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Abstract: Non-integer differential or integral operators can be used to realize fractional-order controllers, which 
provide better performance than conventional PID controllers, especially if controlled plants are of non-
integer-order. In many cases, fractional-order controllers are more flexible than PID and ensure robustness 
for high gain variations. This paper compares three different approaches to approximate fractional-order 
differentiators or integrators. Each approximation realizes a rational transfer function characterized by a 
sequence of interlaced minimum-phase zeros and stable poles. The frequency-domain comparison shows 
that best approximations have nearly the same zero-pole locations, even if they are obtained starting from 
different points of view. 

1 INTRODUCTION 

Originally, the investigation of integrals and 
derivatives of any order was a topic known as 
fractional calculus. In recent years, however, 
considerable attention has been paid to the concept 
of non-integer derivative and integral to model 
systems in various fields of science and engineering. 
In the research area of control theory, several 
authors have provided generalizations of classical 
controllers introducing various types of Fractional-
Order Controllers (FOC). For example, the CRONE 
(French acronym for “Commande Robuste d’Ordre 
Non Entièr”) controller (Oustaloup, 1991; 
Oustaloup, 1995) and Fractional-Order Proportional-
Integral-Derivative (FOPID) controllers PIλDμ 
(Podlubny, 1999a; Podlubny, 1999b) have been 
recently considered. Moreover, FOC have been 
successfully applied in rigid robots, both for position 
control and for hybrid position-force-control 
(Tenreiro Machado and Azenha, 1998; Valerio and 
Sá da Costa, 2003). In general, FOC provide better 
performance than PID controllers, if the controlled 
plants are of non-integer-order. In other cases, FOC 
show high flexibility and can ensure high robustness 
for high gain variations. More particularly, in SISO 
systems, they can make the phase margin nearly not 
changing in a wide range around the gain crossover 

frequency, even if high gain variations produce high 
changes in gain crossover frequency. Applications in 
mechatronics are testified by several papers (Canat 
and Faucher, 2005; Li and Hori, 2007; Ma and Hori, 
2004a; Ma and Hori, 2004b; Ma and Hori, 2007; 
Melchior et al., 2005). 

The basic element of transfer functions of 
FOPID controllers is the fractional 
differentiator/integrator sν, with ν positive or 
negative real number. This operator is infinite 
dimensional, even if it can be approximated by 
finite-dimension transfer functions, whose 
coefficients depend on the non-integer exponent ν. A 
good rational approximation can be obtained by 
truncating the continued fractions expansion (CFE) 
of sν (Maione, 2006; Maione, 2008). Recently, in 
(Barbosa et al., 2006), least-squares-based methods 
are used for obtaining Fractional-Order Differential 
Filters (FODF) approximating sν. 

In this paper, a novel approach is compared to 
two commonly used methods to realize a rational 
approximation of fractional-order differentiators or 
integrators. These operators are the basic elements in 
fractional-order controllers of mechatronic systems. 
Section 2 revisits the three different methods 
systematically. Section 3 compares them in the 
frequency domain. Section 4 draws the conclusion 
with some remarks. 
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2 REVISITING THREE 
RATIONAL APPROXIMATIONS 

In this section, three methods are compared. They 
are shortly revisited, for making a direct comparison 
based on transfer functions putted in the same form. 
All the considered realizations are known to be 
minimum-phase and stable, with poles interlacing 
zeros along the negative real half-axis of the s-plane. 
This property is enlightened by the form of the three 
transfer functions, which explicitly shows the 
frequencies corresponding to the alternated zeros 
and poles. The interlacing property is important for 
comparison purposes, because the position of the 
zero-pole pairs determines the quality of the models 
approximating phase and magnitude of the irrational 
operator (jω)ν. Hence, for comparison purpose, 
realizations are constrained to have both their zeros 
with minimum module and their poles with 
maximum module approximately equal. All the 
approximating transfer functions are in a factorized 
form, which puts in evidence the break frequencies. 
Then, the lowest and highest break frequencies of 
the proposed method are taken as reference. 

