Generating OWL-S Families by Utilizing Business
Process Definitions and Feature Models

Umut Orhan and Ali H. Dogru

Middle East Technical University, Computer Eng. Dept., Ankara, 06531, Turkey

Abstract. This research introduces automated transition from domain models
and process specifications to semantic web service descriptions in the form of
service ontologies. Also, automated verification and correction of domain mod-
els are enabled. The proposed approach is based on Feature-Oriented Domain
Analysis (FODA), Semantic Web technologies, and ebXML Business Process
Specification Schema (ebBP). This approach is proposed to address the needs
for achieving productivity gains, maintainability and better alignment of business
requirements with technical capabilities in the engineering of service oriented
applications and systems.

1 Introduction

Business Process Management (BPM) and Service-Oriented Architecture (SOA) com-
bination is being promoted as a possible solution for achieving proper level of service
abstractions and reaching the desired agility and responsiveness to changing business
parameters. Unfortunately, in order to enable the anticipated BPM-SOA convergence,
knowledge of the domain should be first transferred from domain experts to develop-
ers. This necessitates common means for shared vocabulary and understanding of the
business requirements which can conveniently be achieved by utilizing ontologies. In
this respect, we exploit the concept of service ontology as a bridge between business
process models and service interface implementations.

Itis desirable to generate service ontologies automatically, especially when we con-
sider the complex and time-consuming nature of the ontology creation task. Thus, we
chose to automate service ontology creation to some extent. In addition, we enable the
Feature-Oriented Domain Analysis (FODA) [1] to manage differences and similarities
across multiple service definitions: we produce not only a single service ontology but a
set of related service ontologies.

An overall representation of this method is shown in Figure 1. We provide the do-
main experts with the necessary environmentin order to define business process models
and feature models. These defined domain engineering outcomes are then mapped to
corresponding OWL-S instances. A resulting OWL-S instance may then be related to
web service implementation in two ways; (1) provide requirements and eliciting con-
straints for the corresponding web service interface, (2) enable automatic discovery of
semantically matching web services already implemented.

Major contributions of this research can be listed as follows;

Orhan U. and H. Dogru A. (2009).

Generating OWL-S Families by Utilizing Business Process Definitions and Feature Models.

In Proceedings of the Joint Workshop on Advanced Technologies and Techniques for Enterprise Information Systems, pages 42-51
DOI: 10.5220/0002201300420051

Copyright © SciTePress

43

~——Product Line for Service Ontologies

~Domain Knowledge——, &
Domain Expert
Business Process
Models

Model
Transformation
Feature e
Model :
‘ E \' Feature Customization

RN

Ontology Ontology Ontology Ontology Ontology
A B C D n

e

1l
—

Fig. 1. Product line approach for generating a family of servicelmties.

— An OWL! ontology is developed to represent feature models. We @geldped a
set of SWRE rules as axioms corresponding to relations among featuegifica-
tion and correction of feature model customizations aréopered by enabling the
JESS [2] which is a rule-based automated reasoner.

— We developed an ontology-aware feature model editor inrdéacilitate visual
development of feature models. The tool imports and exgestire models for-
mally defined by our feature model ontology.

— We defined model transformation rules from eBBistances and feature models
to accompanying service models. Generated service mogetoaceptualized as
OWL-S* instances.

The introduced method is realized through the scope of awinggpen source
project called GENoD®.. The tool takes a feature model and an ebBP instance as input
and refines them in order to generate OWL-S instances.

1 OWL Web Ontology Language, http://www.w3.org/TR/owl{ref

2SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
http://www.w3.0rg/Submission/2004/SUBM-SWRL-20040562

3ebXML Business Process Specification Schema, http://dasis-open.org/ebxml-
bp/2.0.4/0S/

4 Semantic Markup for Web Services, http://www.w3.0rg/Sigsion/2004/SUBM-OWL-S-

20041122/

5 Automated Service Ontology Generator Tool based on Ddsmip Logics,

http://sourceforge.net/projects/genodl/

44

In order to define ebBP instances, the ebBP Editor [3] toohisgrated. It was
previously developed within the scope of a research prdigaded by the European
Commission. The domain expert can model business procas&issiness Process
Modeling Notation (BPMN) [4] and the tool then exports thesedels to accompany-
ing ebBP definitions.

