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Abstract. A new approach for detecting malicious access to a database system 
is proposed and tested in this work. The proposed method relies upon 
manipulating usage information from database logs into three dimensional null-
related matrix clusters that reveals new information about which sets of data 
items should never be related during defined temporal time frames across 
several applications. If access is detected in these three dimensional null-related 
clusters, this is an indication of illicit behavior, and further security procedures 
should occur. In this paper, we describe the null affinity algorithm and illustrate 
by several examples its use for problem decomposition and access control to 
data items which should not be accessed together, resulting in a new and novel 
way to detect malicious access that has never been proposed before. 

1 Introduction 

Unauthorized access to data resources is a major threat faced by all organizations. 
While organizations typically have very complex firewalls and intrusion detection 
systems in place in order to detect external threats, these systems do little to protect 
organizations against another significant threat, the malicious insider [1]. These 
insiders will often not be after the physical systems, rather they will attempt to corrupt 
or capture the data these systems contain. This threat needs to be protected against, 
and more work needs to be performed in the prevention and detection of these attacks. 

Reality, however, shows that such mechanisms for enforcing security policies are 
often ignored or not adequately used by security professionals. While the reasons for 
this vary, they typically are related to how complex it is to define implementable 
security policies and how difficult enforcement against “privileged users” can become 
[12]. Much more emphasis needs to be placed on simple, well-defined internal access 
control mechanisms. 

We propose a misuse detection system that involves knowledge about the set of 
data items that are used during the normal execution of an application during certain 
defined time frames. This is done for some set (or all) applications that are run against 
the database, resulting in a three dimensional relation. This information is then used to 
cluster groups of data items that have low temporal affinity, meaning that they are 
rarely, if ever, used together during standard operating conditions. This information 
can be collected by investigating historical data kept in the logs by the database 
management system. This raw historical usage data is then transformed using three 
dimensional matrix operations that allow security engineers to better analyze potential 
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misuse from current dynamic database operations. This method has not been proposed 
before, and it shows promise to reveal previously unknown usage patterns that can 
indicate illicit behavior. Our proposed method also has several benefits over other 
traditional methods of insider threat detection in that it requires little storage space, 
can be easily adjusted to reflect new applications, is very quick in operation once the 
historical data has been properly clustered, and requires only a moderate amount of 
computational time to calculate. 

The paper is organized as follows. Section 2 details previous work on security 
issues related to databases and malicious data access detection. Section 3 presents the 
proposed mechanism for building a two dimensional usage matrix for each 
application from historical logs that will be used in determining valid use. Section 4 
presents the algorithm we have developed for computing the null temporal affinity of 
a given usage matrix; section 5 presents an evaluation of our results. Section 6 
concludes the paper. 

2 Background 

In spite of the classical security mechanisms developed in the database area, current 
DBMS are not well prepared for integral security mechanisms such as privacy and 
confidentiality. An important part of security aware databases will include 
mechanisms to automatically detect malicious data accesses and intrusions, and 
prevent them from occurring again in the future. By implementing intrusion detection 
and prevention methodologies, organizations are afforded better protection against 
data misuse and corruption, resulting in substantial savings for that organization. 

General methods for intrusion detection are based on either anomaly detection or 
pattern recognition [2], [13]. Pattern recognition is the search for known attack 
signatures in commands that are currently being executed. Anomaly detection relies 
on searching for deviations from known historical profiles of good commands and 
using this as an indication of threats [10]. We use the anomaly detection approach for 
this work as it allows a large set of historical input data that can be easily processed 
from the logs that are kept by all database management systems [14]. In the following 
sections, we will show other works that relate to anomaly detection. 

Recent works have addressed real-time intrusion and attack isolation in DBMS. 
DEMIDS [3] is a misuse detection program designed to examine audit logs to derive 
user profiles that are a snapshot of typical user behavior. If the user strays too far from 
their historical profile, their actions are monitored more closely to determine if they 
are acting maliciously. 

The DEMIDS program introduces the notion of distance measure and frequent 
item sets to capture the working scopes of users using a data mining based algorithm. 
If the items that the user attempts to access are far enough away from what is 
typically accessed, this is a strong indication that malicious behavior is occurring. The 
user can be prevented from accessing further items once it has been determined they 
are acting maliciously. This work focused on the user/data item relationship, while 
our work focuses on the application/data item/temporal frame relationship. 

Fonseca [2] designed a program called MDAD (Malicious Data Access Detector) 
that examines the set of valid SQL queries that a user typically performed. The 
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program used two distinct phases, a learning phase where valid logs are examined to 
derive a user profile of valid queries that are performed, and a detection phase where 
new queries are compared to known historical data. The program uses a directed 
graph to better protect traditional database applications from SQL injection type of 
attacks as well as web based attacks. Petri-Nets and data dependency relationships 
were use to model normal data update patterns and potential database misuse in [5] 
and fingerprints of normal behaviors that can be used for intrusion detection in 
databases is addressed in [4]. 

