ImageNetDiff: Finding Differences in Models

Lawrence Cabac, Kolja Markwardt and Jan Schliter

Department of Informatics, University of Hamburg, Germany

Abstract. Inthis paper we propose a method and present a tool as plugirefor R
NEW that supports the process of discovery of differences in possibly conflicting
versions of all kinds of supported diagrams. These diagrams can be either semi-
formal UML diagrams, Petri net models or simple JHotDraw drawings. Instead
of searching for differences on the syntactical or even on the semantical level, we
choose to find differences on the visual level.

1 Introduction

During development of applications developers frequently encounter (and have to deal
with) different and/or conflicting versions of model artifacts. Especially in shared projects
where modeling artifacts are shared through source code management systems (SCM)
such as the Concurrent Versions System (CVS) or Subversion conflicts frequently ap-
pear and have to be resolved manually by the developer. This is especially true for
Petri net-based applications, since here the models are the code base of the system and
are thus treated as usual code with all attributes, such as collective code ownership. In
the evaluation of the code (Petri nets) of other modeling artifacts the main problem is
the identification of the syntactical differences or equalities. However, on the one hand
formally it is very hard to verify graph equality and even harder to determine the min-
imum of parts that are different. The graphical representation, on the other hand, may
contain valuable hints for the mentioned problems but may also differ without change
in the syntax. The merging of changes is usually a manual task, even if only different
parts of the nets have been modified. In contrast, when text-based source code is used,
merging of non-conflicting concurrent changes is possible. To our knowledge no tools
exist so far that manages the merging to some extent or even supports the developer
in this task. Even if a string representation of the net code exists, usually this code is
not handleable by common tools suchdif$ [3] (or windiff). This means that models

in source code management systems are treated as binary files, even if the file repre-
sentaiton of the diagram (model) is text-based, such as XML — as with SVG (Scalable
Vector Graphics).

In this paper we propose a simple but efficient method that can simplify the task
of the discovery of differences under certain conditions. To this means we exploit the
graphical representation of the nets and transfer the problem to finding differences in the
visual image of the Models. We also present an implementation of the method as plugin
for RENEW[5, 6], a multi-formalism tool whose graphical engine is based on JHotDraw
(www.jhotdraw.org) and supports all kinds of modeling techniques (e.g.: Petri nets,
use case diagrams, sequence diagrams, class diagrams) and drawings (including import

Cabac L., Markwardt K. and Schldter J. (2009).

ImageNetDiff: Finding Differences in Models.

In Proceedings of the 7th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
156-161

DOI: 10.5220/0002202101560161

Copyright © SciTePress

157

and export possibilities). In Section 2 we describe the wabtits implementation and
integration within FENEw. Section 3 presents seveal examples to illustrate the mgetho
the tool and possible appications.

2 Discovery of Net Differences

The development of models within development groups fratiyéeads to conflicting
models. Even if the system models are decomposable in matsy ptll the problem
persists — as with all source code — that within one desigfaetr{Petri net or UML di-
agram) several changes can occur concurrently and havenietged. In this situation
two tasks have to be performed. First, the differences habe identified. Second, the
changes have to be included. If conflicts occur in text-basetice code developers are
supported by powerful tools and techniques, such as dif§f@ersioning systems, etc.
For models (Petri nets) these tasks usually have to be peetbmanually. We believe
that tool support for the discovery of net differences cacelarate the development of
(net system) models significantly.

Scenarios. We can distinguish at least two different scenarios in whiahtool can
be utilized: thesimilarity checkand thedifference discoveryin the similarity check a
developer does not know, whether two models (Petri netsyorersions of the model
(Petri net) own the same code (are syntactically/semadlytiequal but may differ vi-
sually). For text-based code there exist code beautifiatstianage to unify the style
of code as a preparation for the differences tools. Resttilztyout possibilities which
could have the same effect as code beautifiers are usualhgs$trictive for model de-
signers. Often model elements or text inscriptions have bbeeved in the diagram by
another developer and this has been committed to the reppsitsulting in a conflict.
If the models (or the model versions) contain only smalletéices (e.g. only one ele-
ment has been moved) the ImageNetDiff image will show irtstahat the models are
syntactically equal. The checking of the equality of the mleds thus reduced to the
checking of the graphically differing parts.