The remainder of this paper is organized as follows. Se@isammarizes the re-
lated work on service ontology generation methods. In 88@&j we present our seman-
tically enriched feature modeling approach enabled in geimg OWL-S instances.
The transformation method from ebBP to OWL-S is given in Bact. An example
walkthrough with the implemented tool is described in Secth. Finally, Section 6
concludes the paper and presents the future work.

2 Related Work

Various work has been conducted [5, 6, 7, 8, 9] that part@lyer our ambitions. Usu-
ally, automation has been missing and also our mass custtoriof a set of related
ontologies was not addressed.

In this work, we separate the identification, specificatiod eealization concerns
of a web service. Business processes for identificatiorjcgepntologies for specifi-
cation, and service implementations for realization. Bejgaration of concerns, which
well fits in Service-Oriented Modeling and Architecture (88) [10], allows us to au-
tomate the mapping from identification step to specificasi@p through semantic web
technologies. This also provides means for capturing conatitges and variabilities in
service models by exploiting feature models.

3 Semantically Enriched Feature Models

Basically, a feature model provides a hierarchical orgation among features within a
concept. In addition tparent-childrelation, a simple feature model can definanda-
tory, optional alternative excludesrequiresandOR relations among features. In our
study, OWL is decided to be used for feature model formaligoahse it is a well
known standard in the area and is supported by various témgiee, tools and de-
velopment environments like Protege-OfVISWRL and JESS. In this respect, OWL
reasoning engines such as JESS can be deployed to checkdaosistencies within a
feature model and correct them automatically.

Firstly, we define d&eatureclass having two object propertidsasParentFeature
and hasChildFeaturerespectively, which are transitive properties that aresisg of
each other. These properties are required to express |$a#lores in structured view
or OR relations in common feature model understanding. Tmeept of the feature
model can be considered as an ordinary feature which hasreatgeature.

In order to fully represent the mandatory and alternatiVatiens, we derive two
specific child classes from theeatureclass. Each class is a subclass ofdld: Thing

5 Protege-OWL, http://protege.stanford.edu/overvientgge-owl.html

45

class. We assert thatternative FeatureandMandatory Featureas mutually disjoint.
An overview of the classes defined within the Feature Moddb@gy is given below.

Feature CT T 1)
AlternativeFeature C Feature (2
MandatoryFeature C Feature 3)

AlternativeFeature M MandatoryFeature = L 4)

A number of axioms for checking the consistency of the featnodel customiza-
tions are formally defined within the scope of this work. Imgeal, these axioms are
exploited not only for verifying the feature model but alsarrecting any inconsis-
tency found. These axioms are described as SWRL rules. Tteepamally stored
as OWL individuals which can refer to the resources withm éssociated knowledge
base. Class definitions of these OWL individuals are intoeduin SWRL ontology.
Defined axioms and their SWRL implementations are givenvselo

1. Afeature cannot be selected unless its parent featuted®amsselected already. For
all xandy;

Feature(?x) NisSelected(?x, false) A hasChildFeature(?x, Ty)A
isSelected(?y, true) — isSelected(?y, false)

2. Amandatory feature must be selected whenever its pagature has been selected.
For all x and y;

Mandatory_Feature(?z) A hasParentFeature(?z,?7y) A isSelected(?y, true)
NisSelected(?x, false) — isSelected(?z, true)

3. Only one feature must be selected among its alternathagsall x and y;

Alternative_Feature(?z) A isSelected(?x, true) A alternativeO f(?z, Ty)
NisSelected(?y, true) — isSelected(?y, false)

4. Afeature is selected whenever the other feature whiahimegit has been selected.
For all x and y;

Feature(?x) A requires(?z, 7y) A isSelected(?x, true) — isSelected(?y, true)

5. A feature is deselected whenever the other feature whicludes it has been se-
lected. For all x and y;

Feature(?z) A excludes(?x, Ty) A isSelected(?x, true) — isSelected(?y, false)

The customized feature model has no variability points bdefinite set of se-
lected features. In order to verify a customized feature ehogpresented with OWL
instances, we employ our feature model axioms, ProtegeiSpiR)in, and the JESS
rule engine. Protégé-SWRL plugin has no reasoning cépalbhiowever, it supports

46

API level integration with existing rule engines such as SEEhe plugin can translate
SWRL rules to the JESS rule language. The necessary tramstion methods from
OWL and SWRL concepts to JESS constructs and vice versa\aa i [11]. Once
the OWL and SWRL concepts are transformed to JESS contexgxbcution engine
can perform reasoning. The overall view of the integratietween SWRL, Protégé-
OWL and JESS rule engine is given in Figure 2. The implemantatf the GENoDL
and Protégé-SWRL integration is also given in [12].

