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Abstract: We present a methodology for the extraction of rules from Artificial Neural Networks (ANN) trained to fore-
cast the electric load demand. The rules have the ability to express the knowledge regarding the behavior of
load demand acquired by the network during training process. The rules are presented to the user in an easy
to read format, such as IF premise T HEN consequence. Where premise relates to the input data submitted
to the network (mapped as fuzzy sets), and consequence appears as a linear equation describing the output to
be presented by the network, should the premise part holds true. Experimentation demonstrates the method’s
capacity for acquiring and presenting high quality rules from neural networks trained to forecast electric load
demand for several amounts of time in the future.

1 INTRODUCTION

One important issue concerning the requirements of
proper load demand forecast methods is the ever in-
creasing dependency of electricity supply for today’s
industrial societies. Hence, the last decades have
shown large investments from energy supply compa-
nies in order to improve operation security of electric
networks and to ensure quality of service of energy
supply for the costumers (Ghods and Kalantar, 2008).
These objectives could be achieved through the use of
a better knowledge of the load demand behavior for
the area supplied by energy supply companies. Such
knowledge can even be used to guide the company’s
tactical and strategic decision making within the com-
pany’s administrative areas.

This work presents a methodology designed for
the extraction of rules form Artificial Neural Net-
works trained to forecast electric load demand for
several amounts of time in the future. The rules ob-
tained describe the knowledge acquired by the net-
work during the training phase. The rules provide
insight about the load demand behavior for the area
where the training data have been gathered (a city,
for instance), such as the impact that each of the in-
put variables cause on the load demand, under what
circumstances occurs drastic changes in the load de-

mand pattern, among other important information to
support tactical and strategic decisions throughout the
energy supply company. This paper proceeds as fol-
lows: in the next section we discuss some theoretical
aspects. Section 3 details FAGNIS, the rule extraction
method used in this work. Section 4 demonstrates the
methodology proposed for the proper rule extraction
from the trained ANNs. Section 5 shows some of the
experiments used to validate the method and the re-
sults obtained. In Section 6 we finish the document,
presenting our conclusions.

2 THEORY

This section deals with the theoretical concepts used
in this paper. Fuzzy Set Theory and Principal Com-
ponents Analysis are used in this work, however, due
to space limitations they are not covered here. The
reader should refer to (Angelov, 2002) and (Hastie
et al., 2009) to read about these topics.

2.1 Electric Load Demand Forecast

The electricity demand or system load encompasses
the summation of electric usage at each consumption
point (users) supplied by an electric supply facility.
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Its behavior is highly dynamic and difficult to com-
prehend. The amount of variables involved in the
characterization of the load demand curve is large in-
deed, and different effects are perceived by the same
variables in different regions of the globe. However,
works such as (Gross and Galiana, 1987), (Srinivasan
et al., 1995), (Srinivasan et al., 1999) and (Ghods and
Kalantar, 2008) show that certain factors are com-
monly responsible for affecting the load demand.

2.2 Rule Extraction from Trained
Neural Networks

The reason for the successful application of AANs in
fields as diverse as academia, industry and commerce
is its generalization capabilities. However, this high
power of generalization comes at a price: it prevents
the network from expressing the knowledge acquired
during the training phase. Thus the network can be
seen as a black box, presenting to the user the pre-
dicted output based on the input data, while impor-
tant knowledge about the problem studied remains en-
crypted within the network’s weight matrix, never to
be discovered.

In order to solve this problem, rule extraction tech-
niques can be used to acquire the knowledge em-
bedded in the network’s weight matrix, and then to
present it to the user in a clear interface. As men-
tioned before, rules have a IF premise THEN conse-
quence structure, where premise somehow defines the
vector of input data presented to the network and con-
sequence describes the output to be obtained should
the premise part holds true. Mostly of the rule ex-
traction methods used today rely on Fuzzy Sets con-
cepts to describe the premise part of the rules (Cechin,
1998), (Benitez et al., 1997).

In an important survey concerning several rule ex-
traction methods, Andrews et al. (Andrews et al.,
1995) present several interesting features displayed
by transparent neural networks, that is, ANN capable
of describing their knowledge to the user. In this work
the authors mention that ANNs with explanatory ca-
pabilities are capable of (among others): (1) operating
in conjunction with symbolic intelligent systems; (2)
controlling critical applications such as air traffic con-
trol and support scientific theory formulation.

