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Abstract. Various researches approached hybrid automata to formally model
and coordinate reactive multi-agent systems’ plans situated in a dynamic environ-
ment, where the time is critical. However in most of cases, reactivity in dynamic
environments is not satisfactory. It is favorable that agents plan their behaviors
according to some preference function. Most of current verification tools of hy-
brid automata are inadequate to model such agents’ plans. Therefore, this paper
extends hybrid automata’s decisions making by means of utility functions on tran-
sitions. A scenario taken from supply chain management is demonstrated to show
the paper’s approach. Analysis of agents’ plans are investigated using a constraint
logic program implementation prototype.

1 Motivation

Multi-agent planning [2] is a demanded task especially in a safety critical environ-
ment, where unexpected events typically arise. One key characteristics of multi-agent
planning is the nature of the environment in which the agents are involved. In realistic
problems, the environment tends to be dynamic and the behaviors of the agents change
continuously in their environment. Planning in this dynamical environment is called
continual planning [3]. Agents should engage in continual planning, if agents’ objec-
tives can evolve over time, where the purpose of the planning is to set a target that can
be achieved based on a given set of constraints at a given time. Therefore, it is becoming
increasingly important for the agents to react to the unexpected events, appeared during
the planning, in real time in order to avoid the risk that may occur during the planning.
However, agents should not only react to change those events that threaten the execu-
tion of the plan, but also coordinate for opportunities to improve the plan by taking into
account the expected future development in order to decide the most favorable course
of actions based on utility functions. Hence, there is a need to a formal way to model
and analysis the multi-agent planning in dynamical environments that combined both
aspects in a single framework.

Hybrid automata [8], on the other hand, can be used to model multi-agent systems
plans that are defined through their capability to continuously react in dynamic envi-
ronments, while respecting some time constraints. Therefore, there are researches, for
example [13, 4, 5], which have proposed hybrid automata to formally model reactive
multi-agent systems [6]. There are authors, for example [10], who have approached a
simple form of hybrid automata that are called timed automata [1] to model reactive
agents. However, in reactive agents, decisions making depend entirely on the occur-
rence of events, where the agents base their next states on their current sensory events.
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In contrast to reactive agents, deliberative/rationahégyke into account the expected
future development in order to decide the most favorablesmof actions based on
utility functions. Decisions making of deliberative ageare inadequately expressive
to hybrid automata. To our knowledge, current hybrid aut@antaols, like [9, 7, 12], do
not offer help for efficiently modeling these types of sitaas. Therefore, it seems to
be useful to extend hybrid automata in a way that they all@xctimbination of reactive
and deliberative decisions making. This combination carcavatastrophic failure, and
provide good quality of decisions in time constrained dyitairenvironments. Conse-
quently, the formal verification of hybrid automata, by meanh reachability analysis,
can be used as planning-problem solver, where a plan carhisad, iff the final plan
is reachable.

To this end, this paper contributes to enhance the decisaking of the hybrid
automata by coordinating their plans in dynamic environtsiémimprove their future
outcomes . This can be accomplished by allowing discretssitians occurring on the
basis not only of reactive decisions, but also of preferdnnetions. We use our con-
straint logic program (CLP) implementation prototype 1] demonstrate the contri-
bution. The expressiveness of CLP facilitate this extenséaditionally, an example
taken from supply chain management in continuous dynamic@rment is depicted.
As far as we know, this is the first attempt to use hybrid autant@plan multi-agent
systems with decisions making rely on a performance measmne

In the sequel, we first introduce a case study that will be tiseaighout the paper
to illustrate our approach in Sec. 2. Then formal definitiohaxtended hybrid automata
are discussed in Sec. 3. Sec. 4 briefly shows the basic steugtour CLP implemen-
tation model, before showing how to specify and verify thenpling requirements in
Sec. 5. Eventually, we end up with the conclusion in Sec. 6

