
Making Use Case Slices Manage Variability in
Aspect-based Product Line

Satish Mahadevan Srinivasan and Mansour Zand

University of Nebraska at Omaha, 68132 Omaha, Nebraska, U.S.A.

Abstract. Use case slice, clearly lacks composition mechanism due to which it
is difficult to manage variabilities in Software Product Lines. A use case slice
can only convey the design of a single member of a product line. Aspect-based
modeling of use case slices look to be a promising solution but there are few is-
sues within their composition mechanism. Aspect-based modeling of use case
slices clearly lack a strong and familiar algebraic model and also fails to ad-
dress precedence management issues among artifacts such as pointcuts and ad-
vices. This paper suggests a composition mechanism, for aspect-based imple-
mentation of use case slices, which would provide a familiar algebraic model
and will resolve issues related to precedence management. In this paper we
have discussed about a hypothetical aspect-based Expressions Product Line
(EPL) and have shown how the use case slices can be used to model the varia-
bilities in EPL.

1 Introduction

Product line engineering is defined as “a set of software-intensive systems that shares
a functionally overlapping, managed set of features that satisfy the specific needs of a
particular market segment or mission, and that are developed from a common set of
core assets in a prescribed way” [2]. The key benefits of switching to product line
engineering are two folds, firstly, it tries to improve the development efficiency for
the family of related systems by facilitating large scale reuse and secondly, it allows
sharing the maintenance effort for developing other members of the product line [1].
Product line requirements are of two types namely commonality and variability. The
variability deals with the separation of the generic from specific aspect or concern in
a product line infrastructure. If the variability issues are not addressed properly the
system may fail to deliver what it promises. Thus there is a need for a modeling lan-
guage with a composition mechanism that can efficiently capture the variabilities in a
product line system and ensures that the system functions as it is intended to.

Section 2 below gives a brief introduction to the aspect-based approaches in soft-
ware engineering and discusses about the modularizing units of the use case, use case
slices. Section 3 gives a brief introduction to the aspect-based EPL product line. This
paper tries to demonstrate how the aspect-based use case slices can help in managing
variabilities or concerns across different products in the EPL product line. The dem-
onstration part constitutes section 4. Section 5 finally concludes the paper.

Mahadevan Srinivasan S. and Zand M. (2009).
Making Use Case Slices Manage Variability in Aspect-based Product Line.
In Proceedings of the 7th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
141-148
DOI: 10.5220/0002200301410148
Copyright c© SciTePress

2 Aspect-based Implementation of Use Cases

Aspect-based approaches provide a more advanced means for modeling features
through the concept of separation of concerns. The separation of concern is estab-
lished by modularizing the crosscutting concerns (variabilities) as a separate software
artifact called aspects. This mechanism clearly separates the distinction between
communality and variability (concern) thus supporting evolution, reusability, improv-
ing traceability and enabling consistency checking [1]. The separation of concerns
can be realized using the Aspect-Oriented Programming (AOP) where each concerns
can be modeled as aspects [5].

The use case is a common modeling practice. Use case is a technique to capture the
system functionality and requirements using the UML [4]. According to Jacobson and
Ng [3] the implementation of use cases using the traditional object oriented languages
and technique typically breaks the modularity of use case. When the use cases are
implemented using an Object-Oriented languages they may lose their modularity as
the resultant code could be scattered and tangled across different modules [4]. Thus in
[3] Jacobson and Ng have proposed a aspect-based modeling of use case or use case
slice, which are modularized units of the use case.

A use case slice can be modeled as a special kind of package stereotyped as <<use
case slice>> consisting of a collaboration (UML diagram describing the realization of
a use case (interaction, class etc.)), specific classes; which are specific to a use case
realization or commonality or base code, and specific extensions or aspect; extensions
to existing classes specific to a use case realization or concerns or variabilities [4]. In
this paper we will be assuming that a use case slice will have a name, a collaboration
symbol (a dashed ellipse), the base class (specific classes) and concern (specific ex-
tension). The concern in the use case slice has two specific compartments, one for
listing the pointcuts and the other to list the advices. In the next section we will picto-
rially show how a use case slice implementation of a particular product line feature in
our EPL looks like.

