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Abstract: The path-planning problem is considered for mobile robot inside environment with motionless circular 
obstacles in different sizes. The robot is expected to reach a given target by following the shortest path and 
avoiding the obstacles. The two-stage algorithm is proposed to solve the problem numerically. In the first 
stage a line-arc based path is found by using geometric techniques. This path cannot be minimal. However, 
its length can be used to restrict search space to an ellipse, which contains the minimal path. Thus, the 
reduced search space makes the next stage more efficient and endurable for real-time applications. In the 
second stage of the algorithm, by discretization of the restricted elliptic region the problem results in finding 
the shortest path in a graph and is solved by using the Dijkstra’s algorithm. The proposed two-stage 
algorithm is verified with numerical simulations. The results show that the proposed algorithm is successful 
for obtaining an optimal solution. The applicability of the proposed algorithm is validated by practical 
experiment.  

1 INTRODUCTION 

Various methods have been proposed for the 
solution of obstacle avoidance problem. One of the 
real-time methods that has been developed for 
navigation of mobile robots is potential field 
approach (Connoly et al., 1991; Rimon and 
Koditschek, 1992). The main advantage of this 
method is on-line efficiency as a result of the 
integration of the low-level robot control and path 
planning. However, its main disadvantage is that in 
some cases it could not escape from local minima 
that result in abnormal termination without reaching 
the target. Harmonic potential functions (Connoly et 
al., 1991) and navigation functions (Rimon and 
Koditschek, 1992) are proposed to overcome these 
difficulties and in this way obstacle avoidance is 
succeeded, but optimal path finding cannot be 
achieved. Besides, navigation functions are difficult 
to calculate and impossible to be implemented in 
real-time, especially for robots that have many 
degrees of freedom (Kavraki et al., 1996). 
Furthermore, navigation functions should be 
differentiable by the definition and therefore, they 
can cause problems in piece-wise continuous or 
saturated robot control applications (Rimon and 
Koditschek, 1992). Nevertheless, potential field 

method is improved by the recent advances in both 
theoretical and application aspects, e.g. 3-D 
extension (Chuang, 1998; Chuang and Ahuja, 1998; 
Ren et al., 2006; Cowan, 2007).  

Probabilistic roadmap for path planning is just 
another alternative method (Kavraki et al., 1996, 
1998). This method, in comparison with the previous 
ones, can be more reliable and applicable in more 
general cases. On the other hand, theoretic analysis 
becomes more complex, which is an important 
disadvantage of this method. 

Some other efficient shortest-path algorithms for 
mobile robots are also proposed based on graph 
theory approach (Helgason et al., 2001; Liu and 
Arimoto, 1992). Finally, dynamic programming 
(Hamilton-Jacobi-Bellman) methods are used 
extensively as well (Dreyfus, 1965; Moskalenko, 
1967, Sundar and Shiller, 1997). For example, in 
(Sundar and Shiller, 1997), near-optimal solutions 
for the shortest path problem have been obtained by 
applying the geometric approach efficiently. The 
disadvantage of this method is that it lacks the 
minimal path in some cases. 

In this research, inspired by the last three 
approaches (Helgason et al., 2001; Liu and Arimoto, 
1992; Sundar and Shiller, 1997) a new two-stage 
optimization algorithm is developed. At the first 
stage, near-optimal solution is provided by 
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geometric incremental approach, and this solution is 
used to describe the elliptic region that contains the 
shortest path. Thus, the optimal solution can be 
readily searched after the completion of the first 
stage by Dijkstra’s algorithm.  

Different from the graph-based heuristic 
algorithms, e.g. A* (Dechter and Pearl, 1985; Hart et 
al., 1968; Hart et al., 1972; Nilsson, 1980; Bruce 
and Veloso, 2006), the proposed method does 
guarantee that the selected path is optimal. 
Furthermore, A* algorithm can result in the much 
longer path than Dijkstra’s one, depending upon 
crucial choice of the heuristic function and world 
configuration.  

The most important novelty of this work is that 
the initial search space is reduced a lot in order to 
find the shortest path efficiently. Therefore, two 
main disadvantages of Dijkstra’s algorithm, namely 
large computational burden and difficulty with 
following the discrete paths (Helgason et al., 2001), 
have been overcome by search space reduction and 
greedy path construction approach that explained in 
Section 4. These two properties are indispensable in 
real-time applications. 

2 PROBLEM DEFINITION 

Suppose, motionless circular obstacles located in 
rectangular domain (search space) are given in finite 
number. It is assumed that no obstacle cuts or 
touches any other obstacle. The motivating question 
behind this research is how point robot can navigate 
on the shortest path from a given starting point S to a 
given target position F with obstacle avoidance. 