2 Case Study

To this end, this section demonstrates a logistic scenadacontinuous dynamic envi-
ronment and shows how to specify it as hybrid automata. kgbénario, a customer
has a shipment of decayable freight items that has to bepioaiesl to some destina-
tion point. Therefore, s/he contacts a transportationisemprovider for this mission.
The transportation service provider, in turn, assignsraspartation truck to convey the
shipment. Assuming that the customer signs a contract élservice provider so that
the freight items have to delivered with certain thresh®ldf items’ quality (e.g. at
most 20% putrefaction of the freight items). Otherwise,ghvider has to recompense
the customer with a convenient deal. Therefore, for qual#gsurance and provider’s
profitable service constraints, the quality of freight iehmas to be monitored in the
truck during the transportation. In case of an exceptian @oling temperature breaks
down), the truck has to find a suitable plan to deal with thisegtion, but taking into
account to utilize its transportation provider business.

1 Extended version with benchmarks results will appear ic@eding of the 7th International
Workshop on Programming Multi-Agent Systems (ProMAS 20@%the eighth International
Joint conference on Autonomous Agents & Multi-Agent Syss€mAMAS 2009)
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Fig. 1. Specification of a logistic scenario as hybrid automata.

In Fig. 1, the specification of the previous multi-agent scénis depicted as hybrid
automata - Due to the space limitation, the description oheautomaton will not be
elaborated in details-. The multi-agent scenario cortssttour agentdylonitor, Truck,
Provider, andDisturbance The agenMonitor, plugged into the truck, observes the oc-
currence of exceptional errors, as well as the putrefacfdhe items. The items are
putrefied according to the exponential decay function,gasD = 1.2« D. When an
exceptional error occurs during the transportation, wigcstimulated by théistur-
banceagent after some tintg, the Monitor agent alarms thiguckwith the occurrence
of this error. In turn, th@ruck has to make an appropriate decision before the decayed
items reach a certain threshofd The decision is estimated, using the variabbe,
according to the remaining distance to the destinationtpbiare,Ex; is calculated
based on the dynamic of distance of the truck to the targehelfexpected delivery
time is beyond a given critical tim&;me, then theTruck requests help from the trans-
portation service provider, who sends a rescue truck withinhours. However, if the
truck estimation is below the critical tinf&;me, then it should continuously transport
the shipment according to the current conditions. At theartchnsportation, both the
customer and the provider check the result of the previcas.pl

The objective of the previous scenario is to check that thentsg particularly the
truck, will choose the right plan during the course of exenuthat utilize the profit of
its provider company.
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3 Hybrid Automata

This section shows the basics extension to the syntax anarg@ms of hybrid automata.
A hybrid automaton is represented graphically as a statsitian diagram dialect like
statecharts, augmented with mathematical formalisms tntbemsitions and locations.
Formally, a hybrid automaton/agent is defined as follows.

Definition 1 (components). A  hybrid automaton is a tuple H=
(Var,Q,Inv,Flow, Init, E,JumpEvent Y, Assgr) where:

— Var = RUA is a set of variables, where RO" is a finite set of n real-valued vari-
ables that model the continuous dynamics, whereas A is d aakdiary variables
that are used as a performance measure to make a decisioexgonple, the Truck
automaton has X R and Ex € A.

— Qs afinite set of control locations. For example, the Dibamce automaton Fig. 1
has the locationfit, no_disturhanddisturh

— Inv(q) is the invariant predicate, which assigns a constraint te ¢ynamic vari-
ables RC Var for each control location g Q. The control of a hybrid automaton
remains at a location & Q, as long as In{g) holds. For instance, the location
decayin the Monitor automaton has the invariant© 6. Omitting the invariant at
some location indicates that the location is always achidwa

— Flow(q) is the flow predicate on the dynamic variables_R/ar for each control
location ge Q, which defines how the variables in R evolve over the timezation
g. It constrains the time derivative of the continuous péthe variables at location
q. The flow of a variable X is denotedX¥sFor exampleX = 50describes the speed
of the automaton Truck at the locatitransport

— Initis the initial condition that assigns an initial valués the variables R Var to
each control location g Q. For example, X= 0 is the initial condition of the Truck
automaton.

