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Abstract. An increasing number of applications are based on Semantic Web
technologies and the amount of information available on the Web in the form
of RDF is continuously growing. The adaption of the Semantic Web for Personal
Information Management and the increasing desire for mobility is often accom-
panied by situations where no network connectivity is available and hence access
to remote data is limited. Such situations could be obviated when mobile devices
are able to operate on offline data replicas and synchronize changes when connec-
tivity is re-established. In this paper we present our ongoing work in developing a
framework allowing for adaptive RDF graph replication and synchronization on
mobile devices. We propose to interpose components that analyze various infor-
mation sources of semantic applications (including ontologies, queries, and ex-
pressed user interest) and use them for selecting parts of RDF data bases, which
are then made available offline using a proxy SPARQL endpoint on a mobile
device. Thus, we provide access to Semantic Web data without the need for per-
manent network connectivity.

1 Introduction

The original design of the World Wide Web is document-centric: digital information
resources are published on servers and can be retrieved by using Uniform Resource
Locators (URLs). Such documents are mainly HTML pages with embedded media like
images, which are connected by hyperlinks. While there exist a large number of static
documents (i.e., documents that reside on a server and are delivered to clients as-is),
large amounts of data are embedded in the so-called hidden web, which consists of
virtual documents that are created on request time using data that is stored in other sys-
tems, e.g. relational data bases. In most cases, these data are exposed via query forms
and are available to clients also in the form of semi-structured HTML documents.

If the consumer of such data is not a human (through the usage of a Web browser)
but a machine, it is required to re-extract the raw data from the HTML representation,
being optimized for human consumption, which is usually an expensive and error-prone
task [6]. It is the goal of the Semantic Web [2] to eliminate this source of potential er-
rors by providing the technical infrastructure to directly publish machine-interpretable
information on the Web, thus making it data-centric. The Semantic Web builds upon the
Web infrastructure [14] and extends it with a meta format for information representa-
tion (RDF [13]) and languages that allow publishers to semantically describe their data
(e.g., RDF Schema [4] and Web Ontology Language [9]). This technology stack has
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been complemented by the activities of the Linked Open Data initiative, which demon-
strate how to publish and interlink data sets using Semantic Web technologies [3] and
hence creating a world-wide distributed database.

Recently, the application of Semantic Web technologies to the problem of Personal
Information Management (PIM) has gained lots of interest, most notably in the form
of the Semantic Desktop [18], which has been investigated in the course of a number
of projects (e.g., [12, 15, 19]). With the increasing proliferation of mobile devices like
smart phones or netbooks, issues of Personal Information Management are no longer
restricted to desktop machines. In mobile scenarios, users frequently face the problem
that data is not available because of several reasons: firstly, there may be no physical
network connectivity (e.g., because of the lack of mobile network coverage), and sec-
ondly, security restrictions may apply (e.g., a VPN connection to the company network
cannot be established). In such situations it is desirable to make relevant data avail-
able on the mobile device so that applications can operate offline, and to synchronize
changes back to the base data set when connectivity is recovered. However, because
of the still limited storage and computing power of mobile devices, it is advisable to
carefully select the information to replicate; ideally in an automatic, transparent, and
adaptive manner.

In this paper we present our ongoing works towards a framework that aims to pro-
vide this functionality. Its architecture consists of a number of middleware components
that selectively replicate data from an RDF data base to a (mobile) client. This selection
is done by considering, on the one hand, automatically derived metrics about the data
set and its usage, and, on the other hand, manually defined rules that allow the user to
specify subsets of the data to be replicated. On the mobile device, replicated data are
wrapped by a SPARQL endpoint to be transparently used by applications.

2 Mobile RDF Replication and Synchronization Architecture
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Fig. 1: Typical Architecture of Semantic Web-based Applications.
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In Figure 1 the typical architecture of RDF-based applications is depicted. Such appli-
cations usually consist of two main components:

– A SPARQL endpoint, which wraps an RDF dataset and hides its implementation
details from a client. The data may actually be stored in a relational database, in the
file system, in memory, or it may be accessible via a network protocol. The endpoint
implementation accepts SPARQL query strings, executes them on the actual RDF
data, and returns the results in the correct target format.

– An application, which accesses RDF data by issuing SPARQL queries to the end-
point, and interprets the results1. Just as it is the case with applications that build
upon relational databases, all details of generating results and processing updates
are delegated to the SPARQL engine. The only defined interface between the ap-
plication and the data set is the SPARQL language and its transport protocol [7].

