
Generating OWL-S Families by Utilizing Business
Process Definitions and Feature Models

Umut Orhan and Ali H. Doğru

Middle East Technical University, Computer Eng. Dept., Ankara, 06531, Turkey

Abstract. This research introduces automated transition from domain models
and process specifications to semantic web service descriptions in the form of
service ontologies. Also, automated verification and correction of domain mod-
els are enabled. The proposed approach is based on Feature-Oriented Domain
Analysis (FODA), Semantic Web technologies, and ebXML Business Process
Specification Schema (ebBP). This approach is proposed to address the needs
for achieving productivity gains, maintainability and better alignment of business
requirements with technical capabilities in the engineering of service oriented
applications and systems.

1 Introduction

Business Process Management (BPM) and Service-Oriented Architecture (SOA) com-
bination is being promoted as a possible solution for achieving proper level of service
abstractions and reaching the desired agility and responsiveness to changing business
parameters. Unfortunately, in order to enable the anticipated BPM-SOA convergence,
knowledge of the domain should be first transferred from domain experts to develop-
ers. This necessitates common means for shared vocabulary and understanding of the
business requirements which can conveniently be achieved by utilizing ontologies. In
this respect, we exploit the concept of service ontology as a bridge between business
process models and service interface implementations.

It is desirable to generate service ontologies automatically, especially when we con-
sider the complex and time-consuming nature of the ontology creation task. Thus, we
chose to automate service ontology creation to some extent. In addition, we enable the
Feature-Oriented Domain Analysis (FODA) [1] to manage differences and similarities
across multiple service definitions: we produce not only a single service ontology but a
set of related service ontologies.

An overall representation of this method is shown in Figure 1. We provide the do-
main experts with the necessary environment in order to define business process models
and feature models. These defined domain engineering outcomes are then mapped to
corresponding OWL-S instances. A resulting OWL-S instance may then be related to
web service implementation in two ways; (1) provide requirements and eliciting con-
straints for the corresponding web service interface, (2) enable automatic discovery of
semantically matching web services already implemented.

Major contributions of this research can be listed as follows;

Orhan U. and H. Dogru A. (2009).
Generating OWL-S Families by Utilizing Business Process Definitions and Feature Models.
In Proceedings of the Joint Workshop on Advanced Technologies and Techniques for Enterprise Information Systems, pages 42-51
DOI: 10.5220/0002201300420051
Copyright c© SciTePress



Fig. 1. Product line approach for generating a family of service ontologies.

– An OWL1 ontology is developed to represent feature models. We also developed a
set of SWRL2 rules as axioms corresponding to relations among features.Verifica-
tion and correction of feature model customizations are performed by enabling the
JESS [2] which is a rule-based automated reasoner.

– We developed an ontology-aware feature model editor in order to facilitate visual
development of feature models. The tool imports and exportsfeature models for-
mally defined by our feature model ontology.

– We defined model transformation rules from ebBP3 instances and feature models
to accompanying service models. Generated service models are conceptualized as
OWL-S4 instances.

The introduced method is realized through the scope of an ongoing open source
project called GENoDL5 . The tool takes a feature model and an ebBP instance as input
and refines them in order to generate OWL-S instances.

1 OWL Web Ontology Language, http://www.w3.org/TR/owl-ref/
2 SWRL: A Semantic Web Rule Language Combining OWL and RuleML,

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
3 ebXML Business Process Specification Schema, http://docs.oasis-open.org/ebxml-

bp/2.0.4/OS/
4 Semantic Markup for Web Services, http://www.w3.org/Submission/2004/SUBM-OWL-S-

20041122/
5 Automated Service Ontology Generator Tool based on Description Logics,

http://sourceforge.net/projects/genodl/

43



In order to define ebBP instances, the ebBP Editor [3] tool is integrated. It was
previously developed within the scope of a research projectfunded by the European
Commission. The domain expert can model business processesin Business Process
Modeling Notation (BPMN) [4] and the tool then exports thesemodels to accompany-
ing ebBP definitions.