— E C Qx Qs the discrete transition relation over the control loicais. Each edge
e=(q1,02) € E is augmented by the following annotations:

Jump: jump condition (guard), which is a constraint over Var thaishhold upon
firing a transition e.

Event: synchronization label, used to synchronize concurrenbimatta. The syn-
chronization labels define how the automata are coordinatetgérms of the
parallel composition.

Utility cost, which captures the preference of an agent over e. Hyrntais is
done by introducing the functiori: E — . For example, at the locatioes-
timate the Truck has preferences to go to either locatiahelp or continue,
with utilities 1 and o respectively. The utility cost is omitted if there is no
preference on the edge e.

— Assgn is the updating function AssgRUA — [0, which resets the variables before
the control of a hybrid automaton goes from locatiqrtglocation ¢. It is denoted
as v:= Assgriv). Here, we graphically distinguish between two types of tipda
depending on types of variablegWar. Case \ R (i.e. updating continuous vari-
ables), then the update is annotated graphically on theditaons e= (qs,qp). For
example, D= 1.2 is the updating of the continuous variable D between locatio
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stableand decayin the automaton Monitor. Updating the variables on traiusis
are omitted, if the value of the variables at end of locatigrate the same at the
beginning of location g On the other hand, case« A (i.e. updating auxiliary
variables), then the update is annotated inside locatignltpe reason behind this
is that these variables will be used afterward as decisioaking on transitions.
For example, in the locatioastimateof the Truck automaton, EX= f(d,X) is
updating the auxiliary variable Exto the estimated remaining time to deliver the
shipment to the target based on the current remaining destda the target.
Semantically, both types of updates are the same. This &isedoth of them will
be eventually executed before the control goes immediatédgation .

Informally speaking, the semantics of a hybrid automatoseiined in terms of a la-
beled transition system between states, where a statest®obthe current location of
the automaton and the current valuation of the real varsafle formalize the seman-
tics of the hybrid automaton, we first need to define the carmfegphybrid automaton’s
state.

Definition 2 (State).At any instant of time, a state of a hybrid automaton is given b
g = (q;,Vi,t), where g€ Q is a control location, yis the valuation of the real variables,
andt is the current time. A statg = (q;, Vi, t) is admissible if Inyg;)[vi] holds.

A state transition system of a hybrid automatdrstarts with theinitial state gy =
(0o, Vo, 0), where thegp andvy are the initial location and valuations of the variables
respectively. For example, the initial state of theick (Fig. 1) can be specified as
(init,0,0).

Since we need to extend the agent decisions by means sgtiliteze we define the
term preference.

Definition 3 (Preference)Let g€ Q is a control location, whose preferences with con-
trol locations{qs, g, .., On } With respective utilitieg 1, Lo, .., Un }. We call g is the best
preference location to q ifi = Max{ s, t2, .., Un}

Intuitively, an execution of a hybrid automaton correspotuda sequence of transitions
from one state to another. In fact, a hybrid automaton ewalepending on two kinds of
transitions: continuous transitions, capturing the cardgius evolution of states, and dis-
crete transitions, capturing the decision making to chantpeanother location. More
formally, we can define hybrid automaton operational seiosas follows.

Definition 4 (Operational Semantic).A transition rule between two admissible states
01 = (01, V1,t1) and oz = (O, V2, t2) is defined as follows:

discretely: iff t1 = t; and Jumjvy) holds, then variables are reset at locatiopsuch
that, In\(g2)[v2] holds. Additionally, g is the best preference of gIn this case an
event ac Event may be fired.

continuously(time delay): iff q1 = g2, and (b —t; > 0) is the duration of time passed
at location q, during which the invariant predicate lfgl) continuously holds,
vi,Vp are the variable valuations according to the flow predicatew{ql).
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In principle, an execution of a hybrid automaton correspsoiada sequence of transi-
tions from one state to another, therefore we define the vatics follows.

Definition 5 (Run). A run of hybrid automatory = 0p010>.., is a finite or infinite
sequence of admissible states, whagés the initial state.

Inaruny, the transition from a staie to a stateo;, ; is related by either a discrete or
a continuous transition, according to Def. 4.