Naturally, our proposed replication and synchronization mechanisms are beneficial only
in situations where these components are distributed over different physical machines
and the network link between them is potentially unstable (e.g., when the SPARQL end-
point resides on a company server, while the application is executed on an employee’s
mobile device).

To introduce a replication and synchronization layer into such a semantic applica-
tion, it is not necessary to modify any of the existing system components. Instead, we
introduce two new components that serve as mediator layer between the client applica-
tion and the SPARQL endpoint. We denote these components the client-side replication
engine and the server-side replication manager. This extended system architecture is
depicted in Figure 2 and described in the following.

Replication Engine. The replication engine is instantiated on the client machine and
acts as a transparent proxy for applications. The only change to applications is a con-
figuration modification: applications must be re-configured to query the local SPARQL
endpoint instead of the original remote endpoint.

The replication engine is a fully-functional SPARQL endpoint that is able to process
queries and return the results to the application. It is configured to establish a connection
to the original SPARQL endpoint, as well as to a corresponding replication manager.
It has two operation modes, online and offline mode. In online mode all queries are di-
rectly passed to the original (remote) SPARQL endpoint, and results from the endpoint
are forwarded to the application where the request originated.

In offline mode the replication engine answers queries from its local cache, which
holds a subset of the original data set. The virtual endpoint is hence enabled to return
at least partial results for application queries, which is a significant improvement com-
pared to situations where no data can be retrieved at all. Updates are processed in a

1 We assume that update functionality will be included into SPARQL in the near
future; the current effort towards this direction has been subsumed by a corre-
sponding W3C member submission, cf. http://www.w3.org/Submission/2008/
SUBM-SPARQL-Update-20080715/.
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similar manner: in online mode they are forwarded to both the local cache and the orig-
inal data base, while in offline mode changes are recorded on the mobile device for
subsequent synchronization between the cached copy and the original data set.
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Fig. 2: Proposed Architecture Extension by an Intermediate SPARQL Proxy.

Replication Manager. The task of the replication manager is to compute a ranking for
the selective replication; i.e., it determines which subset of the data is to be replicated
on the client. To accomplish this it needs access to the whole RDF data set, which
can in general be achieved through the SPARQL endpoint. In order to achieve better
performance, it may however be necessary to integrate these two components more
tightly, as SPARQL can not be used to notify the manager about data updates. The
degree of such an integration is subject of further research.

Replication Control Protocol. The replication manager and the replication engine ex-
change information about the current status of the original endpoint and the client’s
cache via a replication control protocol, which is also used to coordinate the execution
of data replication tasks. Possible reasons for initiating a new data replication task in-
clude the execution of a SPARQL query or a data update on the client machine. The
replication control protocol should ensure a maximum of offline data availability in the
engine’s cache at any time. This strategy is preferred over manual synchronization on
demand because it also holds when the network connection is unexpectedly interrupted.
Additionally it enables the client to disconnect at any time, instead of requiring it to start
a tedious synchronization procedure before a planned disconnect.

Processing and elaborating on user-related contextual data provided by the repli-
cation engine is another important task and serves as the basis for the intelligent RDF
subgraph selection according to the user’s current activities and intentions. Some selec-
tion strategies we are considering in our ongoing works are introduced in the following
chapter.
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3 Selection of RDF Replica Sets

It is not practicable to replicate entire data sets under the restrictions of mobile devices
imposed by technical and user-related context. To provide a tradeoff in such situations,
we are investigating algorithms for selective replication of RDF sub-graphs. The goal
of these algorithms is to provide a subjective interest ranking of RDF triples, where we
take into account structural and semantic characteristics of the dataset, as well as user
preferences and usage context information. In the following we describe some of our
envisioned input parameters in more detail.

1. Graph Structure and Metrics. RDF is based on a graph model; therefore, various
metrics and analysis algorithms can be applied to it (e.g., degrees of graph nodes).
We are currently investigating the applicability of these metrics for deriving con-
clusions on the relevance of graph elements for offline replication. Such metrics,
however, do not take into account the semantics of the RDF model and ontolo-
gies [22], which is addressed by the following two information sources, ontology
structure and queries.

