obtained with the above design methods are
usually fully parametrized, which increase the com-
plexity for real-time implementations. From a prac-
tical point of view, it is desired that the actually im-
plemented controller have a nice performance against
the FWL effects as well as a sparse structure that
possesses many trivial parameters1 which produce no
FWL errors. As far as we know, a few results have
been published on the sparseness issue for the con-
troller structure design (Li, 1998), (Wu et al., 2003),
however, it is noted that in these approaches, sophisti-
cated numerical algorithms were utilized and the po-
sitions of trivial parameters were not predictable. In
(Hao et al., 2006), we proposed two sparse structures

1By trivial parameters we mean those that are 0 and±1,
other parameters are, therefore, referred to as nontrivial pa-
rameters.
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for digital controllers, which have some degrees of
freedom that can be used to enhance the closed-loop
stability robustness against the FWL effects.

In this paper, a new sparse controller structure is
derived by adopting the polynomial parametrization
approach in (Hao et al., 2006) and using thel2-scaling
scheme. This structure can be considered as al2-
scaled generalized DFIIt (direct-form II transposed)
structure. The expression of the roundoff noise gain
is derived for a closed-loop feedback control system,
in which the digital controller is implemented with the
proposed structure. The problem of finding optimized
sparse structures is solved by minimizing the corre-
sponding closed-loop roundoff noise gain. A numeri-
cal example is given to illustrate the design procedure,
which shows that the proposed structure beats the tra-
ditional DFIIt structures greatly in terms of roundoff
noise performance, and furthermore, outperforms the
fully parametrized optimal realization (Li et al., 2002)
in terms of both roundoff noise gain and computation
efficiency.

2 A SPARSE CONTROLLER
STRUCTURE

Consider a discrete-time feedback control system de-
picted in Fig. 1, wherePd(z) is the discrete-time plant
andCd(z) is a well-designed digital controller. The
controller can be represented by its transfer function
which is parametrized with{ξk,ζk} in the shift oper-
atorz:

Cd(z) =
∑K

k=0 ζkzK−k

zK +∑K
k=1 ξkzK−k

. (1)

This controller can be implemented with many differ-
ent structures, such as the direct forms or the follow-
ing state-space equations:

{
x(n+1) = Ax(n)+Bu(n)

y(n) = Cx(n)+du(n)
(2)

wherex(n) ∈ R K×1 is the state variable vector and
u(n), y(n) are the input and output of the controller
Cd(z), respectively, whiler(n) is the input signal of
the closed-loop system.R, (A,B,C,d) is called a
realization ofCd(z) with A ∈ R K×K ,B ∈ R K×1,C ∈
R 1×K andd ∈ R , satisfying

Cd(z) = d+C(zI−A)−1B.

DenoteSC as the set of all the realizations:SC ,
{(A,B,C,d) : Cd(z) = d+C(zI−A)−1B}. Let R0 ,
(A0,B0,C0,d) ∈ SC be an initial realization. It can be
shown thatSC is characterized by

A= T−1A0T, B= T−1B0, C=C0T (3)

whereT ∈ R K×K is any nonsingular matrix. Such a
matrixT is usually called a similarity transformation.
Once an initial realizationR0 is given, different con-
troller realizations correspond to different similarity
transformationsT.

-r(n) �
��
∑ -

Cd(z)
y(n)

u(n)

6

Pd(z) - -

�

Figure 1: A discrete-time feedback control system.

2.1 A Generalized DFIIt Structure

Based on the approach in (Hao et al., 2006), we define

ρk(z) ,
z− γk

∆k
, k= 1,2, ...,K, (4)

where{γk} and{∆k > 0} are two sets of constants to
be discussed later. Let

pk(z) ,
K

∏
m=k+1

ρm(z), ∀k∈ {0,1, · · · ,K−1},

pK(z) , 1. (5)

It can be shown that (1) can be rewritten as

Cd(z) =
β0p0(z)+β1p1(z)+ . . .+βK pK(z)
p0(z)+α1p1(z)+ . . .+αK pK(z)