2.1 The Proposed CFE Approximation 

The starting point is the following continued 
fractions expansion (CFE): 
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with b0 = b1 = 1, a1 = ν x and: 

 
aj = n (n–ν) x, bj = 2n (2) 

 
aj+1 = n (n+ν) x, bj+1 = 2n+1 (3) 

 
for j = 2n, with n natural number (Khovanskii, 
1965). The analog approximation for the operator sν, 
with 0 < ν < 1, is given in (Maione, 2008), where 
x = s–1 is used in (1) to obtain the (2N)-th 
convergent of the resulting CFE as approximating 
transfer functions: 
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where 

 
pNj(ν) = qN,N-j(ν) = 

= (–1)j C(N, j) (ν+j+1)(N-j) (ν– N)(j) 
(5) 
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coefficient. Moreover: 
 

(ν+j+1)(N-j) = (ν+j+1) (ν+j+2) … (ν+N) (6) 
 

(ν–N)(j) = (ν–N) (ν–N+1) … (ν–N+j+1) (7) 
 

define the Pochammer functions with (ν–N)(0) = 1 
(Spanier and Oldham, 1987). As it is easily noted, in 
this method the coefficients pNj(ν) and qNj(ν) are 
explicitly given in terms of the fractional order ν. 
Obviously, the positions of zeros and poles in the s-
plane also depend on ν. So, ),(~ sG ν  can be written 
in the form: 
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As it is proved in (Maione, 2008), zeros )~( izω−  

and poles )~( ipω−  of ),(~ sG ν  are all real and 
interlace along the negative real half-axis in the 
s-plane, with: 

 
NN pzpzpz ωωωωωω ~~~~~~

2211 <<<<<< " . (9) 

2.2 Oustaloup’s Recursive 
Approximation 

The CRONE controller is an integer-order frequency 
domain approximation of sν in the form: 
 

∏
= +

+
≅

N

i
p

z

i

i

s

s

ksG
1 1

1
 ),(

ω

ω
ν . (10) 

 
The gain k is adjusted so that G(ν,s) has the same 

crossover frequency as the ideal operator sν. The 
number N of zeros and poles of the approximating 
transfer function is chosen in advance. They 
alternate on the negative real half-axis of the s-plane 
so that the frequencies satisfy: 

 
NN pzpzpz ωωωωωω <<<<<< "2211 . (11) 
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In this way, zeros and poles interlace on the 
negative real half-axis, leading to a gain which is, 
approximately, a linear function of the logarithm of 
frequency. The phase is nearly constant and 
approximates ν π / 2. The parameters ωzi and ωpi are 
determined by placing zeros and poles as follows: 
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αωω  ii zp =   i = 1, ..., N (13) 

 
ηωω  1 ii pz =+   i = 1, ..., N–1. (14) 

 
The frequencies ωL and ωH are appropriately 

chosen as 1
~

zL ωω <  and NpH ωω ~> , so that it holds 

11
~

zz ωω ≅  and NN pp ωω ~≅ . 

2.3 Matsuda’s Approximation 

The Matsuda’s method approximates the operator sν 
from its gain ων. The gain is determined at 2N+1 
frequencies ω0, ω1, …, ω2N, which are taken 
logarithmically spaced in the approximation interval. 
The interval [ω0, ω2N] is chosen so that the lowest 
break frequency 1

ˆ zω  and the highest break 
frequency Npω̂  in the model satisfy: 11

~ˆ zz ωω ≅  and 

NN pp ωω ~ˆ ≅ , respectively. Note that, usually, an odd 
value of N is used, so that the resulting 
approximation is proper. Then, the following 
functions are defined: 
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from which the following set of parameters are 
obtained: 
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for k = 1, 2, …, 2N. 
Using the ωk and αk, the CFE can be written as: 
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whose convergents provide the rational 
approximations to the irrational operator sν. The 
(2N)-th convergent of (18) can be easily converted 
into the rational approximation, as the ratio ),(ˆ sG ν  
of two polynomials with degree N. Then, the 
factorization of these polynomials leads to: 
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Numerical experiments show that, also in this 

case, it holds: 
 

NN pzpzpz ωωωωωω ˆˆˆˆˆˆ
2211 <<<<<< " . (20) 

