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Abstract: This paper investigates the roundoff noise effect in the digital controller on the closed-loop output for a
discrete-time feedback control system. Based on a polynomial parametrization approach, a sparse controller
structure is derived. The performance of the proposed structure is analyzed by deriving the corresponding ex-
pression of closed-loop roundoff noise gain and the problem of finding optimized sparse structures is solved.
A numerical example is presented to illustrate the design procedure and the performance of the proposed
structure compared with those of some existing well-known structures.

1 INTRODUCTION til the late 1980s that the problem of optimal con-
troller realizations minimizing the roundoff noise gain
o was addressed. The roundoff noise gain was de-
Finite word length (FWL) effects have been a well yjyeq for a control system with a state-estimate feed-
studied field in the design Qf digital filers for more p5ck controller and the corresponding optimal real-
than three decades (Mullis and Roberts, 1976), jzation problem was solved in (Li and Gevers, 1990),
(Hwang, 1977), (Roberts and Mullis, 1987), (Gevers \ypile the roundoff error effect on the linear quadratic
and Li, 1993). However, they have received less at- reqylation (LQG) performance was investigated in
tention in the area of dlglt§.| contrql. Nowadays, many (Williamson and Kadiman, 1989) and the optimal so-
researchers have recognized the importance of the nuytion was obtained by Lietal(Liu etal., 1992). The
merical problems caused by FWL effects in digital  opjem of finding the optimum roundoff noise struc-
controller implementation. The optimal FWL con- yres of digital controllers in a sampled-data system
troller structure design (Fialho and Georgiou, 1994), has been investigated in (Li et al., 2002).
(L, 1998)’.(\/\/“ etal., 2001), (Yu and Ko, .2003) has It has been noted that the optimal controller real-
been considered as one of the most effective methods ions obtained with the above design methods are
to minimize the effects of FWL errors on the perfor- a1y fully parametrized, which increase the com-
mance of closed-loop control systems. The basic idea|eyity for real-time implementations. From a prac-
behind this approach is that for a given digital con- cay point of view, it is desired that the actually im-
troller, there exist different structures which have dif- plemented controller have a nice performance against
ferent numerical properties, and the optimal structure i, FwL effects as well as a sparse structure that
problem is to identify those structures that optimize a possesses many trivial parametamich produce no
certain FWL performance criterion. FWL errors. As far as we know, a few results have
Generally speaking, there are two types of FWL hean hyplished on the sparseness issue for the con-
errors in the digital controller. The first one is the per- q1ier structure design (Li, 1998), (Wu et al., 2003)
turbation of the controller parameters implemented ., yever. it is noted that in these approaches, sophisti-
with FWL, and the second one is the rounding er- ;5104 numerical algorithms were utilized and the po-
rors that occur in arithmetic operations, which are gjions of trivial parameters were not predictable. In
uspally measured with the so—cglled roundoff noise (Hao et al., 2006), we proposed two sparse structures
gain. The effects of roundoff noise have been well =
st_ugjled_ in d_|g|tal signal _processing, particularly in 1By trivial parameters we mean those that are 0-f
digital filter implementation (Wong and Ng, 2000), other parameters are, therefore, referred to as nontrivial pa-
(Wong and Ng, 2001). However, it was not un- rameters.
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for digital controllers, which have some degrees of whereT € & K*K is any nonsingular matrix. Such a

freedom that can be used to enhance the closed-loopmatrix T is usually called a similarity transformation.

stability robustness against the FWL effects. Once an initial realizatioRy is given, different con-
In this paper, a new sparse controller structure is troller realizations correspond to different similarity

derived by adopting the polynomial parametrization transformationg .

approachin (Hao et al., 2006) and usinglthscaling

scheme. This structure can be considered &s a

scaled generalized DFIIt (direct-form Il transposed) r(n) @ Py(z) u(n)
structure. The expression of the roundoff noise gain

is derived for a closed-loop feedback control system,

in which the digital controller is implemented with the y(n)

proposed structure. The problem of finding optimized Ca(z)

sparse structures is solved by minimizing the corre- _ _ _

sponding closed-loop roundoff noise gain. A numeri- Figure 1: A discrete-time feedback control system.