P
—Protégé
@
=
o
Protégé-OWL 5
- [
Knowledge =
Protégé-SWRL x
Plugin Data @
Knowledge Base (SWRL - Rule f—— — b W
(OWL + SWRL Rules) Engine Bridge)

Fig. 2. Reasoning engine integration through the Protegée-SWiRter.

3.1 Mapping Customized Features to OWL-S

OWL-S is an emerging de-facto semantic web standard thaiostgpautomation of
various web service related activities such as servicedey, composition, execution
and monitoring. OWL-S provides process models of atomic elas composite web
services.

During the service ontology generation, the selected (othier words customized)
nodes of the feature model are automatically transformedancompanying OWL-S
constructs which is in this case therviceParameteglement of OWL-S Profile. OWL-
S provides an unbounded list of service parameters thataataia any type of infor-
mation. Thus, theserviceParameteconstruct is very suitable for representing feature
customizations. AerviceParameteconsists of two attributeserviceParameterName
the name of the actual parameter, which could be just a litergperhaps the URI
of the process parameter, asBarametemwhich points to the value of the parameter
within some OWL ontology. A customized feature placed asanede in the feature
model can be mapped tosarviceParameteinstance with theConditiontype for the
sParameter

Moreover, new features can be included under the relatéabititty category by the
domain experts in order to extend the scope of the defaulserlice variability model.
After a new feature is added to the model, it can be transfdrimte the service ontol-
ogy definition as it is explained for the default featuresiaailities captured within a
feature model can be reflected to a business collaborat®¥k-S counterpart which
is Service

47

3.2 A Sample Feature Model for Web Services

We analyze the variability in web service definitions fronnea broad perspectives
namelyService GroundingService ProfileandService Modeivhich have been once
introduced by the OWL-S service ontology. We adopt the Jeingl’s notion [13] of
families of web services and bring the feature-oriented @iaranalysis (FODA) to it
instead of the pattern-based variability management agpro

In general, Service Grounding describes how to access thies¢hrough concrete
specifications such as binding protocol, address, messagefs etc. Main variability
points of service grounding are identified in [14]Biading ProtocolandBinding Time

Service Model describes the semantics of how a serviceaititemwith its clients,
and the data and control flows of corresponding processfgitin. OWL-S process
models; Simple, Atomic, and Composite are subclasses &¢hdce Model. The ways
a client may interact with a service through exchanging egss provides a basis for
Service Model variability.

Service Profile describes what is done by the service ancpiesiecessary in-
formation such as service name, its text description, amtiacd information. Service
profiles are generally enabled in automated operationgijkamic service discovery.
It can be considered as a yellow page entry for the servicetifurality. Information
about inputs, outputs, preconditions and effects of theicegare given the profile part.
One important aspect of the service profile is its servicapater option which give
the characteristic features of the service such as QoS assifitation of service func-
tionality in taxonomies provided by service registries. D\W's service profile can be
directly mapped to UDDI registry data model [15].

In order to produce appropriate exceptions, the ebBP spatiifns mandate a busi-
ness service interface to conform to a number of servicenpatexrs such aduthoriza-
tionRequired NonRepudiationRequireénd NonRepudiationOfReceiptRequirddr-
ing the execution of the corresponding business activityeéd, each of these parame-
ters create a source of variability in service profiles.

We expose the previously identified variability points ta eamantically enriched
feature model as shown in Figure 3.

4 Mapping ebBP to OWL-S

In this study, ebXML Business Specification Schema (ebBRxHoited in capturing
process definitions and business choreographies from adtigtnaction level where
contributions of domain experts can be effectively incogbed in devising the domain
model. The main advantage of using ebBP is its powerfuldiuithechanisms for sepa-
rating the definition of the process model from its real@atnd making it independent
from its enablers namely business actors.

ebBP is capable of specifying process model parametersfdiguring service in-
terfaces to execute and monitor business collaboratiomseMer, ebBP does not spec-
ify how to associate a defined service interface to its realdumplementation.