3 A COMPARISON BETWEEN 
THREE METHODS 

The approaches of the previous sections are here 
compared, by choosing N = 3 and then N = 4. These 
values are chosen to make the order of the FOC 
realizations as low as possible, compatibly with 
good performances. Figures 1, 2, 3 and 4 show the 
Bode plots of phase and amplitude, for the typical 
fractional order ν = 0.5. Other values of the integer 
N and of ν, with 0 < ν < 1, can be considered. As 
previously stated, the approximation is performed so 
that ),(~ sG ν , G(ν,s) and ),(ˆ sG ν  have their first 
zero-frequency and their last pole-frequency nearly 
equal. Hence, the zero-frequency 1

~
zω  and the pole-

frequency 3
~

pω  or 4
~

pω  of ),(~ sG ν  are assumed as 
reference. In conclusion, it must nearly hold: 

11
~

zz ωω ≅ , 11
~ˆ zz ωω ≅ , 33

~
pp ωω ≅ , and 33

~ˆ pp ωω ≅ , 
when N = 3, and 11

~
zz ωω ≅ , 11

~ˆ zz ωω ≅ , 44
~

pp ωω ≅ , 
and 44

~ˆ pp ωω ≅ , when N = 4. 

First, the parameters of ),(~ sG ν  are determined. 
For ν = 0.5 and N = 3, formula (8) gives: 

0.0521 =~
1zω , 0.6360 =~

2zω , 4.3119~
3 =zω , 
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0.2319 =~
1pω , 1.5724 =~

2pω , 19.1957~
3 =pω , and 

0.1429
~
=k . These values clearly indicate that 

),(~ sG ν  is minimum-phase, stable, with interlacing 
zeros and poles. Figure 1 reports the phase Bode 
diagram of )],(~[ ων jGarg  (Maione’s curve). 
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Figure 1: Phase Bode diagram for the approximations of 
order 3 a fractional-order differentiator, ν = 0.5. 

Now, the procedure for determining the function 
G(ν,s) is considered. With reference to (12), the 
interval [ωL, ωH] is chosen larger than ]~,~[ 31 pz ωω . 
More precisely, 1 ~

1 λωω zL =  and 2 ~
3 λωω pH = , 

where λ1 and λ2 are coefficients to be fixed so that 
the Oustaloup’s algorithm leads to 11

~
zz ωω ≅  and 

33
~

pp ωω ≅ . These coefficients are chosen by a rule 
of thumb. Since 0521.0~

1 =zω  and 1957.19~
3 =pω , 

simple computer experiments in MATLAB® show 
that choosing λ1 = 0.55 and λ2 = 1.8 yields: 

0518.01 =zω , 5509.02 =zω , 8634.53 =zω , 
1688.01 =pω , 7972.12 =pω , 1293.193 =pω , k = 

0.1692. As it is noted, the constraints 11
~

zz ωω ≅  and 

33
~

pp ωω ≅  are respected. In Figure 1, arg[G(ν, jω)] 
is also reported (Oustaloup’s curve). 

Finally, for applying the Matsuda’s method, the 
sampling frequencies are logarithmically distributed 
inside the approximation interval, so that it must 
result: 11

~ˆ zz ωω ≅  and 33
~ˆ pp ωω ≅ , as requested. This 

result is achieved by choosing 1
~ 2 zN ωλω =  and 

λωω /~
30 p= . The parameter λ is fixed by computer 

experiments to λ = 45. Namely, the following 
breaking frequencies of ),(ˆ ων jG  result: 

0.0485 =ˆ
1zω , 0.6248 =ˆ

2zω , 4.5311 =ˆ
3zω , 

0.2207 =ˆ
1pω , 1.6004 =ˆ

2pω , 0.6273 2=ˆ
3pω , and 

0.1373=k̂ . These values show that the constraints 
11

~ˆ zz ωω ≅  and 33
~ˆ pp ωω ≅  are also satisfied. As it 

can be easily observed, however, all the remaining 
frequencies and the gain of the Matsuda’s model are 
nearly equal to those of the author’s approximating 
transfer function. This fact is confirmed by the 
behaviour of )],(ˆ[ ων jGarg  in Figure 1 (Matsuda’s 
curve). The Bode plot, indeed, is nearly 
indistinguishable from the plot of )],(~[ ων jGarg . 