, (6)

where

ᾱ , [1 α1 · · · αK ]T

= κT̄−T
p [1 ξ1 · · · ξK ]T

β̄ , [β0 β1 · · · βK ]T

= κT̄−T
p [ζ0 ζ1 · · · ζK ]T

with κ=∏K
k=1 ∆−1

k such that̄α(1)=1 andT̄p an upper
triangular matrix whosekth row is formed with the
coefficients ofpk−1(z) defined above. Equation (6)
implies that the controller transfer functionCd(z) is
reparametrized with{αk} and{βk} in the new set of
polynomial operators{pk(z)}.

It follows from (5) and (6) that the output of the
controller can be computed with the following equa-
tions

y(n) = β0u(n)+w1(n)

wk(n) = ρ−1
k [βku(n)−αky(n)+wk+1(n)]

wK(n) = ρ−1
K [βKu(n)−αKy(n)] (7)
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wherewk(n) is the output ofρ−1
k (z) and can be com-

puted with the structure depicted in Fig. 2. Fig. 3
shows the corresponding structure to (7). For conve-
nience, a structure defined by Fig.s 2 and 3 is called a
generalized DFIIt structure, denoted asρDFIIt. This
structure possesses{αk, βk, ∆k} and a set of free pa-
rameters{γk}. For a given digital controllerCd(z),
there exists a class of such structures, depending on
the space within which{γk} take values. Clearly,
whenγk = 0, ∆k = 1, ∀k, Fig. 3 is the conventional
direct-form II transposed (DFIIt) structure.

direct-form II transposed (DFIIt) structure.

- l+ -z
−1

-∆k- wk(n)
xk(n)

�γk6
1

Figure 2: A realization ofρ−1
k (z) defined in (4).
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Figure 3: Block diagram of the ρDFIIt structure.
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Figure 3: Block diagram of theρDFIIt structure.

With {xk(n)} indicated in Fig. 2 as the state vari-
ables andx(n) denoting the state vector, one can
find the equivalent state-space realization, denoted as
(Aρ,Bρ,Cρ,β0), of the proposedρDFIIt structure:

Cd(z) = β0+Cρ(zI−Aρ)
−1Bρ (8)

with Bρ = V̄β −β0V̄α, whereV̄x , [x1 · · · xk · · · xK ]
T

for x= α,β, Cρ = [∆1 0 · · · 0 0], and

Aρ ,




a11 ∆2 0 · · · 0 0
a21 γ2 ∆3 · · · 0 0

...
a(K−1)1 0 0 · · · γK−1 ∆K

aK1 0 0 · · · 0 γK




with a11 = γ1 − ∆1α1 and ak1 = −∆1αk, k ∈
{2,3, · · · ,K}.

2.2 Scaling Scheme

It is well known that in an implementation system, all
the signals should be sustained within a certain dy-
namic range in order to avoid overflow. Under the as-
sumption that the inputr(n) and the outputu(n) of the
closed-loop system are properly pre-scaled, the only
signals which may have overflow are the elements of
the controller state vectorx(n), which, therefore, have
to be scaled.

There exist different scaling schemes for prevent-
ing variables from overflow. The popularly used ones
are thel2- and l∞-scalings. In what follows, we will
concentrate on thel2-scaling scheme. Thel2-scaling
means that each element of the controller state vec-
tor x(n) should have a unit variance when the input
r(n) is a white noise with a unit variance. This can be
achieved if

K̄ (l , l) = 1, l = N+1,N+2, ...,N+K (9)

whereK̄ is the controllability Gramian of the closed-
loop system of orderN+K. Assuming thatPd(z) is
strictly proper and has a realization(Az,Bz,Cz,0), let
(Acl ,Bcl,Ccl ,0) be the closed-loop realization, where

Acl =

[
Az+dBzCz BzC

BCz A

]

Bcl =

[
Bz
0

]

Ccl = [Cz 0 ] (10)

with 0 denoting the zero vector of appropriate dimen-
sion. ThenK̄ is given by

K̄ =
+∞

∑
k=0

Ak
clBclB

T
cl (A
T
cl )

k (11)

satisfying

K̄ = AclK̄ ATcl +BclB
T
cl .