According to Lopez and Batory in [4] use case slices do not provide modeling
support for the variability or concerns entailed by a product line. Thus a use case
diagram conveys the design of a single member of a product line. The drawbacks
observed by them are:

1. The use case slices lack a clear composition model to map use case models to
concrete working implementations.

2. The translation of the use case slices to the source code in AspectJ highlights the
missing of an important compositional issue, precedence management.

3. The concern’s (specific extensions) being specific to a use case slice inhibits its
reuse. This can be mitigated by keeping the concerns not so specific to a use case
slice.

4. A single use case is not limited to have a single concern (pointcut and advice) and
so a single use case slice can have multiple concerns [3]. For example, if multiple
advices are superimposed at the same joinpoint then there is no way to assign an
ordering on the composition of these advices at a given joinpoint. In short the
composition mechanism for the aspect-based implementation of use case slices
has to address issues related to precedence management.

142

In the next section we will be discuss about a aspect-based product line EPL and
also show how the use case slices can be used to model the features of the EPL.

3 EPL Aspect-based Product Line

This paper uses a simple aspect-based product line based on the Extensibility problem
called as Extensibility Problem Line (EPL) discussed in [4]. The EPL consists of a
family of programs with a mix of new operations and datatypes to represent expres-
sions of the language defined below:

EXP :: = Lit | Add | Neg
Lit :: = <non-negative integers>
Add :: = EXP “+” EXP
Sub :: = EXP “-” EXP

On this grammar two types of operation can be defined:

1. Print: This operation displays the string value of the expression. The expression
3+2 is represented as a three-node tree with a Add node as the root node and two
Lit nodes as leaves. The operation Print applied to this node displays the string
“3+2”.

2. Eval: This operation evaluates an expression and returns a numeric value rounded
up to two decimal places. Applying the operation Eval to the tree of the expres-
sion 3+2 yields 5 as the result.

The EPL has been chosen in this context because this problem has been studied
widely within the context of programming language design where the focus is in
archiving data type and operation extensibility in a type-safe manner. The EPL is a
two-dimensional matrix where the rows represent the data types and the columns
specify the operations. Each of the matrix entry is a feature or a program of this as-
pect-based product line. Each of these features or the programs implements the opera-
tion, described by the column, on the data type, specified by the row. Figure 1 below
gives a matrix representation of the EPL. The operation Eval and Print on data types
Lit and Add is composed with features lp, le, ap, ae, sp and se.

A class named operation creates instances of the datatype classes and invokes
their operation. In the class operation there are two functions namely operate1() and
operate2(). The operate1() takes two argument of type Exp and operates on them i.e.
“Exp2 + Exp1” or “Exp2 – Exp1”. The operate2() takes a single argument of type
Exp and operates on them i.e. “Add: Exp Exp + Exp” or “ Sub: Exp Exp - Exp”
[4]. Figure 2 below shows how particular features ap of the EPL can be represented
using a use case slice.

In Figure 2 above it can be observed that the concern is an integral part of the use
case slice ap. It is because of this integration (concerns being integral part of the use
case slice) the reuse of the concerns gets inhibited. To mitigate this inhibition we
have proposed to keep concerns away from the use case slice (base code) thus ena-
bling the concerns to be reusable software artifacts. In addition to that we propose

143

Fig. 1. Matrix representation of EPL.

Fig. 2. Use Case Slice for feature ap.

to breakdown the concern’s in to pointcuts and advices and make each individual
piece as a reusable software artifacts. Finally we have proposed a composition me-
chanism that will take care of how these software artifacts will bind (binding of ad-
vices with pointcuts) together during run time.