It should be noted that the continuous change in the run magrgée an infinite
number of reachable states. It follows that state-spacl®ratpn techniques require a
symbolic representation system for the sets of states thatt to be manipulated (this
is implemented efficiently using our CLP model [14] by meahmathematical finite
interval). We call the symbolic interval a region. Consetfiye the set of all reachable
states at locatiog € Q can be represented &g,V, Timée, whereV and Timerepre-
sent the reachable region and time at locatiaespectively. Now, the run of hybrid
automata can be re-stated as a form of reachable regionse Wieechange from one
region to another one is fired using a discrete step.

The operational semantics is the basis for verification dffityautomata. In partic-
ular, model checking of a hybrid automaton is defined in tesfreachability analysis
of the hybrid automaton.

Definition 6 (Reachability). A stateo; is reachable from a state;, if there is a se-
guence of admissible states starting framand ending ingj. A stateg; is called
reachable if it can be reached from the initial staig

To model multi-agents system, one needs to coordinate thavims of the agents. For
this reason, hybrid automata can be extended by parallgdasition. Basically, parallel
composition of hybrid automata can be used for specifyingglasystems (multi-agent
systems), where a hybrid automaton is given for each pahntodystem, and communi-
cation between the different parts may occur via shared@bkas and synchronization
labels. Technically, the parallel composition of hybridcauata is obtained from the dif-
ferent parts using a product construction of the partiaigegautomata. The transitions
from the different automata are interleaved, unless thayestihe same synchronization
label. In this case, they are synchronized during the ei@tuAs a result of the parallel
composition, an automaton is created, which captures thavier of the entire system.

4 CLP Model

This section shows briefly how to encode the hybrid automesaribed in the previous
section using our CLP model [14]. The key advantage of outémpntation model in
contrast to the other hybrid automata verification tool$éat e do not need to con-
struct the composition of hybrid automata prior to verificatphase. Instead, we con-
struct the behaviors dynamically during the computatidris Telieves the state space
problem that may occur when modeling multi-agent systerhs. grototype was built
using ECLiPSe Prolog [11]. Due to the space limitation, wk evhit some details, but
we will show the basic outline of the CLP model.

An automaton is defined by a predicate ranging over the réigpdocations of the
automaton, real-valued variables, and the time:
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aut omat on( Locati on, Vars, Varso0, T0, Ti ne) : -
c(Inv),c(Vars, Vars0, TO, Ti ne).

Here,automatonis the name of the automaton itself, abhdcationrepresents is the
current location of the automatoxarsis a list of real variables participating in the
automata, whereagar9 is a list of the correspondent initial valueginvs) is the
constraint that represents the invariant of the location the constraint predicate
c(VarsVars, T0O, Time) represents the continuous flows of the variatdeswrt. time
{T0, Time}, whereTO is the initial time at the start of the continuous flow. Theap
tional semantics are encode into Ce&wl ve predicate as follows.

evol ve( Aut omat on, (L1, Var1), (L2, Var2), T0, Ti me, Event)
conti nuous(Aut omat on, (L1, Var1), (L1, Var2), TO, Ti ne, Event);
di screte(Automaton, (L1, Varl), (L2, Var2), T0, Ti ne, Event).

theevol ve alternates betweeront i nuous anddi scr et e based on the constraints that
appear during the run, as well as teentthat may occur.

Now, after the automata have been specified, a driver proggareeded to coor-
dinate and execute the behaviors of the automata. For th&onedriver predicate is
implemented to do these missions. The last argument afrilier represents symboli-
cally the list of reachable regions.

driver((L1,Var01), (L2, Var02),...,(Ln, VarOn), TO,
[(L1,L2,..,Ln,Varl, Var2,.., Varn, Tine, Event)| Next Regi on]) :-
aut omat on1( L1, Var1, Var 01, TO, Ti nel),
aut omat on2( L2, Var 2, Var 02, TO, Ti ne2),

aut omat onn( Ln, Varn, Var On, TO, Ti nen),

Timel $=Tinme2, Timel $=Tine3, ..., Timel $=Tinen,

evol ve(aut omat onl, (L1, Var01), (Next L1, Nvar01), TO, Ti nel, Event),
evol ve(aut omat on2, (L2, Var02), (Next L2, Nvar 02), TO, Ti nel, Event),

evol ve(aut omat onn, (Ln, Var0n), (Next Ln, NvarOn), TO, Ti nel, Event),
driver((NextLl, Nvar01), (NextL2, N\var02), ..., (NextLn, NvarOn), Ti mel, Next Regi on).