The remainder of this paper is organized as follows. Section2 summarizes the re-
lated work on service ontology generation methods. In Section 3, we present our seman-
tically enriched feature modeling approach enabled in generating OWL-S instances.
The transformation method from ebBP to OWL-S is given in Section 4. An example
walkthrough with the implemented tool is described in Section 5. Finally, Section 6
concludes the paper and presents the future work.

2 Related Work

Various work has been conducted [5, 6, 7, 8, 9] that partiallycover our ambitions. Usu-
ally, automation has been missing and also our mass customization of a set of related
ontologies was not addressed.

In this work, we separate the identification, specification and realization concerns
of a web service. Business processes for identification, service ontologies for specifi-
cation, and service implementations for realization. Thisseparation of concerns, which
well fits in Service-Oriented Modeling and Architecture (SOMA) [10], allows us to au-
tomate the mapping from identification step to specificationstep through semantic web
technologies. This also provides means for capturing commonalities and variabilities in
service models by exploiting feature models.

3 Semantically Enriched Feature Models

Basically, a feature model provides a hierarchical organization among features within a
concept. In addition toparent-childrelation, a simple feature model can definemanda-
tory, optional, alternative, excludes, requiresandOR relations among features. In our
study, OWL is decided to be used for feature model formalism because it is a well
known standard in the area and is supported by various technologies, tools and de-
velopment environments like Protege-OWL6, SWRL and JESS. In this respect, OWL
reasoning engines such as JESS can be deployed to check for inconsistencies within a
feature model and correct them automatically.

Firstly, we define aFeatureclass having two object properties,hasParentFeature
and hasChildFeaturerespectively, which are transitive properties that are inverse of
each other. These properties are required to express IS-A relations in structured view
or OR relations in common feature model understanding. The concept of the feature
model can be considered as an ordinary feature which has no parent feature.

In order to fully represent the mandatory and alternative relations, we derive two
specific child classes from theFeatureclass. Each class is a subclass of theowl:Thing

6 Protege-OWL, http://protege.stanford.edu/overview/protege-owl.html

44



class. We assert thatAlternative FeatureandMandatory Featureas mutually disjoint.
An overview of the classes defined within the Feature Model Ontology is given below.

Feature ⊑ ⊤ (1)

AlternativeFeature ⊑ Feature (2)

MandatoryFeature ⊑ Feature (3)

AlternativeFeature ⊓ MandatoryFeature = ⊥ (4)

A number of axioms for checking the consistency of the feature model customiza-
tions are formally defined within the scope of this work. In general, these axioms are
exploited not only for verifying the feature model but also correcting any inconsis-
tency found. These axioms are described as SWRL rules. They are normally stored
as OWL individuals which can refer to the resources within the associated knowledge
base. Class definitions of these OWL individuals are introduced in SWRL ontology.
Defined axioms and their SWRL implementations are given below;

1. A feature cannot be selected unless its parent feature hasbeen selected already. For
all x and y;

Feature(?x) ∧ isSelected(?x, false)∧ hasChildFeature(?x, ?y)∧

isSelected(?y, true) → isSelected(?y, false)

2. A mandatory feature must be selected whenever its parent feature has been selected.
For all x and y;

Mandatory Feature(?x) ∧ hasParentFeature(?x, ?y) ∧ isSelected(?y, true)

∧isSelected(?x, false) → isSelected(?x, true)

3. Only one feature must be selected among its alternatives.For all x and y;

Alternative Feature(?x) ∧ isSelected(?x, true) ∧ alternativeOf(?x, ?y)

∧isSelected(?y, true) → isSelected(?y, false)

4. A feature is selected whenever the other feature which requires it has been selected.
For all x and y;

Feature(?x) ∧ requires(?x, ?y) ∧ isSelected(?x, true) → isSelected(?y, true)

5. A feature is deselected whenever the other feature which excludes it has been se-
lected. For all x and y;

Feature(?x) ∧ excludes(?x, ?y) ∧ isSelected(?x, true) → isSelected(?y, false)

The customized feature model has no variability points but adefinite set of se-
lected features. In order to verify a customized feature model represented with OWL
instances, we employ our feature model axioms, Protege-SWRL plugin, and the JESS
rule engine. Protégé-SWRL plugin has no reasoning capability, however, it supports

45



API level integration with existing rule engines such as JESS. The plugin can translate
SWRL rules to the JESS rule language. The necessary transformation methods from
OWL and SWRL concepts to JESS constructs and vice versa are given in [11]. Once
the OWL and SWRL concepts are transformed to JESS context, the execution engine
can perform reasoning. The overall view of the integration between SWRL, Protégé-
OWL and JESS rule engine is given in Figure 2. The implementation of the GENoDL
and Protégé-SWRL integration is also given in [12].