Let (Acl ,Bcl,Ccl) and (A0
cl ,B

0
cl,C

0
cl) be two real-

izations of the closed-loop system withAcl ,Bcl and
Ccl defined in (10), corresponding to the two digi-
tal controller realizationsR, (A,B,C,d) and R0 ,
(A0,B0,C0,d) which are related with (3), respectively.
It can be shown that

Acl =

[
I 0
0 T

]−1

A0
cl

[
I 0
0 T

]

Bcl =

[
I 0
0 T

]−1

B0
cl

Ccl = C0
cl

[
I 0
0 T

]
. (12)

It then follows from (12) that

K̄ =

[
I 0
0 T

]−1

K̄ 0

[
I 0
0 T

]−T

whereK̄ 0 is the closed-loop controllability Gramian
corresponding toR0. Let

K̄ ,
[
K 11 K 12
K 21 K

]
, K̄ 0 ,

[
K 0

11 K
0
12

K 0
21 K 0

]
(13)
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have the same partition as

[
I 0
0 T

]
, then

K = T−1K 0T−T (14)

whereK 0 is a positive-definite matrix independent of
T.

It is easy to see from above equations that thel2-
scaling constraint (9) can be satisfied if the diagonal
elements ofK are all equal to one, that is

K (k,k) = 1,∀k. (15)

When theρDFIIt structure is used to implement a
digital controller, it has to bel2-scaled in order to pre-
vent the signals in the controller from overflow, which
can be achieved by choosing{∆k} properly. It is in-
teresting to note that

pk(z) = [
K

∏
l=k+1

∆−1
l ]p̄k(z), ∀k (16)

where allp̄k(z) are obtained using (5) with∆k =1, ∀k.
Let (A0

ρ,B
0
ρ,C

0
ρ,β0) be the equivalent state-space

realization corresponding to∆k = 1, ∀k. With (16), it
can be shown that

Aρ = TscA
0
ρT−1

sc , Bρ = TscB
0
ρ, Cρ =C0

ρT−1
sc

whereT−1
sc is a diagonal scaling similarity transfor-

mation, and

Tsc= diag(d1,d2, · · · ,dK), dk =
k

∏
l=1

∆−1
l , ∀k.

DenoteK̄ ρ and K̄ 0
ρ as the closed-loop controlla-

bility Gramians, corresponding to the controller real-
izations(Aρ,Bρ,Cρ,β0) and (A0

ρ,B
0
ρ,C

0
ρ,β0), respec-

tively. Let K ρ be the sub-matrix ofK̄ ρ with the
partition defined in (13), then (14) becomesK ρ =

TscK
0

ρ TTsc with K 0
ρ the corresponding sub-matrix of

K̄ 0
ρ . It is easy to see that thel2-scaling can be

achieved ifK ρ(k,k) = 1,∀k, or equivalently,

d2
kK

0
ρ (k,k) = 1, k= 1,2, ...,K

which leads to

∆1 =
√
K 0

ρ (1,1), ∆k =

√
K 0

ρ (k,k)

K 0
ρ (k−1,k−1)

, (17)

k= 2,3, ...,K.

In the sequel, all the structures under discussion,
including theρDFIIt structure, are assumed to have
beenl2-scaled. Here we should note that thel2-scaled
ρDFIIt structure to be analyzed in this paper is differ-
ent from the structure in (Hao et al., 2006) where{∆k}
are free parameters used for maximizing the stability
robustness measure.

3 PERFORMANCE ANALYSIS
AND OPTIMIZED STRUCTURE

In this section, we will analyze the performance of
the ρDFIIt structure in terms of closed-loop round-
off noise gain. The problem of finding the optimized
structure will then be formulated and solved.