In this research, conceptual mapping schemes between tieeigebBP instances
and OWL-S ontologies are developed. As an outcome of thigpingppreviously de-
fined business processes are refined and brought one steptoltise realization phase

48

Binding Time

Profile

|Message Exchange| |Binding Protocal

[Design-Time] [Run—Time

NonRepudiationRequired| |S\anchr0n0us| |Asynchr0n0us|

NonRepudiationOfReceiptRequired|
AuthorizationRequired

Fig. 3. A reference variability model for semantic modeling of welpvice families.

[s04P/HTTPS| [s0AF/MS| [SOAPJHTTF]

automatically. Moreover, mapping ebBP definitions to OWm&y foster service reuse.
Once the OWL-S model of a business service interface is ibestthen the service
implementation may be discovered from the existing assstead of developing the
service every time from scratch.

The basis for our mapping method is formed through comparmgmon compo-
nents sharing similar semantics in both standards. Alsoadwpt ebBP’s bottom up
design approach for describing business collaboratiorpaoplose our transformation
strategy as follows;

1. Transform Business Transactions

2. Transform Business Document Flow for Business Transasti

3. Transform Binary (Business) Collaboration re-usingriepped Business Trans-
actions

4. Transform the choreography for the Binary (Business)abokations

5. Transform higher level Business Collaborations re-gisiire lower level Business
Collaborations translated previously

An overview of the mapping specification is depicted in Fegdr The conceptual
mappings from ebBP elements to their OWL-S counterpartiésteel in [12]. However,
due to the size limitation we can only provide an essenceefrinsformation method
which is for the mapping from ebBPBusinessCollaboratioto OWL-S’s Compos-
iteProcess According to the ebBP specifications, a choreography isrderimg of
business activities within a business collaboration ireottd specify which business
state is expected to follow another state.

Basically, OWL-S’s composite process consists of othemat@r composite pro-
cesses. Control flow of a composite process is specified gsinigol constructs which
can be nested to an arbitrary depth. Like business collibasin the ebBP, composite
processes can be considered as state-oriented workflothe transformation method,
CompositeProcessass is preferred for representing underlying semanfibsisiness
choreography. Main control mechanisms of the whole chaagdy is theSequence

49

Business Collaboration ‘::> Service Process Model

Composite Process

Atomic Process

- Simple
Process

'
:
Business II ~
Transactions

\“u_» Business I _________ e
Documents [

Fig. 4. Overview of the mapping specification.

element. Linking construct&fomLinkandToLink) are mapped according to their type
and the class of the state they refer. For exantptamLinkis transformed into £on-
trolConstructthat can be further specified aBarform Split, Split-Joinor Choicebased
on the type of the referred statgysiness Transaction Activjtlfork, JoinandDecision
respectively. In ebBP, a choreography starts by linking husiness state so, we can
associate&Startwith a Sequencestance whosést:rest element refers to the state that
ToLink of the Startlinking as well. Overall mapping from choreography constrof
ebBP to their OWL-S counterparts are given in Tabl&ransition Fork, JoinandDe-
cision have at least onBromLink and oneToLink but maximum occurrence of these
linking constructs can vary depending on the choreograppg.Fork and Decision
include at least twdoLinkon the other handloin has at least tw&romLinks

Table 1. Choreography to Service Process Model.

ebBP Choreography OWL-S Counterpart (ControlConstruct)
/FromLink /ControlConstructList/list:first/ControlCstruct
/ToLink /ControlConstructList/list:rest/ControlComnsttList
/Start CompositeProcess/@composedOf/Sequence
/Start/@namelD /Sequence/@rdf:ID
[Transition/@namelD ControlConstruct/@rdf:|1D
[Fork/@namelD /Split/@rdf:ID
/Join/@namelD /Split-Join/@rdf:1D
/Decision/@namelD /Choice/@rdf:ID
/B.T.A /C.C.L./list:first/Perform/AtomicProcess
/Success No suitable match

[Failure No suitable match

50

5 An Example Walkthrough with the GENoDL

The first step in generating web service ontologies is toigeaur reasoning tool with
an ebBP instance as input. The tool then refines businesegsr@onstructs such as
BusinessCollaboratioim order to compile them in possible service ontology repnes
tations. To start the transformation process, firBusinessCollaboratiois selected
from the Business Process Managsection of the user interface. The tool then loads
the default service feature model to the feature model edftthe domain expert has
any extension or further customization requests, she catifynthe feature model by
inserting/deleting or (de)selecting features throughgighe feature model editor bun-
dled within the tool. Newly inserted features should be eisded with their formal and
machine readable definitions. After modifications, reasohecks the resulting feature
model’s consistency and automatically corrects any idvalistomization with domain
expert's empowerment. Finally, the verified feature mottmi@ with the selected busi-
ness collaboration specification is transformed into OWhe$ation according to the
given transformation rules.