In the difference discovery the visual areas of the modéldaiva differences can be
easily spotted by the developer. Again, if small changee leaen made in the model,
such as the removal or the addition of elements, the Imadzffi@hage will directly
and clearly show the differences. Removed object are lgbtdd as red elements in
the diff image and additions are highlighted blue. If thisdt the case and substantial
changes have been made, at least the ImageNetDiffimagesjpeitthe net areas which
are of concern to the developer and which parts have not eltang

Technique. The tool (see also [2]) makes use of the internal export fanaf RENEW
and the ImageMagick[4] tool kit. For the production of théfetiences image in the
format of Portable Network Graphics (PNG) or alternativElycapsulated Postscript
(EPS) first the nets are being exported to the file system agenihen the exported
images are passed on as arguments to the imaging tool to ¢tetmgudifferences im-
age, which will also be stored in the file system. The resgliimage will feature light

1 An alternative strategy is the avoidance of concurrent ghan

158

grayish drawing elements for the parts of the original insathet are equal and two
different shades of red for the additional and removed gcaplparts Finally, for the
convenience of the user the image is displayed IRy once the computation of
the differences image has finished. Sources of models thabdye compared can be
either drawings (diagrams) that are opened within the editdeRENEW or files from
the file system. Also command line commands exist to quickeas the functionality
of the plugin without loading the whole graphical editor affEw. On the command
line it suffices to define the two comparing files as argumehusTthe tool can also
be included in scripts. As a support for Subversion the tealile to directly compare
the current working version of a model with the locally sthemde base file. This al-
lows the developer to use thenew di ff <fil e>command in the same manner
assvn di ff <fil e>. Especiallyif no (real) change has been done (i.e. invalynt
saving of the model during inspection) the equality checkloalp to prevent superflu-
ous check-ins. However, some limitations of the presenteithad exist that result from
the used tools.

— For a flawless comparison the compared images must havertteessze.

— The comparison can not be customized, yet.

— For instance, the color scheme is fix.

— The results for models in which all graphical elements haenbmoved are not sat-
isfying, yet, because the images are compared coordineteamainst coordinate
pixel.

— However, a simple move &ll elements do not effect the result, since the images
are clipped before export.

— There is no integration with the model representation ENRw, yet. Thus, the
discovery of changes is supported but the knowledge has tmahsferred to the
model manually by the developer.

3 Examples

The presented method and tool is able to compare a broadyvafisupported models
and drawings. Here we present as example the results ofahfota Petri net model.

A Petri Net: The Mulan Knowlege Base. As an example for the presentation of the
method we present a Petri net from the developing of mukirdgystems with M-
LAN: the knowledge base net of theuMAN standard agents. The two nets differ —
pragmatically — in the fact that they support two differeragerty files formats: simple
propertieskb) and XML notation kbe kb enhanced).

The net that supports the enhanced representation is puoilt the simple version,
thus they are comparable. To find the similarities and diffiees of the implementa-
tion we present fragments of both nets in Figures 1 and 2. Tdgnfents show the
initialization of the net with the initial knowledge part$ the agents interface to the
knowledge base and the interface that handles the indt#tiz of decision components
(active knowledge). Figure 3 then shows a screenshot ofthdting difference image
(similar fragment

2 The dashed squares and ellipses are added manually.

159

wrs w e proacuveiniprotame,amy
guard ik.containsKey("proaktiv’) protocol factory action am=new AclMessage internal protocol to

~ ¢ r) Proactive protocol
action protnames=(Vector)ik.get("proaktiv’) meew’:umme) (‘request”,Agentidentifier SELF,