One notes that for a given digital controllerCd(z),
there exists a class ofl2-scaledρDFIIt structures,
which are determined by a space, denoted asSγ, from
which the free parameters{γk} take values. It is easy
to see that{γk} are the parameters to be implemented
directly in the structure. Since we are confined to
fixed-point implementation for which the FWL ef-
fects are more serious, it is desired thatγk be abso-
lutely not bigger than one and of FWL format. For a
fixed-point implementation ofBp bits, define

SFWL , {−1,1}∪{±
Bp

∑
l=1

bl 2
−l , bl = 0,1, ∀l} (18)

which is a discrete space, containing 2Bp+1 + 1 ele-
ments. Therefore, one can chooseSγ ⊂ SFWL, which
means that allγk are of exactBγ-bit format withBγ ≤
Bp.

3.1 Closed-loop Roundoff Noise Gain

In practice, a designed digital controller has to be im-
plemented with finite precision and a rounding oper-
ation has to be applied if less-than-double precision
fixed-point arithmetic is utilized. Assuming round-
ing occurs after multiplication (RAM), a variable, say
x, computed with a multiplication, has to be replaced
by its quantized version, denoted asQ[x], in the ideal
computation model. The differenceQ[x]− x is the
corresponding roundoff noise, which is usually mod-
elled as a white noise sequence and statistically inde-
pendent of those produced by other sources.

Let µ be a parameter in a controller structure and
Q[µs(n)] the quantized version of the productµs(n).
The roundoff noise due to the parameterµ can be de-
fined as

ψ(µ)εµ(n), Q[µs(n)]−µs(n)

whereψ(µ)= 1 if µ is nontrivial, otherwise,ψ(µ)= 0.
In fact, the functionψ(µ) is used for indicating the
fact thatµ produces no roundoff noise when it is triv-
ial. Denote∆u(n) as the corresponding output de-
viation of the closed-loop system toψ(µ)εµ(n) and
F(z) as the transfer function betweenψ(µ)εµ(n) and
∆u(n). It is well known (see, e.g., (Gevers and Li,
1993)) that∆u(n) is a stationary process and the vari-
anceE[(∆u(n))2] = ψ(µ)‖F(z)‖2

2E[ε2
µ(n)]. Then the
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roundoff noise gain forµ is defined as

Gµ ,
E[(∆u(n))2]

E[ε2
µ(n)]

= ψ(µ)‖F(z)‖2
2 (19)

where||.||2 is theL2-norm:

‖ F(z) ‖2 ,
{

1
2π

∫ 2π

0

l

∑
i=1

m

∑
k=1

| fik(ejω)|2dω

}1/2

=

{
tr[

1
j2π

∮

|z|=1
F(z)FH (z)z−1dz]

}1/2

(20)

with F(z) = { fik(z)} ∈ R l×m, andH , tr[.] denoting
the conjugate-transpose and trace operators, respec-
tively. Let F(z) = D+L(zI−Φ)−1J. It can be shown
that

‖F(z)‖2
2 = tr[DDT +LWcL

T ] = tr[DT D+JTWoJ]
(21)

whereWc,Wo are the controllability and observability
Gramians of the realization(Φ,J,L,D), respectively.

Consider a digital controller implemented with a
ρDFIIt structure. We note that the parameters in a
ρDFIIt structure are{αk},{βk}, {∆k}, and{γk}. It
follows from (6) that

y(n) = β0u(n)+
K

∑
l=1

[
pl (z)
p0(z)

βl u(n)−
pl (z)
p0(z)

αl y(n)].

(22)
Let us first look at the effect of roundoff noise
ψ(β0)εβ0

(n) due toβ0 on the closed-loop output. Let
u∗(n) and y∗(n) be the corresponding output of the
closed-loop system and the controller, respectively.
Clearly, they obey (22) withβ0u∗(n) replaced by
β0u∗(n)+ψ(β0)εβ0

(n). Denote∆y(n), y∗(n)−y(n).
Then one can show that

∆y(n) = [β0∆u(n)+ψ(β0)εβ0
(n)]

+
K

∑
l=1

pl (z)
p0(z)

βl ∆u(n)−
K

∑
l=1

pl (z)
p0(z)