cal example is given to illustrate the design procedure,
which shows that the proposed structure beats the tra- .
ditional DFIIt structures greatly in terms of roundoff 2.1 A Generalized DFIIt Structure

noise performance, and furthermore, outperforms the ) ]
fully parametrized optimal realization (Li et al., 2002) Based on the approach in (Hao etal., 2006), we define

in terms of both roundoff noise gain and computation a Z—Vk
eﬁiCiency. pk(z) = Ak ’ k= 17 27 ey Ka (4)
where{yi} and{A > 0} are two sets of constants to
2 A SPARSE CONTROLLER be discussed later. Let
K
STRUCTURE pk(Z) £ |_| pm(z)v VKE{O71V"7K71}7

. . . k+1
Consider a discrete-time feedback control system de- N

picted in Fig. 1, wher®,(2) is the discrete-time plant ~ Px(2) = 1 ()
andCy(2) is a well-designed digitgl controller. Th_e It can be shown that (1) can be rewritten as
controller can be represented by its transfer function

which is parametrized withy, {x} in the shift oper- Cal2) = Bopo(2) +B1p1(2) + ...+ B pk(2) ©)
atorz Po(2) +a1p1(z)+ ...+ ok pk(2) ’

Tkl where
Cy(2) = KoK B K 1)

~ _— DY T
This controller can be implemented with many differ- R [1_ a1 ok ]
ent structures, such as the direct forms or the follow- = KT,"[1 & - &7
i tate- ti : = .
ing state-space equations B 2 [Bo B - B]”
x(n+1) = Ax(n)+Bu(n) @) _ kT (U o T
y(n) = Cx(n)+du(n) e B0 )

wherex(n) € % X< is the state variable vector and With K = [Tf_, A, * such thatr(1) = 1 andT, an upper
u(n), y(n) are the input and output of the controller triangular matrix whoséth row is formed with the
C4(2), respectively, while'(n) is the input signal of ~ coefficients ofp_1(z) defined above. Equation (6)
the closed-loop systemR 2 (A,B,C.d) is called a  implies that the controller transfer functi@y(z) is

realization ofCy(2) with A€ g K*K Be g Kx1 C ¢ reparametrized witfay} and{px} in the new set of
& K andd € %, satisfying polynomial operator$pk(z)}.
_ It follows from (5) and (6) that the output of the
_ 1
Ca(2) =d+C(zI-A)"B. controller can be computed with the following equa-
Denote & as the set of all the realization§: £ tions
{(A,B,C,d): C4(2) =d+C(zI —A)!B}. Let Rp = B
(Ag,Bp,Cp,d) € S be an initial realization. It can be y(n) = PBou(n)+wa(n)
shown tha&: is characterized by We(n) = P H[Bru(n) — oy (n) + Wig1(N)]
A=T AT, B=T'By, C=CoT 3) we(n) = p[Bru(n) —aky(n)] 7

14



OPTIMAL SPARSE CONTROLLER STRUCTURE WITH MINIMUM ROUNDOFF NOISE GAIN

wherewy(n) is the output o, *(z) and can be com- There exist different scaling schemes for prevent-
puted with the structure depicted in Fig. 2. Fig. 3 ing variables from overflow. The popularly used ones
shows the corresponding structure to (7). For conve- are thel,- andlo-scalings. In what follows, we will
nience, a structure defined by Fig.s 2 and 3 is called aconcentrate on thie-scaling scheme. Thie-scaling
generalized DFIIt structure, denoted@3FlIt. This means that each element of the controller state vec-
structure possessésy, Bk, Ak} and a set of free pa-  tor x(n) should have a unit variance when the input
rameters{yk}. For a given digital controlle€y(z), r(n) is a white noise with a unit variance. This can be
there exists a class of such structures, depending orachieved if
the space within whicHyy} take values. Clearly, —
whenyi = 0, A = 1, Vk, Fig. 3 is the conventional K1) =1, I=N+LN+2. ,N+K (9)
direct-form Il transposed (DFII) structure. wherex is the controllability Gramian of the closed-
loop system of ordeN + K. Assuming thaPy(z) is
—~ xk(n) A wie(n) strictly proper and has a realizati¢A;, B,,C,0), let