Note that, the condition about point robot is not a 
restriction for the problem. Let the robot be circular 
with radius ρ . If we enlarge all obstacles in the 
amount of ρ  radius-wise, then the robot itself can 
be considered as point robot. 

Also note that, the proposed approach can be 
easily extended for the case when other types of 
obstacles such as ellipses, convex polygons are 
considered together with circles. 

Two-stage algorithm is proposed for numeric 
solution to the problem. The detailed explanations of 
these stages are given in the following sections. 

3 INCREMENTAL METHOD 
BASED ON GEOMETRY 

The method applied at the first stage is incremental 
since it is optimal just for one step. The method is 

realized by using geometric representations. The 
first obstacle on the straight line between the current 
position of the object and the target is assumed to be 
a single obstacle in each step of the method. In 
accordance with this, the tangential path is 
determined firstly from the initial point to this 
obstacle. Besides, extra obstacles are controlled 
whether they intersect the path or not. If not (refer to 
Section 3.1), this path is used to reach the obstacle. 
Then, the path is followed along the boundary of the 
obstacle until the point, where tangent from the 
target touches the obstacle. This point becomes the 
new starting point for the next step. If there are extra 
obstacles across the tangential path that connects the 
initial point S and the first obstacle (refer to Section 
3.2), then the extra obstacle that is closest to S will 
be determined. This extra obstacle is reached along 
the tangential path closer to the baseline SF and 
avoided by following its boundary. Then, arrival 
point is determined as new starting point for next 
step. This process will be iterated until no obstacle 
on the way to target. 

3.1 Single Obstacle Avoidance 

Assume that on the path SF, there is only one 
circular obstacle with the radius r and centered at C 
as represented in Figure 1. Two pairs of tangent 
lines from points S and F can be drawn to the circle. 
We can choose the ones that have minimum angle 
with line SF, i.e. SA1 and FB1 in the figure. 
Therefore, according to geometrical rules the 
shortest path consists of line SA1, arc A1B1 and line 
B1F. 

 
Figure 1: Optimal avoidance of a single obstacle. 

In order to calculate coordinates of points A1 and 
A2, the following equation can be used: 
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One of them, which is the closest point to baseline 
SF, is selected, either A1 or A2. 

We can make a significant evaluation for proving 
convergence of approximate method based on 
geometry. Since circular obstacle centered at C 
crosses the line SF, we have: rd <  (Fig. 2). Hence  
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According to last inequality, direct distance to 
the target decreases by avoiding an obstacle.  

 

 
Figure 2: Schematic representation to prove that the direct 
distance to the target decreases with obstacle avoidance. 

3.2 Extra Obstacle Avoidance 

There could be some extra obstacles across the 
tangential path SA that is mentioned in Section 3.1. 
It is represented in Figure 3 how the path can be 
constructed in this case. In Figure 3, the obstacle 
centered at C is ordinary one on the path SF, and the 
obstacle centered at E is the extra one.  

 

 
Figure 3: Avoidance of an extra obstacle. 

The algorithm implemented for extra obstacle 
avoidance is explained briefly below. 

Among extra obstacles crossing tangential path 
SA the obstacle that is the closest one to the base 
point S is determined, i.e. the obstacle centered at E 
in Figure 3. Direction SF will be our reference to 
avoid this obstacle. Tangential path SP close to line 
SF is determined. Subsequently, QR, common cross 
tangent of obstacles E and C with end point Q close 
to P, is calculated. The obstacle E has been avoided 

by following tangent line SP first, and then arc PQ. 
Then the question is considered whether there is any 
other extra obstacle on path QR, or not. If not, then 
by following tangent line QR and arc RB the 
ordinary obstacle C will be avoided. If there is an 
extra obstacle, new iteration on avoidance of extra 
obstacle is started with taking Q as the new initial 
point.  

Since number of the obstacles is finite, extra 
obstacles will be eliminated after finite number of 
steps and an ordinary obstacle will be avoided next. 
Refer to end of the Section 3.1, the evaluations 
prove that direct distance to the target decreases by 
avoiding ordinary obstacle. There is finite number of 
obstacles by assumption and the distance to the 
target diminishes at each step, then approximate 
method based on geometry is convergent.  

Geometric method implemented at the first stage 
of the main algorithm results in near-optimal 
solutions. The path obtained through this method 
might not be optimal. Such an example is given in 
Figure 4.  

 

 
Figure 4: An example for which the path obtained by the 
geometric method is not optimal. 