The advices can selectively bind with the pointcuts using a hash table lookup and
the stereotype <<binds>> as shown in Figure 3 below. Each row entry in the hash
table lookup holds a pair suggesting which advice will bind with which pointcut for a
particular combination of the base class and pointcut. For example a pair (P1,ad1())
suggests that the advice ad1() will bind with pointcut P1. The blue boxes in Figure 3
below represent the hash table lookup entries. The hashing key for selecting a particu-
lar row in the hash table lookup is determined by the combination of the base class
(base code) name and the name of the pointcut. The hash table lookup thus has two
columns, the first column holds the hashing key value (base class name, name of the
pointcut) and the second column holds a set of selective binding suggestions (pointcut
name, advice name). Therefore our composition mechanism supports a predetermined
selective binding between the advices and the pointcuts. These selective binding
criteria’s are hard coded and they determine which particular advice will bind with
which particular pointcut. The design of the hash table lookup and the issues behind
its design are beyond the scope of this paper.

Though separating the pointcuts and advices from the use case slice enhance their
reuse but at the design stage (defining relations between the artifacts) these separated

144

Fig. 3. Binding diagram between pointcuts and advices using the hash table lookup and the
<<binds>> stereotype.

software artifacts may sometimes lead to potential conflicts arising due to their inte-
raction. A situation, in which many different advices may be required to be superim-
posed at a particular joinpoint, will result in to a potential inconsistency problem [6].
According to Zhang et. al. incorrect interference of the advices at a particular join-
point may lead to the change of the state of the base program. This problem can be
mitigated by declaring precedence relationship which tries to order the composing of
the advices at a particular joinpoint. Thus it will be the responsibility of our composi-
tion mechanism to assign precedence relation on selective binding of advices with
pointcuts. Thus it is important to ensure that our composition mechanism implement
solutions to address precedence management issues and also support an algebraic-
based composition model. The algebraic-based composition is suggested in the belief
that reusability of pointcuts can be archived and at the same time precedence logic
can also be formulated.

4 Proposed Composition Mechanism

To develop a composition mechanism for composing the advices and pointcuts we
have to look in to the following issues:

1. To provide an algebraic model for composing the pointcuts.
2. To introduce a precedence declaration on and between advices.

To enhance the reusability of the pointcuts and advices the composition mechan-
ism has to implement two distinct categories of composition mechanism namely the
pointcut composition and advice composition. This composition mechanism is similar
to the Motorola weaver Weavr discussed in [6].

4.1 Pointcut Composition

The algebraic model for our composition mechanism is inspired by the algebraic
model discussed in [6]. To support the composition of the pointcuts the composition

145

mechanism should support boolean operators like && (AND), || (OR) and the!
(NOT). The AND operator indicates the intersection of the set of joinpoints. The OR
operator indicates the union of the set of joinpoints and the NOT operator indicates
the difference of the set of joinpoints. These boolean operators help in composing a
new pointcut using the existing pointcuts. For example, if there is an expression in
our EPL such as

Add(Add(Exp1), Add(Exp2))where s(Exp exp1,Exp exp2)
{operate2(exp2), operate2(exp1), operate1(exp1,exp2)}.

Let us suppose we need a pointcut P3 for this expression that combines both
pointcuts P1 and P2 in such a way that if one pointcut exists then the other should
not. This can be represented in our composition mechanism as (((P2 !(P1)) &&
(P2 !(P1))), thus avoiding the creation of the pointcut P3 and enhancing the reuse
of the pointcut P1 and P2. Here P1, P2 and P3 are the names of the pointcut.

Combining the basic operators AND, OR and NOT much complex boolean opera-
tors namely, XOR and NAND can be implemented in our composition mechanism.
We are currently investigating on the implementation complexity and benefits offered
by the Boolean operators XOR and NAND. Considering the limited scope in terms of
space in this paper we have avoided further discussions about XOR and NAND Boo-
lean operators.

Fig. 4. Composing advices using the precedence logic table and with the stereotype <<fol-
lows>>.