\A[Jr Vi (Acl, Bel,Cql, 0) be the closed-loop realization, where

Ay — [AHdBLC BC
Figure 2: A realization op;l(z) defined in (4). L= BGC, A
o -y
u(n) Bx Bx-1 B2 1B2 Bi  Bo c c, 0 (10)
I = z
ea{ p;‘{%pgllkea* o el Py e Py . . .
with 0 denoting the zero vector of appropriate dimen-
—0k [ TOk-1 [ TO0K-2 [—0 _O“y(n) sion. Thenx is given by
+o00
- k T (AT \K
Figure 3: Block diagram of theDFIIt structure. x= kZoACI BeiBei (Aci) (11)

With {x«(n)} indicated in Fig. 2 as the state vari- satisfying
ables andx(n) denoting the state vector, one can _ _
find the equivalent state-space realization, denoted as K =Aa KA + BaBy.

,By,Co, Bo), of the propose@DFIIt structure:
(Ao:Bp,Co, Bo) proposeg Let (Ac,Be,Cu) and (AY,BY.CY) be two real-

Cd(2) = Bo+Cp(zl — Ay) 1B (8) izations of the closed-loop system wifly, By and
C. defined in (10), corresponding to the two digi-
tal controller realization® £ (A,B,C,d) andRy =
(Ao, Bo,Cop,d) which are related with (3), respectively.

with By = Vg — BoVa, whereVy 2 [xg -+ X -+ Xk]”
forx=a,B,Co,=[A10--- 00, and

an A, O - 0 0 It can be shown that
a1 Y2 A3 -+ O 0 1
A ) I 0 oll O
AP = : Ad = 0T A oT
ak-n1 0 0 - yk-1 Ak -1
aK1 0 0 0 YK Bcl _ |:| O] Bgl
with a;; = y1 — AM01 and agg = —A10k, k € 0T
23.... K. I 0
{2,3,--,K} Ca = cg{o T]. (12)

2.2 Scaling Scheme It then follows from (12) that

the signals should be sustained within a certain dy- 0T Kolg T

namic range in order to avoid overflow. Under the as-

sumption that the inpui(n) and the outputi(n) ofthe hare 50 is the closed-loop controllability Gramian

closed-loop system are properly pre-scaled, the only corresponding t&o. Let

signals which may have overflow are the elements of

the controller state vecta(n), which, therefore, have —~a {g@l g@z] 508 [7(101 X
9 - 0

to be scaled. BRI Ky Ko

Itis well known that in an implementation system, all B L ol t=1 ol "
=0 7] %o 7]

| v

15



ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

have the same partition :{% .ﬂ , then

K =T 1ooT 7 (14)

wherexj is a positive-definite matrix independent of
T.

It is easy to see from above equations thatlthe
scaling constraint (9) can be satisfied if the diagonal
elements ofx are all equal to one, that is

% (k,k) = 1, k. (15)

When thepDFIIt structure is used to implement a
digital controller, it has to bk-scaled in order to pre-
vent the signals in the controller from overflow, which
can be achieved by choosifdy} properly. Itis in-
teresting to note that

K
(@ =[ [ AP, vk
I=k+1
where allpi(z) are obtained using (5) witly, = 1, k.
Let (A3,B3,Co.Bo) be the equivalent state-space
realization corresponding ty = 1, Vk. With (16), it
can be shown that

AP = TSCAgTSElv

whereTg! is a diagonal scaling similarity transfor-
mation, and

(16)

By = TscBY, Cp = CoTee

k
Tse = diag(dy,dy, -+, dk), dk= r!Arl, k.
|=

Denotex, and %, as the closed-loop controlla-
bility Gramians, corresponding to the controller real-
izations (Ap, By, Cp, Bo) and (A3,B5,C.Bo), respec-
tively. Let %, be the sub-matrix ofx, with the
partition defined in (13), then (14) becomeg =
TseKg Tee With % the corresponding sub-matrix of

0 It is easy to see that thk-scaling can be
achieved ifxp (k,k) = 1,Vk, or equivalently,

dixd(k k) =1, k=1,2,...K

which leads to

g (k. K)

A = A LU
! x(k—1,k—1)’

xQ(1,1), A= (17)

k=23,..,K.