We can see how the method works for this 
example below. Circle C1 is the first ordinary 
obstacle across the path SF. According to Section 
3.1 this obstacle will be avoided following tangent 
path SA1 closer to baseline SF and then arc A1B1. 
Taking B1 as the new starting point, the next step of 
the method will be initiated. Circle C2 is determined 
as the ordinary obstacle across path B1F. In order to 
avoid it, the tangent, which is closer to the baseline 
B1F, is calculated. This tangent line crosses C1. 
Thus, in this time the circle C1 becomes extra 
obstacle when ordinary obstacle C2 is avoided. The 
procedure described in Section 3.2 is implemented 
to avoid the obstacle C1. Since the starting point B1 
lies on C1, the step to reach the extra obstacle will be 
eliminated. Only arc B1Q is used to avoid C1 (Here 
Q is the end point of QR, common cross tangent of 
circles). At the last iteration of the method, by 
following tangent line QR and arc RB, avoidance of 
the ordinary obstacle C2 will be completed and by 
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tangent path BF the target will be reached. Thus, the 
path calculated on proposed geometric method is 
SA1QRBF. As it can be easily seen from Figure 4, 
this path is longer than the path SA2B2F, and 
consequently, is not optimal. 

Thus, in general, solutions obtained through 
geometric method are only near-optimal. To find the 
optimal path the second stage of algorithm is 
applied, which is explained in the next section. 

4 OPTIMAL PATH BY 
DIJKSTRA’S ALGORITHM 

As it is mentioned above, the path obtained at the 
first stage might not be the optimal one. However, 
its length *

1L  gives an upper bound for optimal path 

length *L  such that *
1

* LL ≤ . 
The feasible region that contains the optimal path 

can be reduced with this inequality on purpose.  
Let X be a point on optimal path. Then it can be 

claimed that ****
XFSXSF LLLL +== .  

Since the shortest path should be a line segment 
with no consideration for obstacles the following 
inequalities can be written: *

SXLSX ≤  and 
*
XFLXF ≤ . Thus, we get *

1LXFSX ≤+ .  
Regarding this inequality, sum of distances from 

S and F to a point X lying in the feasible region 
cannot exceed the value *

1L . Subsequently, the 
feasible region is inside the ellipse with focuses at S 
and F. Hence, based upon the value *

1L  the feasible 
region can be diminished and restricted to an ellipse. 
Thus, the reduced search space makes the second 
stage much more efficient and endurable for real-
time applications. 

In this stage, coordinate transformation is applied 
such that new origin will be the midpoint M of the 
line segment SF, and the new horizontal axis will be 
in the direction of ray MF. In this new coordinate 
system, the feasible region can be described simply 
as follows:  

( ) ( ) 1// 22 ≤+ byax   

where 2/*
1La =  and 2/)( 22*

1 SFLb −= . In the 
mean time, changing the coordinate system is also 
beneficial such that the realizations of the following 
steps will be more efficient.  

Discretization of the problem is the next step. 
For this purpose, a grid with equal squares is created 
over the region. The side length of a square, h, is 
complied with the minimum distance between 
obstacles, δ , such that 3/δ≤h . Intersection points 
of the grid, or nodes, are assigned as graph vertices. 
Thus the analyzed problem can be solved by graph 
theory approach. We can define two prohibited cases 
such that a) If the vertex N is out of feasible region, 
or b) If the square with side length h and centered at 
N intersects an obstacle. In both cases, the vertex N 
is marked as forbidden to pass. Graph edges can be 
constructed in two alternative ways such that:  

1) 8-neigborhood vertices around any vertex V, 
which is not prohibited, are examined one by one. 
The edge is added between the vertex V and the one, 
which is permitted to pass.  

2) All pairs of vertices (U, V) are to be examined 
one by one. If the vertices of a pair (U, V) are not 
prohibited and line segment UV does not intersect 
any obstacle, the edge with the length |UV| is 
constructed between U and V. 

At the first alternative, discrete approach is also 
used to construct the edges. Therefore, the total 
number of edges is minimal and edge structure is 
easy to process. In the second alternative, which can 
also be characterized as greedy approach, edge 
structure is difficult to implement. However, it 
provides solution closer to the optimal solution than 
the first one does. In simulations, the results of 
which are represented in the next section, the second 
approach is applied. 

Thus, the solution of the problem is reduced only 
to find the shortest path from vertex S to vertex F in 
the obtained graph. This new problem is solved by 
applying Dijkstra’s algorithm (Anderson, 2004). 
Furthermore, some improvements have been done 
based upon the properties of the problem in order to 
make the Dijkstra’s algorithm application more 
efficient. For instance, forbidden vertices are not 
included to the set of graph vertices. Let v  be the 
number of graph vertices. If the first alternative 
mentioned above is realized then instead of weight 
matrix of size vv×  a zero-one (or binary) matrix of 
size v×8  is used. Hence, this approach is suitable 
for real-time applications. For the second alternative, 
as weight matrix is symmetric, then only lower 
triangle matrix can be stored at memory. 