Fig. 2. Reasoning engine integration through the Protégé-SWRL adapter.

3.1 Mapping Customized Features to OWL-S

OWL-S is an emerging de-facto semantic web standard that supports automation of
various web service related activities such as service discovery, composition, execution
and monitoring. OWL-S provides process models of atomic as well as composite web
services.

During the service ontology generation, the selected (or inother words customized)
nodes of the feature model are automatically transformed into accompanying OWL-S
constructs which is in this case theserviceParameterelement of OWL-S Profile. OWL-
S provides an unbounded list of service parameters that can contain any type of infor-
mation. Thus, theserviceParameterconstruct is very suitable for representing feature
customizations. AserviceParameterconsists of two attributesserviceParameterName,
the name of the actual parameter, which could be just a literal, or perhaps the URI
of the process parameter, andsParameterwhich points to the value of the parameter
within some OWL ontology. A customized feature placed as a leaf node in the feature
model can be mapped to aserviceParameterinstance with theConditiontype for the
sParameter.

Moreover, new features can be included under the related variability category by the
domain experts in order to extend the scope of the default webservice variability model.
After a new feature is added to the model, it can be transformed into the service ontol-
ogy definition as it is explained for the default features. Variabilities captured within a
feature model can be reflected to a business collaboration’sOWL-S counterpart which
is Service.

46



3.2 A Sample Feature Model for Web Services

We analyze the variability in web service definitions from three broad perspectives
namelyService Grounding, Service Profile, andService Modelwhich have been once
introduced by the OWL-S service ontology. We adopt the Jianget al’s notion [13] of
families of web services and bring the feature-oriented domain analysis (FODA) to it
instead of the pattern-based variability management approach.

In general, Service Grounding describes how to access the service through concrete
specifications such as binding protocol, address, message formats etc. Main variability
points of service grounding are identified in [14] asBinding ProtocolandBinding Time.

Service Model describes the semantics of how a service interacts with its clients,
and the data and control flows of corresponding process specification. OWL-S process
models; Simple, Atomic, and Composite are subclasses of theService Model. The ways
a client may interact with a service through exchanging messages provides a basis for
Service Model variability.

Service Profile describes what is done by the service and presents necessary in-
formation such as service name, its text description, and contact information. Service
profiles are generally enabled in automated operations likedynamic service discovery.
It can be considered as a yellow page entry for the service functionality. Information
about inputs, outputs, preconditions and effects of the service are given the profile part.
One important aspect of the service profile is its service parameter option which give
the characteristic features of the service such as QoS and classification of service func-
tionality in taxonomies provided by service registries. OWL-S’s service profile can be
directly mapped to UDDI registry data model [15].

In order to produce appropriate exceptions, the ebBP specifications mandate a busi-
ness service interface to conform to a number of service parameters such asAuthoriza-
tionRequired, NonRepudiationRequired, andNonRepudiationOfReceiptRequireddur-
ing the execution of the corresponding business activity. Indeed, each of these parame-
ters create a source of variability in service profiles.

We expose the previously identified variability points to our semantically enriched
feature model as shown in Figure 3.

4 Mapping ebBP to OWL-S

In this study, ebXML Business Specification Schema (ebBP) isexploited in capturing
process definitions and business choreographies from a highabstraction level where
contributions of domain experts can be effectively incorporated in devising the domain
model. The main advantage of using ebBP is its powerful built-in mechanisms for sepa-
rating the definition of the process model from its realization and making it independent
from its enablers namely business actors.

ebBP is capable of specifying process model parameters for configuring service in-
terfaces to execute and monitor business collaborations. However, ebBP does not spec-
ify how to associate a defined service interface to its real world implementation.