To run the program, the driver has to be invoked with a queastiag from the initial
states of the hybrid automata. An example, showing how toyqihe driver on logistic
multi-agent scenario, takes the form:

driver((initl,0),(init2,0),(init3,0),(init4,0),0, Reached).

5 Planning as Reachability Analysis

Now we have an executable constraint based specificatioichvelan be used to ver-
ify several properties of our multi-agent team by means @&eaxihability analysis. Let
Reachedepresents the set of reached regions, then in terms of GeRgachability
analysis can be generally specified by checking wheRe&rhed |= ¥ holds, wheréd
is the constraint predicate that describes a property efést.
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In the context of planning, the reachability question isiegjent to a plan existence.
For example, one can check that there is no bad plan, wheshipbment is arrived to
its destination unsafely (i.e. the ratio of decayed itemseil®w 20%). This can be in-
vestigated by showing that the locationsafan the Monitor agent will not be reached.
Using the CLP computational model and with the help of thad#ad Prolog predicate
membef2, gives us the answeo as expected, after executing the following query:

?- drive((initl,0),(init2,0),(init3,0),(init4, 0),0,Reached),
menber ((Monitor, _truck, _cargo, _disturbance, D, _x, _z, _y, Ti me, Event),
Reached),
Monitor = unsafe .

We are interested not only to find a plan, but also to find tha pat utilizes certain
tasks in case of happening an exceptional error. In the gughgalin example, one can
check that the truck will choose the best plan that utilizegedmpany business and in
the same time fulfill the customer demands. This can be aclisimegd by investigating
the reachability of the shipment to its destination pointhwa certain precentage of
putrefactiorD. For this purpose, the following query should be invoked.

?- drive((initl,0),(init2,0),(init3,0),(init4, 0),0,Reached),
menber ((_noni tor, Truck, _cargo, _di sturbance, D, X Z, Y, Ti me, Event),
Reached),
Truck = arrived.

However, there are several constraints, which influencedih@me of this query, such
as the time of the unexpected error generated bypikirbanceagent and the remain-
ing distance to the destination during the transportattonexample, setting the distur-
bance timey = 8 in the supply chain model, the previous query givesihe 1.626%
upon the truck’s arrival to the destination, whereas sgttin= 24, the query gives
D ~ 5.542%. In both cases, the customer’s demand is not violatamrding to the deal
with the provider. However, the contrast between the twaeslofD results from the
truck’s decision based on the constraints appeared in theoement. In the first case of
tq, the truck requested a rescue from the provider. Howevées¢écond case, the truck
remains transporting the shipment without requesting jp. fidle previous analysis can
be checked using the following query:

?- drive((initl,0),(init2,0),(init3,0),(init4,0),0,Reached),
menber ((_nonitor, _truck, _cargo, _disturbance, D, X, Z, Y, Ti ne, Event),
Reached),
Event = rescue.

This query checks the reachability of a state where an eesntieis reached. In other
words, the query mearoes the truck need a rescuéf the first case offy, the query
returns with answeYes but it returnaNoin the second case.

6 Conclusions

Planning in dynamic environments is an essential task. d&aihe when an exception
occurs during the planning. For this purpose, this papewstddiow to extend the de-
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cision making of hybrid automata on the base of performannetfons for the unex-
pected events that occur during planning in dynamic enwir@mts. The extension was
illustrated by a scenario taken from supply chain managén@amr CLP implementa-
tion model, helped us to achieve this extension flexibly.

As a future work, we intend to experiment and relate our wottke other works of

multi-agent planning in dynamic environments, where theetis critical.
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