It can be easily understood that a family of related servigelogies can be quickly
generated by applying the proposed generative method Xaon@e, by selecting dif-
ferent children of theBindingProtocolfeature can result in various service conceptu-
alizations that each of their implementations will be sabfe be used in a distinct
application scenario.

6 Conclusions and Future Work

The developed mechanism was experimented through an egash [12]. This ex-
ample included the mapping from an existing business peoeexlel, that represents
the domain-level knowledge. The outcome has been promigirgeneral it has been
observed that automated generation of web service ontdadgipossible and usable.
However, our observation also states that very high-att&tralevel elements of the
domain are not easy to map directly.

Our novel generative method for service ontology creatias ot reached its ma-
turity yet. We would also like to address coarser-graingdise ontologies and more
detailed process models. Also, the generative method wihiended with the map-
ping rules of other ebBP concepts such as guards, exceptimhsignals.

Current versions of the feature model editor and featureahodtology do not
support cardinality-based relations among features gsoged in [16]. This is another
possible improvement area. An evaluation of memory alleat&br varying input sizes
will be performed in order to assess the feasibility of thatdee model verification
operation from a different perspective.

Although our product line approach for service ontologyeyation is based on two
well known standards (ebBP and OWL-S), a more generic appredich is indepen-
dent from implementation technologies is considered aséuvork. Finally, evalua-
tion of the quality and domain coverage of the resulting iserentologies should be
explicitly justified through anticipated metrics and methpso that domain experts and
developers can assess them easily.

51

References

N

10.

11.

12.

13.

14.

15.

16.

. Kang K. C., et al.: Feature-oriented domain analysis gfd@asibility study. Carnegie-

Mellon University Software Engineering Institute (1990)

. Jess: the rule engine for the java platform http://wwsgfales.com/
. Ride deliverable 5.3.1 - contribution to standards: eébior v1.0.4 user manual http://-

www.srdc.metu.edu.tr/webpage/publications/2007/eBBRor UserManualvl1.0.4.pdf

. Business process modeling notation (bpmn), Object Memagt Group/Business Process

Management Initiative http://www.omg.org/docs/dtc/260.pdf

. Czarnecki K., Kim C. H. P, Kalleberg K. T.: Feature modais views on ontologies. IEEE

SPLC (2006)

. Lee S., etal.: An approach to analyzing commonality amihkdity of features using ontol-

ogy in a software product line engineering. IEEE SERA (2007)

. Wang H., et al.: A semantic web approach to feature mogledimd verification. SWESE

(2005)

. Guo L., et al.: Mapping a business process model to a seanaeb service model. ICWS

'04: Proceedings of the IEEE International Conference ob Bfervices (2004)

. Shen J., et al.: From bpel4ws to owl-s: integrating e+i®&s process descriptions. SCC '05:

Proceedings of the 2005 IEEE International Conference ovicks Computing (2005)
Arsanjani A.: Service-oriented modeling and architezt(SOMA). IBM developerWorks
(2004)

O’Connor M., et al.: Supporting rule system interopéitgton the semantic web with swrl.
Fourth International Semantic Web Conference (2005)

Orhan U.: Automated service ontology generation frormaio engineering outcomes
http://genodl.wiki.sourceforge.net/space/showimgeeddl. pdf

Jiang J., Ruokonen A. and Systa T.: Pattern-based ildyiabanagement in web service
development. ECOWS '05: Proceedings of the Third EuropearféZence on Web Services
(2005)

Segura S., et al.: A taxonomy of variability in web seeMiows. Service Oriented Architec-
tures and Product Lines (SOAPL - 07)

Luo Jim, et al.: Adding owl-s support to the existing unfdiastructure. International Con-
ference on Web Services ICWS’06, pp. 153-162 (2006)

Czarnecki K., Helsen S., Eisenecker U.: Staged configurahrough specialization and
multi-level configuration of feature models. Software RE& Improvement and Practice,
special issue on "Software Variability: Process and Manzagd, vol. 10(2), pp. 143 — 169
(2005)