In the sequel, all the structures under discussion,
including thepDFIIt structure, are assumed to have
beenl,-scaled. Here we should note that thescaled
pDFlIt structure to be analyzed in this paper is differ-
ent from the structure in (Hao et al., 2006) whéfg }
are free parameters used for maximizing the stability
robustness measure.

16

3 PERFORMANCE ANALYSIS
AND OPTIMIZED STRUCTURE

In this section, we will analyze the performance of
the pDFIIt structure in terms of closed-loop round-
off noise gain. The problem of finding the optimized
structure will then be formulated and solved.

One notes that for a given digital controllgg(z),
there exists a class dg-scaledpDFIIt structures,
which are determined by a space, denote§,agom
which the free parametefsi} take values. It is easy
to see thafyx} are the parameters to be implemented
directly in the structure. Since we are confined to
fixed-point implementation for which the FWL ef-
fects are more serious, it is desired tiate abso-
lutely not bigger than one and of FWL format. For a
fixed-pointimplementation dB, bits, define

B
Swi2 {-11}u{+ zp b2~ b =0,1, vI} (18)
=1

which is a discrete space, containingp?! + 1 ele-
ments. Therefore, one can cho&e- Scwi, which
means that ali are of exacB,-bit format withB, <
Bp.

3.1 Closed-loop Roundoff Noise Gain

In practice, a designed digital controller has to be im-
plemented with finite precision and a rounding oper-
ation has to be applied if less-than-double precision
fixed-point arithmetic is utilized. Assuming round-
ing occurs after multiplication (RAM), a variable, say
X, computed with a multiplication, has to be replaced
by its quantized version, denoted @5, in the ideal
computation model. The differendg[x] — x is the
corresponding roundoff noise, which is usually mod-
elled as a white noise sequence and statistically inde-
pendent of those produced by other sources.

Let pbe a parameter in a controller structure and
Q[us(n)] the quantized version of the produci(n).
The roundoff noise due to the paramegieran be de-
fined as

W(Weu(n) = Qlus(n)] — ps(n)

where(u) = 1if pis nontrivial, otherwise(u) = 0.

In fact, the function(p) is used for indicating the
fact thatpu produces no roundoff noise when it is triv-
ial. DenoteAu(n) as the corresponding output de-
viation of the closed-loop system tp(p)e,(n) and
F(z) as the transfer function betwedrip)e,(n) and
Au(n). It is well known (see, e.g., (Gevers and Li,
1993)) thatAu(n) is a stationary process and the vari-
anceE[(Au(n))?] = Y(w)||F ()| 3E[gi(n)]. Then the
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roundoff noise gain foptis defined as

o El(Bum)?) _
E[eA(n)

where||.||2 is theL,-norm:

onl m 2
21'[/ Z\fk (el®) [Pde

{tr[j%[ jlfz‘:lF(z)F” (22 1dZ }1/2

(20)
with F(2) = {fk(2)} € ®'*™, ands, tr[.] denoting

Gu VWIF@IZ 19

[1>

IF(2) |2

the conjugate-transpose and trace operators, respec-

tively. LetF(z) =
that

D +L(zl— ®)~1J. It can be shown

|IF(2)]|3 = tr[DD” 4+ LWL ] = tr[D7 D 4 J7 WpJ]
(21)
whereW,, W, are the controllability and observability
Gramians of the realizatiof®, J,L, D), respectively.
Consider a digital controller implemented with a

pDFIIt structure. We note that the parameters in a

pDFIIt structure are{oy},{Bk}, {A«}, and{y}. It
follows from (6) that

€ pi(2)

2@
Po(2)

y(n) = 2. 0@

Bou(n) + Biu(n) — ary(n)].