4.2 Advice Composition

The advice composition tries to bind and execute the advice instance at a given join-
point in a particular order. It was pointed out earlier in this paper that sometimes
different advices may have to bind at a particular joinpoint. In such circumstances it
is important to ensure that the order in which the advices bind at a particular joinpoint
is controlled by defining some precedence ordering. In this paper we suggest using

146

the stereotype <<follows>> to impose a precedence order between different advices.
Figure 4 above pictorially represents the composition of two advices, advice 1 and
advice 2, using the precedence logic, given in the precedence logic table and the
<<follows>> stereotype. The precedence logic table is also a hashing table and is
similar to the hash table lookup discussed in the earlier section. The precedence logic
table suggests the precedence relation (order of execution) between any two or more
advices that will bind at a particular joinpoint. The hashing key for the precedence
table is a set that lists the name of the all the advices that will bind at a particular
joinpoint. The design of the precedence logic table and the issues behind its design
is beyond the scope of this paper. A small example is consider here to demonstrate
how our proposed composition mechanism will tackle issues related with precedence
management at a particular joinpoint if Advice 1 has precedence over the Advice 2,
and if Advice 1 and Advice 2 has a “before” and “after” actions, then the “before” of
Advice 1 will be executed before the execution of the “before” of Advice 2 and the
“after” of Advice 2 will be executed before the “after” of Advice 1. If the pointcuts
P1 and P2 match a single joinpoint in the base code, then the advice instantiation
order at this joinpoint would be Pointcut1-Advice1, Pointcut2-Advice1, Pointcut1-
Advice1, and Pointcut2-Advice2. If both the Advice1 and Advice2 have a “before”
and “after” action then the execution order enforced by our composition mechanism
would be:

 Before action in the Pointcut1-Advice1.
 Before action in the Pointcut2-Advice1.
 Before action in the Pointcut1-Advice2.
 Before action in the Pointcut2-Advice2.
 Original actions to be performed at the joinpoint.
 After action in the Pointcut2-Advice2.
 After action in the Pointcut1-Advice2.
 After action in the Pointcut2-Advice1.
 After action in the Pointcut1-Advice1.

The advantages realized using this advice composition is:

1. The advices being an independent entity can selectively bind with any point-
cuts using the <<binds>> stereotype based on the hard coded selective binding
criteria thus loosely coupling the software artifacts and enabling them to be
reusable.

2. If two or more advices are to be associated at a single joinpoint then a prece-
dence management can be established between these advices using the <<fol-
lows>> stereotype and the precedence logic hard coded in the precedence log-
ic table.

The crux behind this approach is to first develop a use case, based on the require-
ment obtained from the stakeholders of the system and convert those use cases in to
use case slices. After the use case slices are developed the concern (pointcuts and
advices) from the use case slice is removed and is maintained as separate features or
software artifacts. Using the composition mechanism, discussed above the use case
slices can be exploited to model variabilities entitled by the family of related products
in the aspect-based product line systems.

147

5 Conclusions and Contribution

In this paper we have shown how the use case slices can be used for modeling and
synthesizing the products of the aspect-based product line system EPL. The main
contributions of this paper are A) Proposing that keeping software artifacts, pointcuts
and advice, separate from the use case slice would enhance reuse of the software
artifacts and as well enable use case slices to support the variability encountered in
the aspect-based product line systems. B) Proposing a composition mechanism sup-
port for use case slices in the form of pointcuts composition and advice composition.
This composition mechanism provides an algebraic model to compose various soft-
ware artifacts and at the same time helps resolve issues related to precedence man-
agement.

References

1. Bayer, J.: Separating Concerns in Product Line Engineering. Fraunhofer Institute for Expe-
rimental Software Engineering (IESE). (2001)

2. Clements, P.C., Northrop, L.: Software Product Line: Practices and Patterns. Addison-
Wesley, (2001)

3. Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases. Addison-
Wesley, 2nd edition, (2004)

4. Lopez-Herrejon, R.E., Batory, D.: Modeling Features in Aspect-Based Product Lines with
Use Case Slices: An Exploratory Case Study, ftp://ftp.cs.utexas.edu/pub/predator/
LopezHerrejon-Batory.pdf

5. Siy, H., Aryal, P., Winter, V., and Zand, M.: Aspectual Support for Specifying Require-
ments in Software Product Lines. In: Proceedings of the International Conference of Soft-
ware Engineering (ICSE 2007). Early Aspects Workshop. (2007)

6. Zhang, J., Cottenier, T., Berg, A.V.D., Gray, J.: Aspect Composition in the Motorola As-
pect-oriented Modeling Weaver. Journal of Object Technology, vol. 6, no. 7, Special issue:
Aspect-oriented Modeling (2007)

148