2. Ontology Structure and Metrics. Ontologies are used to express shared concep-
tualizations between communicating partners. In our work we focus on the Web
Ontology Language (OWL) [9], which is one of the standard languages for on-
tology modelling on the Semantic Web. OWL ontologies consist of three types of
elements: classes, individuals, and properties. Their structure as well as the seman-
tics of the relationships between them is expressed using different OWL language
constructs, e.g., subClassOf or equivalentProperty. From the analysis
of these expressions we hope to be able to infer information about the importance
of instance data that adheres to these ontologies, and to detect redundant data that
does not need to be replicated on the client.

3. Queries. As described in Section 2, applications usually access RDF data through
issuing SPARQL queries. Hence, the structure of these queries as well as the vo-
cabularies used therein are indicators which data are relevant for an application.
To exploit this information we will analyze the syntactic and semantic structure
of queries (with the help of ontologies, as described before) and draw conclusions
regarding the importance of the data sets that these queries are applied to.

4. User Context. Context and context-awareness play a critical role in interactive in-
formation systems [8, 10]. Recent research in this area reveals that the prevailing
system-centric view of context-awareness should be replaced by a user-centric view
[20]. Intelligent and adaptive RDF subgraph selection must therefore elaborate on
the user’s tasks and information needs on a semantic level to provide appropriate
and valuable data. For instance, based on upcoming appointments or events in the
user’s calendar, the replication engine could infer on the data probably needed. We
investigate further approaches on how to utilize user behavior and contextual infor-
mation to enhance the quality of the data retrieval process.

5. Explicit User Interest. The end of the Semantic Web information chain is the human
user. In every situation, the user should have the possibility to overrule or supple-
ment automatically replicated datasets. This selection may be carried out on various
levels, e.g., using elements from an ontology, using range definitions for attribute
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values, or even (on the lowest level) the selection of single triples out of the graph.
Depending on the user’s experience, sophisticated user interfaces are required for
this task, especially in cases where the amount of data exceeds certain sizes.

From the analysis of these data it may be possible to derive information that is relevant
not only to replication and synchronization, but also for other aspects of the stored data:
for instance, the analysis algorithms might reveal that certain parts of a data set are
never queried. In this case, it could be advisable to move these parts from the live data
store into a long-term archive. On the other hand, analysis of data graphs may evidence
that sub-graphs are disconnected, therefore semantic relations between resources are
missing. If such a graph is generated from an external data source, this may indicate a
potential error in the mapping or in the transformation algorithm.

4 Implementation

As a starting point for a reference implementation we have conducted a survey on exist-
ing mobile Semantic Web frameworks. We have analyzed two XML parsers for mobile
environments, NanoXML for J2ME2 and kXML3, as well as two mobile RDF frame-
works, Mobile RDF4 and µJena5. Our survey revealed that µJena is the most advanced
framework providing ontology and inferencing support, although its API is currently
in prototypical status and only allows for processing RDF data serialized in N-Triples
format6. However, none of the evaluated frameworks supports queries on RDF data via
SPARQL or other query languages. A serialization mechanism between RDF and the in-
ternal storage mechanisms used by certain mobile devices for storing data permanently
could also not be found. Such mechanisms are however needed since many mobile
platforms do not use a file system for storing application data, but provide platform-
specific storage systems, such as the Record Management System (RMS) in case of
J2ME MIDP7 applications.

We are currently developing our proposed framework as a Google Android8 appli-
cation since the underlying operating system provides substantial advantages compared
to other mobile operating system architectures. Android itself is an environment for run-
ning Java applications on the Dalvik Virtual Machine9 which is especially optimized for
mobile environments. It includes SQLite, a lightweight and powerful relational database
engine, and makes use of some advanced software design patters such as the Model-
View-Controller (MVC) pattern to separate application logic from user interface design
and underlying data models. Android provides access to the core system operating func-
tions through standard APIs as well as a complete multitasking environment where each

2 NanoXML: http://sourceforge.net/projects/nanoxml-j2me/
3 kXML: http://kxml.sourceforge.net/
4 Mobile RDF: http://www.hedenus.de/rdf/index.html
5 µJena: http://poseidon.elet.polimi.it/ca/?page_id=59
6 N-Triples Syntax for RDF: http://www.w3.org/TR/rdf-testcases/#ntriples
7 Mobile Information Device Profile (MIDP): http://java.sun.com/products/
midp/

8 Google Android Platform: http://code.google.com/android
9 Dalvik Virtual Machine: http://www.dalvikvm.com
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application is executed within its own thread, thus providing the possibility to imple-
ment background services, like a synchronization process that is automatically activated
when the mobile device has online connectivity to its home network (e.g, by automati-
cally establishing a VPN connection within a public wireless local area network).