(22)
Let us first look at the effect of roundoff noise
W(Bo)ep, (N) due toBp on the closed-loop output. Let
u*(n) andy*(n) be the corresponding output of the

with (Ac,Bql,Cal, Der) the realization of closed-loop
system. It then follows from (23) and (24) that

Au(n) = S(2)Y(Bo)eg, (N)
where S(z) is the transfer function between
W(Bo)eg, () andAu(n), which is given by

S(2) = Ha (2Vo(2)
with
Po(2)
Vo(z) £ )
Po(2) + 31 aipi(2)

Comparingvo(z) with (6), it follows from (8) that

Vo(2) [Bo+Cp(zl — AP)_lBP] \30:1‘\73:0

1—Cp(zl — Ag) V.

One observes thek(z) is of the form S(z) =
[Dz + C2(Z|2 — Az)_le]_[Dl + Cl(Z|1 — Al)_lB]_],
whereA; = Ap,B]_ = 7Vu,Cl = Cp,D]_ =1, Ay =
Acl,Bo = B,Co = Cy, Do = Dg, andly, k= 1,2 de-
notes the identity matrix of a proper dimension. It is
easy to verify that

S92 2D0+C@A-A)1B
where
D = D.D;, €=[D,C; Cp]
-8
0 I
A= [Bﬁa :2}’ B= {328[1)1]

closed-loop system and the controller, respectively. According to (19) and (21), the roundoff noise gain

Clearly, they obey (22) witi3ou*(n) replaced by

Bou*(n) + W(Ro)ep, (n). Denotedy(n) £ y*(n) —y(n).
Then one can show that

Ay(n) = [BoAu(n) +W(Bo)ep, (N)]
s P@ < PO
+I; e I; noz) 1Y) (23)
whereAu(n) £ u*(n) — u(n), satisfying
Au(n) = Pa(2)8y(n). (24)

Let H¢ () be the transfer function of the closed-
loop system, which is given by
Pa(2)
1-Pu(2)Ca(2)
wherePq4(2) is the transfer function of plant ar@}(z)

the polynomial parametrized controller transfer func-
tion given by (6). It is easy to see that

Hei(2) = Det + Cei (21 — Ag) 1B

Hcl( )

(25)

due to parametdy is given by

Gg, = W(Bo)lISo(2)I13 = w(Bo)tr(D” D+ B"WB)
2 Y(Bo)Go

WherthN\/~ is the observability Gramian of the realiza-

tion (A,B,C,D).

Using the same procedure, one can analyze the
roundoff noise gain due to the paramefir Let
W(Bk)ep, (n) be the corresponding roundoff noise.
It can be shown that the transfer function from
W(Bk)ep, (n) to Au(n), denoted as(z), is

S(2) =Ha (2(2)
with Hei(2) given by (25) and
Px(2) -1
Vi(2) = = Cp(zl — Ap) e
@ s am P
fork=1,2,--- K, wheree is thekth elementary vec-

tor whose elements are all zero except ke one
which is 1. Therefore,

= Y(B)|IS(2)|[5 £ W(Bk)Gx, Vk

17
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with o o
Gy = tr(DZ Dy + BE\M(Bk)
where (A, By, Cy, Dy) is the realization o (z) and
W is the corresponding observability Gramian.
Comparing the positions afy, yx and g1 with
that of Bk in Fig. 3, one can see easily that

Go, = W(ak)Gk, Gy, = W(Y¥k)GCk, Ga, = W(Ak)Ck-1

fork=1,2,--- K.
Therefore, the total closed-loop roundoff noise
gain of thepDFIIt structure is

K K
Gp £ z [Gak +Gw< +GAk] + z GBk £
k=1 k=0

K

ZOUka (26)

k=
where the coefficientsy can be specified easily with

Table 1: Comparison of Different Structures.

ZDFIIt ODFIIt Rt pDFIIt
G || 1.5191x 10* || 7.1763 || 4.9919 || 1.0085
Np 19 19 49 24
and controller Ci(z7 = 00577 +

0.2258°—0.65887'+0.8195°3—0.532072+0.1814—0.0234
£-3.6172515.9513%5.6335313.250%2— 1.0895+0.1690"
The corresponding poles of the closed-

loop system are {0.4523+ j0.53150.4837 +
j0.4556 0.6055 + j0.41080.7814 +
j0.30990.8886+ j0.33260.9113.