KB contains proactive protocols? Agentldentifier SELF content) protocol factory
protnames protaame Iprotname,content]
action ik = WBHelper. T ame. dc(name)
str2Hash(inh) _il Proactive Decision component
startaidinh) guard tik.contain3) New plan protame” TS ame, content]
ewPlan(protnarme) New plan (with content) name
E guard WBHelper ContainsDCEntry(ik) newlan(protname, content)
! ction ntries(ik)
i DC names
KE conains de?
' i name
guard ! ik.containsKey("decisiéhComponent™);
New decision componen]
aidzik newDC(name)
fk.containsKey("decisionComponentstub’)
KE contains dc-stub?
Decision component stub
Adjust name of knowledge base quard ik "d C) 7 C
action knowledge.put(*Name",aid) action de=((Netinstance)Class.forName "L Decision component stub
action knowledge put (String)ik.get("decisionComponentStub) .
" o . newlnstance0) transfer instance of
CwbName®, "wissensbasis’) internal protocol stub
proacuveiniuprotame,am decision componit
uard WBHelper.containsProactiveEntry(ik
a0 y } initiali parameter) to
KE contains proactive protocols? b) Agentidentifier SELF content) Initizatioiper
protnames promame [protname, content]
de(name) :dc(name, parameter)

Proactive

i
action ik = WBHelper. /.O(k
str2Hash(inh) ik G

start(aid,inh)

protnamé’

‘guard WBHelper ToatainsProactiventry(ik) T |
New plan (with content)

newPlan(protname, content)

New plan
newPlan(protname) name [name,parameter]
guard WBHelper.ContainsDCEntry(ik)

i ction Entries(ik)
i DC names
KB comains dc?
name. [name,parameter]

i
r iew deci

New decision component with ini
newDC(name) :newDC(name,paramet

[aid, ik]
KE contains dc-stub? d
Decision component stub
Adjust name of knowledge base 4 quard WBHel tainsDC: s o decisionComponentstub(dc)
action knowledge.put('Name" aid) action DCs=WBHelper.nameVector2NetinstanceVector ecision component stub
 action knowledge.put (WBHelper.getDCStubEntries(ik)) 4 d A transfer it of
(wbName","wissepsbasiskeE) Aichtung: bisher wird nur erster Eintrag berueckeigl5t ubNameoncinstncecasamer internal protocol stub
———————————————— | mranzasa par s
W it
et
| Decision corponent [,
i /
/ {name paramete
!
1
P e i il MU ! [name, paramet
L N guard [WBHelper. containsDCENtY(k) ' i
// \ | guard | ik cantainsKey'decisionCompo X o
{aid;] J N mewDC(name, pai
\ p DCSIUDENTy(iK) N
~o - clslonComponeStuL N
[“guard WeH EAtry (k) A N
dtard t.ro mpdnenisiu ; B7e % > <
[AN ey eccon _ = T Dedsuon com ==
LS e ol - =i
VAchtung: bisher wird HiW ErSIEF Eiftrag bervecksichtigt! - action de =WEHelper A
— | (WBHelper aufbobren und Vector bearbeiten) | ’ EuiNimeZNetinstincelclassiame)
———————————————— \ classhame

rlazshiare— B -newDCSb(classNamel ~

Fig. 3. Screenshot showing differences of the two Petri nets.

The developer’s awareness is instantly attracted by thrghbred and bright blue
net elements and inscriptions. One can see simple addi#iomgnually marked in the
image by dashed outlined squares — and also changes to théinsdriptions — ellipses
—that have been made. The image shows clearly that all ofdheed structure has been
preserved. Only additional net elements and inscripticngtbeen added and some
inscriptions have been altered.

In a scenario of a shared development, if a developer is ootdéd by a concurrent
change of the net, which results in a conflicting version ef tiet code, the tool can
help the developer to decide whether the code has been ntaeipputhe syntax has
not been changed and/or if the changes have been made inntieeasaas of the net.
Thus, the manual act of merging the code or model can be signtfiy simplified and

accelerated.