Clustering high use items has been used in [6], [7]. In those domains, high affinity 
items are clustered together to better see sets that are used frequently together during 
the normal execution of a transaction. The clusters also enabled potential 
segmentation of large datasets across a distributed environment, enabling better 
performance metrics. These works were not concerned with temporal relations or how 
the low affinity items might be clustered to show items that should not be clustered 
together. 

3 Assigning Null Affinity Temporal Values 

In a typical database environment, transactions are programmed into various database 
application interfaces, so as long as the database applications remain stable, the set of 
transactions that are executed will not change. For example, in an educational 
database application, users can only perform and interact with data items that are 
available at their user-dependent application interface (e.g., viewing grades, paying 
for classes, entering grades, dropping a student from a class, etc). Other operations are 
not available for that particular class of end-user. Normally, end-users can not execute 
ad hoc queries against the database. It is a very realistic assumption to use 
transactional profiling to detect malicious data access, resulting in a reduced risk of 
false alarms with other intrusion detection mechanisms. 

3.1 2D Usage Array 

For each application Ay that is run on the database, choose a time frame Tz. The time 
frame needs to be chosen with a granularity that reflects the usage of the database, 
and the temporal frame can be adjusted as necessary. For each data item Ix available 
to an application, an attribute usage value, denoted as use(Ix, Ay, Tz ), is defined as: 

use(Ix, Ay, Tz) ={ }Tz frame   timeduringIx  item data usesAy  n applicatio if  1
                                                                       otherwise if  0  (1) 

The matrix is stored in an M x N two dimensional data usage array at position Ai,j 
where M is the number of data items (rows) and N is the number of temporal frames 
(columns) and i is the particular data item and j is the particular time frame under 
examination.  
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Fig. 1. Example 2D usage matrix. 

In the above figure, an application used data item Ia only during time frame T1. In 
this example, we can define the time frame to be the days of week, so time frame T1 
would correspond to Monday during a given week and year. If it is so desired, the 
temporal granularity can be changed so that the time frame under examination has a 
larger or smaller amount of granularity. For example, the usage matrix could be 
defined for only each hour during the Monday T1 time frame from the above example. 
The time frame could also have a much larger granularity; for example, the data usage 
matrix could be defined as the previous twelve months of usage. 

3.2 3D Usage Matrices 

The 2D usage arrays are calculated for each application that is run against the 
database, resulting in a three dimensional relationship. If an application is not 
suspected for potential misuse, the security engineer can extricate that particular 
application from the process and focus on other, more susceptible, applications. The 
result is then an M x N x P relationship where M is the number of data items, N is the 
number of temporally related time frames that were chosen in the first step, and P is 
the number of applications that are run against the database. This 3D usage data is 
used next to find and cluster elements that should not be used together across three 
dimensions, time, application level, and data item level, resulting in a novel way to 
detect misuse of the database. 

4 Computing Null Temporal Affinity Energy Levels 

Given the 3D usage matrix of a particular system, we have defined a Null Temporal 
Affinity Energy (NE) methodology that processes the 3D matrix so that dense clumps 
of zeros are clustered together across all thee dimensions. The NE algorithm was 
devised so that a three dimensional matrix that possesses dense clumps of zeros in all 
three dimensions will have a large NE (null energy) level when compared to the same 
three dimensional matrix whose elements across the y and z axes have been permuted 
so that its numerically small elements are more uniformly distributed throughout the 
relation. The x axis (time) is not permuted because each of the time frames are related 
by some fixed metric; this relationship will be used to expand or contract the three 
dimensional relationship to home in on particular areas of potential misuse in an area 
of future work described in section 6. 
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The proposed null energy level is the sum of the bond strengths in the 3D array of 
each nearest neighbor in three dimensions, where the bond strength is defined as the 
inverse of their product. The NE value, then, is given by: 

NE(U)Tx = ½ * 

______ _______ _______ _______ _______ _______ _______
( ( ( *[ ]))), , 1, , 1, , , 1, , 1, , , 1 , , 1

1 1 1

j Ni M k P
A A A A A A Ai j k i j k i j k i j k i j k i j k i j k

i j k

== =
+ + + + +∑ ∑ ∑ + − + − + −

= = =
 

(2) 

__

xA represents the binary inverse of Ax. U is a nonnegative M x N x P three 
dimensional array consisting of results of the use function over time period Tx; U was 
derived in section 3. Since all the values of U are binary, the NE value is very 
efficiently calculated, even when given large three dimensional matrices. The value of 
½ is present so that each bond is only counted once in the total NE sum. 