As a first step we have implemented an initial prototype consisting of a client appli-
cation for initiating a request, a minimal replication engine, and the replication manager.
The replication manager is able to process a core set of contextual information, such as
the number of triples expected by the replication engine, the user’s current location, as
well as information about the serialization formats the client is able to process.

The replication engine takes these values as input parameters and sends them to
the replication manager. Based on this information the replication manager selects a
subset of the RDF data set and transmits it to the client. A RDF abstraction layer has
been introduced in the replication manager so that its implementation is independent
from the underlying RDF store. The client locally caches the data and hence makes it
available to applications, and changes made to this cache are subsequently forwarded
to the replication manager. Currently we are designing a more elaborate framework for
RDF persistance on mobile devices. On the replication manager side, we are designing
and implementing a ranking pipeline that allows for modular, customizable weighting
of RDF triples, which is used as the basis for selective replication.

5 Related Work

Although RDF databases are gaining industry strength in terms of performance and
memory efficiency, mechanisms for synchronization and offline replication can hardly
be found. To the best of our knowledge, many of today’s state-of-the-art triple stores,
including Jena10, Sesame11, and Redland12, do not include support for (selective) of-
fline replication.

Most of the systems mentioned above can be configured to make use of a relational
data base to store RDF data. For this, they employ mapping algorithms in order to rep-
resent RDF graphs as relations. One could make use of a RDBMS’s replication and
synchronization facilities; however, this has two drawbacks: (1) it does not consider the
special aspects of RDF and semantic graphs, including ontologies, and (2) performing
selective replication is very hard unless the developer analyzes the exact mapping al-
gorithms for the target system. Usually, those systems don not provide possibilities to
elaborate on the meaningfulness and semantics of RDF data sets.

Larger-scale database systems like OpenLink Virtuoso [11] and Oracle [1] do not
solely focus on RDF but may serve as a data integration point for different sources,
including RDF. While these systems often provide support for replication and synchro-
nization, they are not designed to be deployed to mobile devices.

A different approach for selective distribution and replication of RDF data is the
Peer-to-Peer (P2P) paradigm, where multiple equal systems exchange data over a net-
work. Such systems are, for instance, Edutella [16] and RDFPeers [5]. These works
10 Jena Semantic Web Framework: http://jena.sourceforge.net
11 Sesame Framework: http://www.openrdf.org
12 Redland RDF Libraries: http://librdf.org
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provide valuable knowledge about efficient distribution and exchange of RDF data, but
do not focus on selective replication. Tumarrello et al. [21] describe an algorithm for
selective exchange of RDF, based on P2P systems. We aim to extend the results pre-
sented by them and apply them to non-P2P environments.

The Open Mobile Alliance (OMA) provides the SyncML framework for data syn-
chronization [17], which allows data of different kinds (including contacts, calendars,
and e-mail messages) to be synchronized between devices. The framework also speci-
fies a number of bindings to protocols that are commonly used in the context of mobile
devices, as well as limited means to express device context information, e.g., the avail-
able memory or the supported databases. Since this framework does not consider a
generic data format like RDF, we will analyze potential synergies and links between
our approach and the OMA activities.

6 Conclusions

In this paper, we have outlined our ongoing works towards a framework for selective
replication of RDF data sets to mobile devices. The goal of this framework is to provide
access to RDF data sets in situations where there is no network connectivity available
and hence communication with remote data sources is impossibile. Our proposed ar-
chitecture extends current Semantic Web applications with intermediate components
that handle SPARQL queries transparently, either by forwarding them to the actual data
store if connectivity is up, or by answering them from a locally cached partial replica
of the data set on the mobile device, if there is no connectivity.

We are currently in the process of specifying in more detail the algorithms and data
models that are required to realize such a framework. This includes a model for selec-
tive replication of RDF data sets, algorithms for ranking of resources based on their
structure and usage, and checkout and update mechanisms that enable mobile devices
to stay updated with a base data set. In parallel, we are validating these artifacts by the
means of a reference implementation, which is based on the Android mobile platform
and a special variant of the popular Jena Semantic Web framework.
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