3 FAGNIS - RULE EXTRACTION
FROM SIGMOID NETWORKS

This section describes FAGNIS (Cechin, 1998), the
rule extraction method selected for this work. FAG-

NIS has been considered because of its ability to
extract rules from standard feedforward neural net-
works, with or without shortcut connections, and
heaving one or more hidden layers. Further, since
FAGNIS performs on an already trained network, it
has no dependency on its training algorithm. In fact,
any training algorithm can be used, from the stan-
dard backpropagation to algorithms yet to be created.
Requirements such as special ANN architectures and
special or adapted learning algorithms are mandatory
in the majority of rule extraction methods, namely
(Jang et al., 1997) and (Nauck et al., 1994).

FAGNIS begins its extraction procedure by split-
ting the sigmoid curve within the hidden neurons in
three regions. These regions are then transformed in
straight lines, which are mapped by very simple equa-
tions, as illustrated in Figure 1.

Figure 1: Separation of the sigmoid curve within the hidden
neurons performed by FAGNIS.

Next, the training data are once more submitted
to the network, where FAGNIS verifies the resulting
activation of the hidden neurons for each of the data
points. The data points are then grouped according to
the activation regions (as shown in Figure 1) gener-
ated within the network’s hidden neurons.

To assemble the premise part of the rules, FAG-
NIS transforms each group of data points found in the
previous step in fuzzy sets. The fuzzy sets are rep-
resented by the midpoint of each group. The conse-
quence part of the rule is defined as a linear equation
that represents the output dependence of the network
on the input data. The expressions below show two
rules acquired from a fictitious neural network

IF (x1, x2) is G1 THEN y = x1wi j + x2wi j + k

IF (x1, x2) is G2 THEN y = x1wi j + x2wi j − k

where G1 and G2 are fuzzy sets (with membership
functions µ1 and µ2 respectively), wi j is the weight
linking the i-th neuron to the j-th neuron and k is the
intercept value for the equation.
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4 METHOD

The first step of the process is to prepare the ANN
to be used as the forecaster model. Some consoli-
dated techniques, such as variable selection method
and cross-validation technique were used to improve
the model, as well as to decide on key issues concern-
ing the ANN’s architecture. The Mean Absolute Per-
centage Error (MAPE) metric was selected to mea-
sure the ANN’s accuracy, as shown in Equation (1):

MAPE =
1
n

n

∑
i = 1

∣∣∣∣Ai − Fi

Ai

∣∣∣∣ (1)

where n is the number of data points, Ai is the actual
value and Fi is the forecast value. Once the dataset is
composed, each data point is normalized as shown in
Equation (2):

ndi =
di − µD

σ
(2)

where ndi is the normalized data, di is the actual data
(from the dataset), µD is the mean of the data column
and σ is the standard deviation for the data column.

Principal Components Analysis (PCA) is then ex-
ecuted on the dataset, and the resulting dataset is then
used to train the neural network. The principal com-
ponents are selected based on Jolliffe’s criterion (Jol-
liffe, 2002).

Once the neural network is properly built and
trained, FAGNIS can be used to extract knowledge
rules from it.

The algorithm is executed as detailed in Section
3. Once the execution is terminated, the rules can be
analyzed and interpreted. The equations on the con-
sequence part of the rules explain the load demand
behavior for the data assigned to the fuzzy sets de-
scribed in the premise part. To determine which of
the input variables is the most important, that is, the
one that has the major influence on the load demand,
the user needs simply to identify which of the inde-
pendent variables of the equation has the highest ab-
solute coefficient value.

5 EXPERIMENTS AND RESULTS

This section describes the results obtained from two
experiments used to evaluate the proposed methodol-
ogy. The first experiment concerns the extraction of
rules from ANN trained to predict the average load for
the next hour. In the second experiment, the forecast
window is expanded to the next month.

5.1 Experiment 1

The load demand forecast for the next hour constitutes
a classical problem within this field, and the adoption
of neural networks techniques usually leads to excel-
lent results. Regardless of the triviality of this prob-
lem, the energy supply companies should not under-
estimate the value of such information: the load de-
mand for the next hour provides support to several of
the company’s tactical decisions like the expansion of
transmission lines, equipment maintenance schedule
and other routine activities.