αl ∆y(n) (23)

where∆u(n), u∗(n)−u(n), satisfying

∆u(n) = Pd(z)∆y(n). (24)

Let Hcl(z) be the transfer function of the closed-
loop system, which is given by

Hcl(z) =
Pd(z)

1−Pd(z)Cd(z)

wherePd(z) is the transfer function of plant andCd(z)
the polynomial parametrized controller transfer func-
tion given by (6). It is easy to see that

Hcl(z) = Dcl +Ccl(zI−Acl)
−1Bcl (25)

with (Acl ,Bcl,Ccl ,Dcl) the realization of closed-loop
system. It then follows from (23) and (24) that

∆u(n) = S0(z)ψ(β0)εβ0
(n)

where S0(z) is the transfer function between
ψ(β0)εβ0

(n) and∆u(n), which is given by

S0(z) = Hcl(z)V0(z)

with

V0(z),
p0(z)

p0(z)+∑K
l=1 αl pl (z)

.

ComparingV0(z) with (6), it follows from (8) that

V0(z) = [β0+Cρ(zI−Aρ)
−1Bρ]|β0=1,V̄β=0

= 1−Cρ(zI−Aρ)
−1V̄α.

One observes thatS0(z) is of the formS0(z) =
[D2 + C2(zI2 − A2)

−1B2][D1 + C1(zI1 − A1)
−1B1],

where A1 = Aρ,B1 = −V̄α,C1 = Cρ,D1 = 1, A2 =
Acl,B2 = Bcl,C2 = Ccl ,D2 = Dcl , andIk,k = 1,2 de-
notes the identity matrix of a proper dimension. It is
easy to verify that

S0(z), D̃+C̃(zĨ − Ã)−1B̃

where

D̃ = D2D1, C̃= [D2C1 C2 ]

Ĩ =

[
I1 0
0 I2

]

Ã =

[
A1 0

B2C1 A2

]
, B̃=

[
B1

B2D1

]
.

According to (19) and (21), the roundoff noise gain
due to parameterβ0 is given by

Gβ0
= ψ(β0)||S0(z)||22 = ψ(β0)tr(D̃

T D̃+ B̃T W̃B̃)

, ψ(β0)G0

whereW̃ is the observability Gramian of the realiza-
tion (Ã, B̃,C̃,D̃).

Using the same procedure, one can analyze the
roundoff noise gain due to the parameterβk. Let
ψ(βk)εβk

(n) be the corresponding roundoff noise.
It can be shown that the transfer function from
ψ(βk)εβk

(n) to ∆u(n), denoted asSk(z), is

Sk(z) = Hcl(z)Vk(z)

with Hcl(z) given by (25) and

Vk(z) =
pk(z)

p0(z)+∑K
l=1 αl pl (z)

=Cρ(zI−Aρ)
−1ek

for k= 1,2, · · · ,K, whereek is thekth elementary vec-
tor whose elements are all zero except thekth one
which is 1. Therefore,

Gβk
= ψ(βk)||Sk(z)||22 , ψ(βk)Gk, ∀k
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with
Gk = tr(D̃Tk D̃k+ B̃Tk W̃kB̃k)

where(Ãk, B̃k,C̃k,D̃k) is the realization ofSk(z) and
W̃k is the corresponding observability Gramian.

Comparing the positions ofαk,γk and∆k+1 with
that ofβk in Fig. 3, one can see easily that

Gαk = ψ(αk)Gk, Gγk = ψ(γk)Gk, G∆k = ψ(∆k)Gk−1

for k= 1,2, · · · ,K.
Therefore, the total closed-loop roundoff noise

gain of theρDFIIt structure is

Gρ ,
K

∑
k=1

[Gαk +Gγk +G∆k]+
K

∑
k=0

Gβk
,

K

∑
k=0

υkGk (26)

where the coefficientsυk can be specified easily with
the expressions, obtained above, of roundoff noise
gain for all the parameters.