In this research, conceptual mapping schemes between the generic ebBP instances
and OWL-S ontologies are developed. As an outcome of this mapping, previously de-
fined business processes are refined and brought one step closer to the realization phase

47



Fig. 3. A reference variability model for semantic modeling of web service families.

automatically. Moreover, mapping ebBP definitions to OWL-Smay foster service reuse.
Once the OWL-S model of a business service interface is described then the service
implementation may be discovered from the existing assets instead of developing the
service every time from scratch.

The basis for our mapping method is formed through comparingcommon compo-
nents sharing similar semantics in both standards. Also, weadopt ebBP’s bottom up
design approach for describing business collaboration andpropose our transformation
strategy as follows;

1. Transform Business Transactions
2. Transform Business Document Flow for Business Transactions
3. Transform Binary (Business) Collaboration re-using themapped Business Trans-

actions
4. Transform the choreography for the Binary (Business) Collaborations
5. Transform higher level Business Collaborations re-using the lower level Business

Collaborations translated previously

An overview of the mapping specification is depicted in Figure 4. The conceptual
mappings from ebBP elements to their OWL-S counterparts arelisted in [12]. However,
due to the size limitation we can only provide an essence of the transformation method
which is for the mapping from ebBP’sBusinessCollaborationto OWL-S’s Compos-
iteProcess. According to the ebBP specifications, a choreography is an ordering of
business activities within a business collaboration in order to specify which business
state is expected to follow another state.

Basically, OWL-S’s composite process consists of other atomic or composite pro-
cesses. Control flow of a composite process is specified usingcontrol constructs which
can be nested to an arbitrary depth. Like business collaborations in the ebBP, composite
processes can be considered as state-oriented workflows. Inthe transformation method,
CompositeProcessclass is preferred for representing underlying semantics of business
choreography. Main control mechanisms of the whole choreography is theSequence

48



Fig. 4.Overview of the mapping specification.

element. Linking constructs (FromLinkandToLink) are mapped according to their type
and the class of the state they refer. For example,FromLink is transformed into aCon-
trolConstructthat can be further specified as aPerform, Split, Split-JoinorChoicebased
on the type of the referred state;Business Transaction Activity, Fork, JoinandDecision
respectively. In ebBP, a choreography starts by linking to abusiness state so, we can
associateStartwith a Sequenceinstance whoselist:rest element refers to the state that
ToLink of the Start linking as well. Overall mapping from choreography construct of
ebBP to their OWL-S counterparts are given in Table 1.Transition, Fork, Join andDe-
cision have at least oneFromLink and oneToLink but maximum occurrence of these
linking constructs can vary depending on the choreography type. Fork andDecision
include at least twoToLinkon the other hand,Joinhas at least twoFromLinks.

Table 1.Choreography to Service Process Model.

ebBP Choreography OWL-S Counterpart (ControlConstruct)

/FromLink /ControlConstructList/list:first/ControlConstruct
/ToLink /ControlConstructList/list:rest/ControlConstructList
/Start CompositeProcess/@composedOf/Sequence
/Start/@nameID /Sequence/@rdf:ID
/Transition/@nameID ControlConstruct/@rdf:ID
/Fork/@nameID /Split/@rdf:ID
/Join/@nameID /Split-Join/@rdf:ID
/Decision/@nameID /Choice/@rdf:ID
/B.T.A /C.C.L./list:first/Perform/AtomicProcess
/Success No suitable match
/Failure No suitable match

49



5 An Example Walkthrough with the GENoDL

The first step in generating web service ontologies is to provide our reasoning tool with
an ebBP instance as input. The tool then refines business process constructs such as
BusinessCollaborationin order to compile them in possible service ontology represen-
tations. To start the transformation process, first aBusinessCollaborationis selected
from theBusiness Process Managersection of the user interface. The tool then loads
the default service feature model to the feature model editor. If the domain expert has
any extension or further customization requests, she can modify the feature model by
inserting/deleting or (de)selecting features through using the feature model editor bun-
dled within the tool. Newly inserted features should be associated with their formal and
machine readable definitions. After modifications, reasoner checks the resulting feature
model’s consistency and automatically corrects any invalid customization with domain
expert’s empowerment. Finally, the verified feature model along with the selected busi-
ness collaboration specification is transformed into OWL-Snotation according to the
given transformation rules.