In conclusion, Figure 1 shows that 
)],(ˆ[ ων jGarg  and )],(~[ ων jGarg  are nearly flat 

and give a good approximation of 
2 /  ])[( πνω ν =jarg . The plot of )],(ˆ[ ων jGarg  

yields a slightly worst approximation. Figure 2 
confirms that the magnitude plots of ),(ˆ sG ν  and 

),(~ sG ν  are nearly coincident. They give a better 
approximation of ων than G(ν,s), also in this case. 
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Figure 2: Amplitude Bode diagram for the approximations 
of order 3 of a fractional-order differentiator, ν = 0.5. 

Now, let us consider a different approximation 
obtained by using N = 4 and the same procedure. 

For ν = 0.5, formula (8) gives: 0.0311 =~
1zω , 

0.3333 =~
2zω , 1.4203~

3 =zω , 7.5486~
4 =zω , 

0.1325 =~
1pω , 0.7041 =~

2pω , 3.0000~
3 =pω , 

32.1634~
3 =pω , and 0.1111

~
=k . Then, ),(~ sG ν  is 

minimum-phase, stable, with interlacing zeros and 
poles. Figure 3 shows the phase Bode diagram of 

)],(~[ ων jGarg  (Maione’s curve). 
For the Oustaloup’s approximation, λ1 = 0.61 and 

λ2 = 1.64 yield: 0311.01 =zω , 2261.02 =zω , 
6419.13 =zω , 9237.114 =zω , 0839.01 =pω , 
6093.02 =pω , 4247.43 =pω , 1323.323 =pω , and 

k = 0.1377. The constraints 11
~

zz ωω ≅  and 
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44
~

pp ωω ≅  are respected. In Figure 3, arg[G(ν, jω)] 
is also reported (Oustaloup’s curve). 

 For the Matsuda’s approximation, λ = 39 gives: 
0.0310 =ˆ

1zω , 0.3327 =ˆ
2zω , 1.4211 =ˆ

3zω , 
7.5702 =ˆ

4zω , 0.1321 =ˆ
1pω , 0.7035 =ˆ

2pω , 

3.0055=ˆ
3pω , 32.2772=ˆ

4pω , and 0.1109=k̂ . 

For N = 4, the frequency response of )],(ˆ[ ων jGarg  
is practically indistinguishable from that of 

)],(~[ ων jGarg  (Matsuda’s and Maione’s curves are 
practically the same). 
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Figure 3: Phase Bode diagram for the approximations of 
order 4 of a fractional-order differentiator, ν = 0.5. 
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Figure 4: Amplitude Bode diagram for the approximations 
of order 4 of a fractional-order differentiator, ν = 0.5. 

Figure 4 confirms that the magnitude plots of 
),(ˆ sG ν  and ),(~ sG ν  are nearly the same and give a 

better approximation of ων than G(ν,s), for N = 4. 

4 CONCLUDING REMARKS 

This paper compared three different methods to 
approximate non-integer-order differential or 

integral operators in fractional-order controllers: 
these methods are the author’s, the Oustaloup’s, and 
the Matsuda’s, respectively. All approximations of 
the irrational operator sν were realized through 
analog transfer functions characterized by stable 
poles and minimum-phase zeros. In particular, zeros 
and poles were interlaced along the negative real 
half-axis of the s-plane, and the first and last 
singularities were constrained to be nearly the same 
in all approximations. The interlacing property 
allowed us the comparison to find the best 
distribution of singularities. Namely, a frequency 
domain analysis of the phase diagrams showed that 
the author’s and Matsuda’s approximations 
outperformed the well-known by Oustaloup. 

Note that all realizations were limited to the 
lowest order that could guarantee good performance. 
The better results achieved by the proposed 
approximation are due to a better distribution of 
interlaced zeros and poles. It is also interesting to 
note how the proposed approximation achieves 
nearly the same zero-pole pairs of the Matsuda’s 
approximation, even if the starting points of the two 
methods are completely different. 
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