 To better understand what the NE value represents, one can visually circle 
adjacent zeroes going up, down, left, or right in the same two dimensional plane, and 
also potentially circling zeros in the plane above and below the current element. All of 
these six elements are related, and by permuting and then clustering them, items are 
revealed which should not be used together for certain time frames across different 
applications and different data items. This is done for each element in the three 
dimensional matrix; the negative energy is the total sum where adjacent elements are 
zero. For example, the NE of the matrix in only two dimensions in Fig. 1 is 19.  

 Because of the three dimensionality of the matrix, clustered arrays in two 
dimensional planes that appear to have a small NE value may in fact be contributing 
to a larger total null energy value in the resultant three dimensional matrix. This is 
data that is not apparent by simply viewing the usage information from the logs. By 
including time, data items, and the applications that are used, our solution can detect 
malicious individuals who are using multiple applications illicitly, which is an 
improvement over other methods. 

 As the data items and applications are not related by some predefined metric, we 
can permute the three dimensional planes and the rows in each plane without losing 
information. Maximizing the NE by row and/or planar permutations serves to create 
strong bond energies by driving the null valued array elements together. The pattern 
of misuse revealed by the clustering of non related data enables this identification, 
and the intrusion detection method would not function as without the clustering of the 
zero valued elements. 

4.1 Sensitivity to Initial Conditions 

The NE level of a given matrix is very sensitive to the degree of clumpiness of null 
valued elements. For example, consider the following two dimensional matrixes that 
consist of the same elements with different permutations. By permuting the rows, we 
are able to achieve a higher degree of null valued elements that are adjacent. While 
demonstrating this in three dimensions is more difficult visually, the concept is the 
same. 
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4.2 Permutation Algorithm 

The Null Temporal Affinity Energy algorithm maximizes the summed bond energy 
over all row and planar permutations of an input array U to reveal clusters of data 
items that should not be used together during certain time frames. That is, we wish to 
find: 

max { NE(U)Tx } (3) 

where NE(U)Tx was defined in Equation 2 and the maximization is taken over the 
possible matrices that are obtained by permuting the rows and planes of the original 
use value matrix. By convention, the three dimensional use matrix was defined to be 
an  
M x N x P array where M is the number of data items, N is the temporal time frame, 
and P is the number of applications under examination. 

 The algorithm will always reduce the input use array into a three dimensional 
matrix with the non-interacting zero valued elements clumped together independently 
of the initial ordering of the rows, columns, and planes. This decomposition reveals 
data items that should not be accessed together during certain time frames, as the 
following two dimensional figures show. 

 
Fig. 2. Original use array with clusters 
identified NE = 13. 

Fig. 3. Maximized use array with clusters 
identified. NE = 21. 

By clustering the data items that should not be used together in certain time frames, 
one can better predict what malicious users will access if they are indeed actually 
acting maliciously. In figure 3, for example, if it is detected that access occurred to 
data items Ig and Ic during time frame T5, if other accesses occurred to data items Ig, 
Ic, or Id during time frame T6, this is a strong indication of misuse. When the third 
dimension is added, one can also predict how a malicious attacker will act if they are 
using multiple applications. This indication is not evident in the non-maximized array 
presented in figure 4, and even less so in the DBMS logs. By performing the 
permutation based clustering in three dimensions, potential patterns of misuse are 
revealed very prominently, and this data can be used to detect intrusions.  

5 Insider Threat Intrusion Detection 

The mechanism for the detection of potential malicious use of the database by an 
insider threat relies on using historical information to build a profile of an 
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application’s normal execution involving both the data items that the application uses 
and the times in which they are accessed. This is performed for each application, 
resulting in a three dimensional relation. Our proposal can be run as an autonomous 
subsystem separated from the DBMS on a dedicated machine or the mechanism can 
be implemented internally to the DDMS using triggers. However, in the case of the 
latter, the performance of the database may be degraded as the execution of database 
triggers is normally a high resource consuming task. 

 Once the maximized 3D use matrix is calculated, questionable actions are 
compared to this known historical data to find how ‘close’ these questionable queries 
are to the known good behavior. To capture the idea of ‘closeness’, we introduce the 
notation of a distance measure. The goal of this distance measure is to capture how far 
from normal behavior questionable requests appear. Queries that are too far from 
what is considered ‘close’ require more security procedures to occur. Actions that are 
within some threshold of normalcy are allowed with no further examination.  