It can be easily understood that a family of related service ontologies can be quickly
generated by applying the proposed generative method. For example, by selecting dif-
ferent children of theBindingProtocolfeature can result in various service conceptu-
alizations that each of their implementations will be subject to be used in a distinct
application scenario.

6 Conclusions and Future Work

The developed mechanism was experimented through an example as in [12]. This ex-
ample included the mapping from an existing business process model, that represents
the domain-level knowledge. The outcome has been promising: in general it has been
observed that automated generation of web service ontologies is possible and usable.
However, our observation also states that very high-abstraction level elements of the
domain are not easy to map directly.

Our novel generative method for service ontology creation has not reached its ma-
turity yet. We would also like to address coarser-grained service ontologies and more
detailed process models. Also, the generative method will be extended with the map-
ping rules of other ebBP concepts such as guards, exceptionsand signals.

Current versions of the feature model editor and feature model ontology do not
support cardinality-based relations among features as proposed in [16]. This is another
possible improvement area. An evaluation of memory allocated for varying input sizes
will be performed in order to assess the feasibility of the feature model verification
operation from a different perspective.

Although our product line approach for service ontology generation is based on two
well known standards (ebBP and OWL-S), a more generic approach which is indepen-
dent from implementation technologies is considered as future work. Finally, evalua-
tion of the quality and domain coverage of the resulting service ontologies should be
explicitly justified through anticipated metrics and methods, so that domain experts and
developers can assess them easily.

50



References

1. Kang K. C., et al.: Feature-oriented domain analysis (foda) feasibility study. Carnegie-
Mellon University Software Engineering Institute (1990)

2. Jess: the rule engine for the java platform http://www.jessrules.com/
3. Ride deliverable 5.3.1 - contribution to standards: ebbpeditor v1.0.4 user manual http://-

www.srdc.metu.edu.tr/webpage/publications/2007/ebBPEditor UserManualv1.0.4.pdf
4. Business process modeling notation (bpmn), Object Management Group/Business Process

Management Initiative http://www.omg.org/docs/dtc/060201.pdf
5. Czarnecki K., Kim C. H. P., Kalleberg K. T.: Feature modelsare views on ontologies. IEEE

SPLC (2006)
6. Lee S., et al.: An approach to analyzing commonality and variability of features using ontol-

ogy in a software product line engineering. IEEE SERA (2007)
7. Wang H., et al.: A semantic web approach to feature modeling and verification. SWESE

(2005)
8. Guo L., et al.: Mapping a business process model to a semantic web service model. ICWS

’04: Proceedings of the IEEE International Conference on Web Services (2004)
9. Shen J., et al.: From bpel4ws to owl-s: integrating e-business process descriptions. SCC ’05:

Proceedings of the 2005 IEEE International Conference on Services Computing (2005)
10. Arsanjani A.: Service-oriented modeling and architecture (SOMA). IBM developerWorks

(2004)
11. O’Connor M., et al.: Supporting rule system interoperability on the semantic web with swrl.

Fourth International Semantic Web Conference (2005)
12. Orhan U.: Automated service ontology generation from domain engineering outcomes

http://genodl.wiki.sourceforge.net/space/showimage/genodl.pdf
13. Jiang J., Ruokonen A. and Systa T.: Pattern-based variability management in web service

development. ECOWS ’05: Proceedings of the Third European Conference on Web Services
(2005)

14. Segura S., et al.: A taxonomy of variability in web service flows. Service Oriented Architec-
tures and Product Lines (SOAPL - 07)

15. Luo Jim, et al.: Adding owl-s support to the existing uddiinfrastructure. International Con-
ference on Web Services ICWS’06, pp. 153–162 (2006)

16. Czarnecki K., Helsen S., Eisenecker U.: Staged configuration through specialization and
multi-level configuration of feature models. Software Process Improvement and Practice,
special issue on ”Software Variability: Process and Management, vol. 10(2), pp. 143 – 169
(2005)

51