The dataset used in this experiment corresponds
to the hourly load recorded from 2003 to 2007, For
a capital city holding approximately 1.4 million of
citizens. The data has been arranged in such a way
that daily, weekly, monthly and annually load pat-
terns could be learned by the neural network. The
list below represents the structure of the dataset prior
to PCA application:

• load demand for the last twenty-four hours (24
columns),

• load demand for the forecast hour registered in the
last six days (6 columns),

• load demand for the same day and forecast hour
registered in the last three weeks (3 columns),

• load demand for the forecast hour and day regis-
tered in the last month (1 column),

• dependent variable: average load demand for the
next hour.

After data processing, the principal components were
extracted. Jolliffe’s Criterion informed that the first
eight components should be used as the input layer of
the neural network. The data belonging to the remain-
ing components were discarded from the experiment.

The neural network selected by tenfold cross-
validation method has eight neurons in the input layer,
four in the hidden layer and one in the output layer.
The network’s accuracy, measured by the MAPE met-
ric, is of 0,027%.

Some of the rules extracted by FAGNIS appear in
table 1. Not all the thirty-four rules were displayed
due to space reasons. The rules show that the three
first principal components have an increasing effect
on the load (their coefficient values are positive in all
the thirty-four rules). On the other hand, the fourth
principal component has a decreasing effect on the
load demand (it has negative coefficient value in all
the rules).

The rules are arranged in the following format:

IF (PC1 is F1) AND (PC2 is F2) ... AND (PC8 is F8)

THEN y = int + KPC1 + KPC2 + ... + KPC8
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Table 1: Some of the rules found by FAGNIS in experiment 1.

Rule # Rule description Data points
1 IF x = (0.319 -1.272 -0.431 -0.091 0.275 -0.349 -0.159 -0.312) 8946

THEN y = (0.036 0.189 0.174 0.128 -0.175 0.159 0.047 0.038 -0.093)
2 IF x = (1.913 1.350 0.327 -1.651 -0.609 0.923 0.301 0.317) 3948

THEN y = (-0.004 0.208 0.191 0.179 -0.096 0.204 -0.001 0.237 0.131)
3 IF x = (1.179 -0.652 1.299 0.420 0.080 0.006 0.867 0.390) 3556

THEN y = (-0.085 0.215 0.207 0.156 -0.183 0.136 0.111 0.192 0.162)

where PCn is the principal components used as the
input layer of the neural network, Fn are the fuzzy sets
representing the data being submitted to the ANN’s
input layer, K are the coefficient values of the linear
equation and int is the point where the straight line
defined by the equation intercepts the Y axis.

Figure 2 depicts the first column of the rotation
matrix resulted from PCA application. It says that
the first principal component is composed mainly by
the load of the forecast hour registered one day ago.
Table 2 presents the results of the same analysis for
the remaining principal components.

Table 2: Most important variables used for principal com-
ponents characterization.

PC Description
1 Load for the forecast hour, 1 day ago
2 Load for the forecast hour, 5 days ago
3 Load registered 24 hours ago
4 Load for the forecast hour, 1 week ago
5 Load registered 14 hours ago
6 Load registered 11 hours ago
7 Load for the forecast hour, 4 days ago
8 Load for the forecast day and hour,

1 month ago

Based on the rules found and the information de-
tailed on table 2, the following assertions can be
made:

1. the load demand registered in the last twenty-four
hours before the forecast, as well as one day be-
fore and five days before have an increasing effect
on the load demand

2. the load demand for the same time of the fore-
cast, registered one week ago, decreases the load
demand for the next hour

5.2 Experiment 2

The load demand forecast for the next month is a task
much more difficult than that of the previous experi-
ment. As the window of forecast expands to such a

long time, economic factors begin to play a more im-
portant role in shaping the load demand curve (Srini-
vasan et al., 1999). The load demand for the next
month consists in strategic information to energy sup-
ply companies. It supports the company to purchase
an amount of energy very close to the amount to be
used by its costumers, thus increasing the company’s
profit.

In this experiment, electric demand and climatic
data were used to determine the load demand for the
next month for a small city with a large number of
industries. The data have been stored on a daily ba-
sis, for the period of 2005 to 2007. The file structure
before PCA is shown below:

• residential load demand registered for 120, 90, 60
and 30 days prior to forecast (4 columns),

• industrial load demand registered for 120, 90, 60
and 30 days prior to forecast (4 columns),

• commercial load demand registered for 120, 90,
60 and 30 days prior to forecast (4 columns)

• average temperature registered for 120, 90, 60 and
30 days prior to forecast (4 columns),

• average relative air humidity registered for 120,
90, 60 and 30 days prior to forecast (4 columns),

• dependent variable: average load demand for the
next 30 days.