160

Comparing (Embedded) Images. The tool is even able to show differences in (em-
bedded) images. As a second example Figure 4 shows a (ccesfyumage (PNG,
Image 1) and a minimally altered version (Image 2). Usudléydifference is not even
detectable. However the difference image to the right stubeegly the difference of the
two images. This possibility is not very surprising, sinkis is the original application
domain of the ImageMagickomparetool.

PNG Image 1 PNG Image 2 Diff of Image 1 and Image 2

B e

Fig. 4. Differences of embedded images (PNG).

4 Conclusions, Discussion and Outlook

Although the approach is rather simple, the results are@fieand surprisingly effi-
cient. Developers of (Petri net) models have the means tckdioe differences in their
graphical code by the means of visual support. Clearly a bedeitifier for Petri nets
and other models would improve the results of the ImageNgpRigin considerably.
At least for Petri nets net components [1] could help to ing@sonventionalized struc-
ture upon the nets.

The presented approach makes use of the graphical repatserdf the diagrams
such as UML diagrams or Petri nets, the export to an imagedbamd the power of the
graphical framework ImageMagick. There are, however, rsd\@her possibilities to
tackle the presented problem. One could compute equali®etf nets on the ground
of the formal representation including node and arc ids oelig a PNML (Petri net
XML representation) diff tool.

The presented method and the tool leaves room for many ireprents. By choos-
ing different color schemes and maybe also opaqueness diftiirmages the readabil-
ity could still be improved significantly. However, sincesthsed tool’s main purpose
of comparing images is not concerned with graph represensatit does not support
this feature and a reimplementation or switch to anothdramald — with some effort —
produce better results. The interpretation of the grapligibeghlighted elements could
lead to an integration of useful information within the Pa#t editor to further support
the merging of concurrent changes.

In principle, with the presented method the results fromgenprocessing have to
be re-transferred to the application domain. Alternagiveimilar differences can be
computed and presented to the developer on the direct @alyBetri net structures.
Here, additional information could support the processaitfaining elements in Petri net
versions. For instance, id-tagged net elements @niRv transitions and places have
ids) could be matched. However, this would not solve the eratof constructs that
have different ids but are syntactically equal. A methodebasn a Petri net (or model)

161

representation is also less general than the presenteadysthich can be applied to
other graphs such as UML diagrams.

References

I

. Lawrence Cabac, Michael Duvigneau, and Heiko Rélke. Netponents revisited. In Daniel

Moldt, editor, Proceedings of the Fourth International Workshop on Madgllof Objects,
Components, and Agents. MOCAG&umber FBI-HH-B-272/06, pages 87-102, Hamburg,
Germany, June 2006. University of Hamburg.

. Lawrence Cabac and Jan Schliter. Imagenetdiff: A visdabasupport the discovery of dif-

ferences in petri nets. Ib5. Workshop Algorithmen und Werkzeuge fir Petrinetze, (08>
volume 380 ofCEUR Workshop Proceedingsages 93-98. Universitat Rostock, September
2008.

. Gnu diff utilities. online, 2008. http://www.gnu.org.
. Imagemagick homepage. online, 2008. http://www.imeaggok.org/.
. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Rendhe Reference Net Work-

shop. Available atht t p: / / www. r enew. de/ , July 2008. Release 2.1.1.

. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jorn udehacher, Michael Kéhler,

Daniel Moldt, Heiko Roélke, and Rudiger Valk. An extensibtiiter and simulation engine for

Petri nets: Renew. In Jordi Cortadella and Wolfgang Reedgors,Applications and Theory

of Petri Nets 2004. 25th International Conference, ICATRIQ£ Bologna, Italy, June 2004.
Proceedingsvolume 3099 ol ecture Notes in Computer Scienpages 484—-493. Springer,
June 2004.