Note, that in the first alternative the graph is 
sparse (number of edges ve 8~ ). In this case the 
complexity of Dijkstra’s algorithm, implemented 
with a binary heap, is )log(~)log( vvOveO .  
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5 SIMULATIONS RESULTS 

The proposed two-stage algorithm is verified by 
many simulations. In simulations the obstacles are 
chosen randomly in a rectangular region. The target 
position is selected. Then the proposed algorithm is 
executed for different starting positions. 

 

 
Figure 5: Near-optimal (solid lines) and optimal paths 
(dashed line) obtained from calculations in presence of 50 
obstacles. Thin dashed line represents the boundary of 
elliptic feasible region used at the second stage of the 
algorithm.  

The results of one simulation are represented in 
Figure 5. Here we take scene with size of 

120120×=×ba (unit length can be assigned 
arbitrarily). We randomly generate circles 

),,( ccc ryx  with radius ]8,4[∈cr . If next candidate 
circle don’t intersects an existing one, we add this 
circle to the list of obstacles. Otherwise the 
candidate one is rejected.  

The paths that are obtained by the first stage 
have been represented with solid-line. For one of the 
starting points, (S2), optimal path by the second 
stage has been shown as dashed-line in Figure 5. 
This optimal path has essential differences in 
comparison with the result of the first stage (solid-
line starting from S2). For other cases (S1, S3, S4), the 
optimal paths, obtained at the second stage, have not 
been represented for the purpose of clarity of the 
figure, since they do not differ a lot from drawn 
ones.  

For the case with starting point S2, the boundary 
of feasible region, used at the second stage, is shown 
by an ellipse (thin dashed-line) in Figure 5. This 
ellipse envelops an area, which is about 1/5 of the 

whole search space (rectangle). Since the operation 
complexity of Dijkstra’s algorithm is )( 2vO  and v  
is proportional to covered area, the benefit of 
proposed algorithm is about 25 times better than the 
algorithm applied to whole region. 

It has been verified by simulations that the 
proposed algorithm is useful to solve the 
optimization problem for obstacle avoidance. 
According to obtained results, in some cases only 
the first stage of the algorithm can be sufficiently 
used, especially considering robotic applications that 
require essential time and memory resources. 

Although the proposed algorithm works well for 
circular obstacles, more efficient approximations for 
obstacles can be obtained by implementing the other 
convex figures, e.g. rectangles and ellipses. 
Therefore, the geometric method can be extended 
easily to cover these shapes. Fortunately, the second 
stage of the algorithm is independent from the 
shapes of obstacles. 

6 EXPERIMENTAL RESULTS 

Pioneer 3-DX mobile robot, which has embedded 
computer with C++ based ARIA (Advanced 
Robotics Interface for Applications) software and 
wireless communication capability, has been 
controlled by remote PC. Driving capabilities of the 
robot are 2-wheel drive, plus rear balancing caster 
with differential steering.  
 

 
Figure 6: Experimental setup. 

As shown in Figure 6, after extensive image 
processing, necessary path planning commands are 
produced by the proposed algorithm that all running 
at PC, and are transmitted through wireless network 
to the robot. Obstacles are chosen as circular shaped 
disks. Besides, their positions are selected in 
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accordance with robot dimensions (swing radius is 
32 cm), and minimum inter-distance requirements, 
see Section 4.  

The first preliminary experiments are done with 
two obstacles to evolve the implementation. Finally, 
the last experiment is done with five obstacles. After 
image processing, the algorithm is implemented in 
an efficient way. At the end, the robot followed the 
prescribed path successfully as planned beforehand. 

For future work, automatic identification and 
setting the robot orientation and pose will be an 
important achievement, since it took time to set the 
right orientation for the robot. Integrating both 
stages of the algorithm with image processing to 
work in real time while obeying the dynamic 
constraints will complete this research project. 

7 CONCLUSIONS 

Optimization problem for obstacle avoidance on the 
plane has been investigated. Two-stage algorithm 
has been proposed for solution to the problem and 
tested successfully with experiments. In the first 
stage, near-optimal solution is obtained through 
geometric approach. Using this solution, the feasible 
region is restricted to an ellipse. At the second stage 
the problem is reformulated as the shortest path 
problem in graph, and optimal solution is found by 
applying Dijkstra’s algorithm in the reduced search 
space. Consequently, two main contributions of this 
research come out clearly at the last stage. The first 
one, the solution is optimal, and the second one, it is 
obtained through an efficient way with a significant 
reduction of search space. Simulation results have 
proved that the two-stage algorithm complies with 
theory and produces accurate solutions.  
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