The first seven principal components were used to
build the training dataset to the neural network. The
reason for the separation of the load in three different
categories relies on the city’s economic structure: it is
mainly industrial. However, the commerce sector has
shown rapid increase in the last decades. Thus, it is
expected that the rules found show high dependency
of industrial load to forecast the average monthly load
for this city.

The neural network selected via tenfold cross-
validation has seven neurons in the input layer, thirty-
two in the hidden layer and one in the output layer.
Shortcut connections were not used. This architec-
ture resulted in a MAPE of 3.26%, however, due to
the elevated quantity of hidden neurons, more than
300 rules were extracted. It means that many fuzzy
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Figure 2: Quantity of information from original dataset used to create the first principal component.

Figure 3: Quantity of information from original dataset used to create the first principal component.

sets were necessary to map the knowledge acquired
by the network, and these sets refer to very few data
points in the training data. To solve this problem, a
new network structure was used in the rule extrac-
tion procedure: it has eight hidden neurons, and its
MAPE value is of 6.53%. This neural network pro-
duced thirty rules.

Table 3 shows the most important rules extracted
by FAGNIS. They can be read by the same manner as
those shown in the previous experiment. Again, not
all the rules could be presented due to space reasons.
Figure 3 details the data on the first column of the ro-
tation matrix resulted from PCA application. It shows
that the industrial load registered sixty days ago has a
strong relation to the load for the next month. How-
ever, it is clear that the industrial load registered thirty
days ago has also a significant participation in shap-
ing the overall monthly load. Table 4 presents the
quantity of information given by the original dataset
to build the remaining principal components.

Based on the analysis of the first rule found and
the rotation matrix resulted from PCA application
(Table 4), it is possible to verify that the industry load
demand has high impact on the general monthly load
demand of the considered city.

Figure 4 shows the monthly load demand curve
for the city. The dots represent the data points asso-

Figure 4: Monthly load demand and data explained by Rule
1.

ciated with rule number 1. This shows that the Fuzzy
Sets of the first rule have elevated energy consump-
tion. The analysis described in this experiment can
be replicated to the other rules, so that all knowledge
learned by the neural network can be acquired.
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Table 3: Rules found by FAGNIS in experiment 2.

Rule # Rule description Data points
1 IF x = (-2.863 -0.715 1.839 -0.294 0.264 -0.014 0.035) 110

THEN y = (1.442 -0.024 0.001 0.032 -0.033 0.005 -0.004 -0.003)
2 IF x = (2.554 -1.616 -1.161 0.165 0.154 -0.095 -0.022) 68

THEN y = (-0.290 -0.002 -0.378 -0.117 -0.392 0.006 -0.005 -0.235)
3 IF x = (4.356 0.069 2.064 -0.852 -0.152 -0.221 0.596) 42

THEN y = (-2.804 0.874 0.339 -0.386 0.737 -0.027 0.001 0.127)

Table 4: Most important variables used for principal com-
ponents characterization.

PC Description
1 Industrial load, 60 days ago and

Industrial load, 30 days ago
2 Average temperature, 60 days ago
3 Average temperature, 120 days ago
4 Industrial load, 30 days ago
5 Average humidity, 60 days ago
6 Average humidity, 90 days ago
7 Average humidity, 120 days ago

6 CONCLUSIONS

A methodology for the acquisition of rules from neu-
ral networks trained to forecast electric load demand
has been presented here. Results found through sev-
eral experiments (been two of them shown in this
paper) attest the methodology’s efficiency in extract
and present high quality rules for different amounts
of time in the future.

Throughout the execution of many experiments, it
was made clear that there is a need to differentiate the
neural networks of load forecast from those used to
rule extraction: the former needs several training cy-
cles in order to obtain a perfect fit to the load demand
curve; the latter requires only a few training cycles to
obtain the overall knowledge about the load demand,
that is, so that a small number of rules can be used to
refer to a large quantity of data points.

Both the forecast model and the rules acquired can
be used as decision support tools for energy supply
companies. For example, several simulations could
be used for the executives to better understand load
demand behavior in different scenarios, such as future
climatic changes.
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