Applying exhaustive searching to (27), one gets
the optimalpDFIIt structure, denoted gsDFIIt, for
whichyr =1, y5 = 0.5, yx = 0.75, k € {2,3,4,6}.

the expressions, obtained above, of roundoff noise For comparison, an optimal fully parametrized state-

gain for all the parameters.
3.2 Structure Optimization

For a given digital controlle€y(z) and any given free
parametergyi}, one can obtain thk-scaledpDFIIt
structure with the procedure presented in Section Il
The roundoff noise gairs, can then be evaluated
with (26). Since different sets dfy} yield different
pDFIIt structures and hence lead to different roundoff
noise gainG,, an interesting problem is to minimize

space realization, denoted ¢, is obtained using
the procedure in (Li et al., 2002)DFIIt and dDFIIt
are the traditional DFIIt structures in the shift- abd
operators, correspondingye= 0, Vk andyx =1, Vk,
respectively.

The comparative results of different structures are
presented in Table I, whei® is the roundoff noise
gain andNp is the number of nontrivial parameters in
each structure.

From this example, one can see th2FlIt yields
a very large roundoff noise gain, though it has only 19

Gp with respect to these free parameters, which leadsparameters to implement, whigDFIIt has a much

to the following optimalpDFIIt structure problem:

min Gp. (27)

WeSy
It seems impossible to obtain analytical solutions
to the problem (27) due to the high nonlinearity®&f
in {yk}. However, noting tha§, is of finite number
of elements, the problem can be well solved using the
exhaustive searching method.

4 A DESIGN EXAMPLE

In this section, we illustrate our design procedure
and the performance of the proposed structure with
a numerical example, in whicB, = {4+1,4+(271+
272),4271, 4272 0}. The elements in the s&, are

of exact 3-bit fixed-point format (including one bit for
the sign). Using more bits or floating-point formats
will lead to a further improved performance, which

better performance. The fully parametrized optimal
realizationRs yields a further better performance,
however, all the 49 parameters ity are nontrivial.

It is interesting to see thaDFIIt beatsRs in terms

of the roundoff noise performance. MoreovyeRFlIIt

is very sparse and has only 24 nontrivial parameters,
which is less than half of those Rs.

5 CONCLUSIONS

In this paper, we have addressed the optimal con-
troller structure problem in a discrete-time control
system with roundoff noise consideration. Our ma-

jor contribution is twofold. Firstly, a sparse controller

structure, which is &-scaled generalized DFIIt struc-
ture, has been derived. Secondly, the performance
of the proposed structure has been analyzed by de-
riving the corresponding expression of closed-loop
roundoff noise gain and the problem of finding op-

can also confirm the effectiveness of our design pro- timjzed sparse structures has been solved. Finally,

cedure.
Consider discrete-time  control
tem, where the digital plant Py(2)

101 0.01817*+0.00333—0.16282+0.01117+0.0163
2371747 +5.74585—4.66732+2.0336—0.3953

a sys-

X
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a numerical example has been given, which shows

that the proposed structure can achieve much bet-
ter performance than some well-known structures and

particularly, outperforms the traditional optimal fully
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parametrized realization greatly in terms of reducing Wu, J., Chen, S., Li, G., Istepanian, R. H., and Chu, J.
roundoff noise and implementation complexity. This (2001). f\ﬂ f!mproved_ 9'053d-!ocip Stabl|||lty fe'?ted
optimal controller design strategy with high precision measure for finite-precision digita’ controller realiza-
arithmetic can be utilized to develop suitable con- tions. [EEE Trans. Automat. Contr6:1162-1166.
trol Systems for robotlc platforms perform|ng com- YU, W. S. and KO, H. J. (2003) |mpr0Ved EIgenvalue sensl-

- tivity for finite-precision digital controller realizatis
plex movements, where efficiency, accuracy and fast via orthogonal hermitian transformEE Proc. Con-

speed are essential. trol Theory Appl, 50:365—375.
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