3.2 Structure Optimization

For a given digital controllerCd(z) and any given free
parameters{γk}, one can obtain thel2-scaledρDFIIt
structure with the procedure presented in Section II.
The roundoff noise gainGρ can then be evaluated
with (26). Since different sets of{γk} yield different
ρDFIIt structures and hence lead to different roundoff
noise gainGρ, an interesting problem is to minimize
Gρ with respect to these free parameters, which leads
to the following optimalρDFIIt structure problem:

min
γk∈Sγ

Gρ. (27)

It seems impossible to obtain analytical solutions
to the problem (27) due to the high nonlinearity ofGρ
in {γk}. However, noting thatSγ is of finite number
of elements, the problem can be well solved using the
exhaustive searching method.

4 A DESIGN EXAMPLE

In this section, we illustrate our design procedure
and the performance of the proposed structure with
a numerical example, in whichSγ = {±1,±(2−1+

2−2),±2−1,±2−2,0}. The elements in the setSγ are
of exact 3-bit fixed-point format (including one bit for
the sign). Using more bits or floating-point formats
will lead to a further improved performance, which
can also confirm the effectiveness of our design pro-
cedure.

Consider a discrete-time control sys-
tem, where the digital plant Pd(z) =

10−1 × 0.0181z4+0.0033z3−0.1628z2+0.0111z+0.0163
z5−3.7174z4+5.7458z3−4.6673z2+2.0336z−0.3953

Table 1: Comparison of Different Structures.

zDFIIt δDFIIt Rf ρDFIIt
G 1.5191×104 7.1763 4.9919 1.0085
Np 19 19 49 24

and controller Cd(z) = 0.0577 +
0.2258z5−0.6588z4+0.8195z3−0.5320z2+0.1814z−0.0234

z6−3.6172z5+5.9513z4−5.6335z3+3.2509z2−1.0895z+0.1690
.

The corresponding poles of the closed-
loop system are {0.4523± j0.5315,0.4837±
j0.4556,0.6055 ± j0.4108,0.7814 ±
j0.3099,0.8886± j0.3326,0.9113}.

Applying exhaustive searching to (27), one gets
the optimalρDFIIt structure, denoted asρDFIIt, for
which γ1 = 1, γ5 = 0.5, γk = 0.75, k ∈ {2,3,4,6}.
For comparison, an optimal fully parametrized state-
space realization, denoted byRf , is obtained using
the procedure in (Li et al., 2002).zDFIIt andδDFIIt
are the traditional DFIIt structures in the shift- andδ-
operators, corresponding toγk = 0, ∀k andγk = 1, ∀k,
respectively.

The comparative results of different structures are
presented in Table I, whereG is the roundoff noise
gain andNp is the number of nontrivial parameters in
each structure.

From this example, one can see thatzDFIIt yields
a very large roundoff noise gain, though it has only 19
parameters to implement, whileδDFIIt has a much
better performance. The fully parametrized optimal
realizationRf yields a further better performance,
however, all the 49 parameters inRf are nontrivial.
It is interesting to see thatρDFIIt beatsRf in terms
of the roundoff noise performance. Moreover,ρDFIIt
is very sparse and has only 24 nontrivial parameters,
which is less than half of those inRf .

5 CONCLUSIONS

In this paper, we have addressed the optimal con-
troller structure problem in a discrete-time control
system with roundoff noise consideration. Our ma-
jor contribution is twofold. Firstly, a sparse controller
structure, which is al2-scaled generalized DFIIt struc-
ture, has been derived. Secondly, the performance
of the proposed structure has been analyzed by de-
riving the corresponding expression of closed-loop
roundoff noise gain and the problem of finding op-
timized sparse structures has been solved. Finally,
a numerical example has been given, which shows
that the proposed structure can achieve much bet-
ter performance than some well-known structures and
particularly, outperforms the traditional optimal fully
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parametrized realization greatly in terms of reducing
roundoff noise and implementation complexity. This
optimal controller design strategy with high precision
arithmetic can be utilized to develop suitable con-
trol systems for robotic platforms performing com-
plex movements, where efficiency, accuracy and fast
speed are essential.
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