5.1 Distance Measure Function 

As our mechanism involves what data items are accessed, when they are accessed, 
and what applications are being used, suspicious queries could be using the correct 
data item at the wrong time, the wrong data item at the correct time, or both the wrong 
data item at the wrong time, as well as several incorrect application level usages. If 
the correct application is using the correct data items at the correct times, no further 
examination needs to occur. However, when a suspicious action is detected involving 
any of the variables under measure, (denoted by Sa in the following sections), this 
suspicious action needs to be compared to the known historical behavior that has been 
processed and permuted so as to have a maximum null energy, which was described 
in section 4. This maximized matrix is denoted as Amax below. The distance measure 
function takes these ideas into account and is given as follows: 

For each data access that does not conform to what was expected, the distance of 
this access is calculated as follows: 

Dist(Amax[i,j,k], Sa[i,j],k) = k1*ty + k2*ny +k3*ay (4) 

This function is called for each Amax[i,j,k] that does not equal Sa[i,j,k] and where 
Amax[i,j,k] is a zero valued element. k1, k2, k3 are weights between 0 and 1 assigned by 
the security officer, ty is the time until an allowable access occurred in the past/future, 
ny is the number of access in a three dimensional congruent cluster during the time 
frame under suspicion, and ay is the number of applications used illicitly in that 
cluster.  

The Dist value is calculated for each nonconforming access, and these values are 
summed to give a result. It is important to note that each access may lie at different 
coordinates in the x, y, z plane, so Sa is also potentially a three dimensional matrix. 
The summed distance values must be over some specified threshold value in order for 
the access to be called illicit. This threshold value must be set by the security officer. 
The total distance is calculated as follows: 
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Total_Dist = ∑
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acessessuspiciousofendk

accesssuspicousfirstk
kADist

___

__
max ),(  (5) 

The k1, k2, and k2 values exist in equation 4 so that the distance value can be 
weighted towards the time, data items, or the number of potential applications used 
illicitly in the cluster. Depending on the usage of the application, one of these metrics 
may be more important and should be weighted higher so as to give a greater 
contribution to the distance that the access is from normal.  

The value ty is calculated by finding the closest valid time that the data item had 
been accessed in the past or future while still using the current application. By 
definition, ty = d where Amax[i± d,j,k] is the closet access to Sa[i,j,k] where 
Amax[i± d,j] is 1. 

The value of ny is calculated by counting the number of potentially illicit accesses 
that lie in a particular three dimensional cluster of items that should not be related. 
These clusters were found by using the process described in Section 4. This gives 
weight to the number of illicit data items accessed. ay is calculated by summing the 
number of applications used maliciously that lied in that cluster. If the values of ty, ny, 
or ay are high, this increases the distance measure and is a strong indication of misuse. 

An insider threat is detected if, after performing the above procedure, the following 
holds: 

Total_Dist ≥ Dthresh (6) 

where Dthresh is the threshold distance that is set to the maximum distance a suspicious 
query can be before it is known to be malicious. The Total_Dist will grow as more 
suspicious actions occur. The Dthresh metric is system dependent, and it needs to be 
assigned by the security officer using knowledge about the particular environment the 
database is used in. If the calculated distance of the access usage array is above the 
threshold, other security procedures should occur [2]. These might include notifying 
the DBA about the illicit behavior by triggering an alarm with the relevant 
information such as the time, username, database objects accessed attached to the 
message, immediately disconnecting and rolling back the changes that the user made, 
or execution of some damage confinement and repair mechanisms that are built into 
the DBMS. These security precautions are dependent on the application and will be 
different for each use [11]. 

6 Conclusions 

This paper has proposed a new mechanism to detect malicious data access. As 
database systems play a vital role in organizational information architectures, 
procedures must be in place to ensure that these resources are not being used 
maliciously [8], [9]. We have presented the concepts and underlying architecture and 
shown how they can be applied.  

Our proposal relies on using historical data stored by the database logs on what 
data items were used at a particular time by various applications. This information is 
then processed to reveal clumps of data items that should not be used together during 
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certain time frames, resulting in a three dimensional usage matrix. This matrix allows 
a better prediction of potential misuse by allowing quicker and more precise 
prediction of items that should not be used together across the time, data item, and 
application dimensions. Suspicious queries are then compared to the maximized usage 
array and a distance value is calculated for each non conforming action. These 
distances are summed to reveal how far from what was expected this access is. If the 
access is above a certain threshold, further security procedures are performed. 

This work has revealed several areas of improvements and further work. We are 
working on adding a spatial dimension to our model as the physical location of a user 
is often an important security metric. The resulting four dimensional matrix requires a 
reworking of our clustering algorithm and modifications to the distance calculations. 
As mentioned previously, we plan to develop an automatic method to allow the 
temporal time frame to be dynamically set so as to show several characterizations of 
the system. As the usage array is already clustered, we will be able to focus in on 
certain areas that we know are hotspots for potential attacks, and tailor the system to 
these dimensions. The clustering is what allows us to have this view of the system.  
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