
Declarative Parsing and Annotation
of Electronic Dictionaries

Christian Schneiker1, Dietmar Seipel1, Werner Wegstein2 and Klaus Prätor3

1 Department of Computer Science, University of Würzburg, Germany

2 Competence Center for Computational Philology
University of Würzburg, Am Hubland, D – 97074 Würzburg, Germany

3 Berlin–Brandenburg Academy of Sciences and the Humanities
Jägerstr. 22–23, D – 10117 Berlin, Germany

Abstract. We present a declarative annotation toolkit based on XML and PRO-
LOG technologies, and we apply it for annotating the Campe Dictionary to obtain
an electronic version in XML (TEI).
For parsing flat structures, we use a very compact grammar formalism called
extended definite clause grammars (EDCG’s), which is an extended version of
the DCG’s that are well–known from the logic programming language PROLOG.
For accessing and transforming XML structures, we use the XML query and trans-
formation language FNQUERY.
It turned out, that the declarative approach in PROLOG is much more readable,
reliable, flexible, and faster than an alternative implementation which we had
made in JAVA and XSLT for the TEXTGRID community project.

1 Introduction

Dictionaries traditionally offer information on words and their meaning in highly struc-
tured and condensed form, making use of a wide variety of abbreviations and an elab-
orate typography. Retro–digitizing printed dictionaries, especially German dictionaries
from the 18th and early 19th century, therefore requires sophisticated new tools and
encoding techniques in order to convert typographical detail into a fine–grainmarkup
of dictionary structures on one hand and to allow at the same time for variation in or-
thography, morphology and usage on the other hand, since in the decades around 1800
the German language was still on its way to standardization.

This is one of the reasons why TEXTGRID [17], the first grid project in German
eHumanities, funded by the Federal Ministry of Education and Research, chose the
Campe Dictionary [1]: 6 volumes with altogether about 6.000 pages and about 140.000
entries, published between 1807 and 1813 as one testbed for their TEXTGRID Lab, a
Virtual Research Library. It entails a grid–enabled workbench, that will process, anal-
yse, annotate, edit and publish text data for academic research, and TEXTGRIDRep,
a grid repository for long–term storage. This paper reflects some of the research on
annotation in this context.

Schneiker C., Seipel D., Wegstein W. and Prätor K. (2009).
Declarative Parsing and Annotation of Electronic Dictionaries.
In Proceedings of the 6th International Workshop on Natural Language Processing and Cognitive Science , pages 122-132
DOI: 10.5220/0002203401220132
Copyright c© SciTePress

Using PROLOG technology forparsingandannotatingis common in natural lan-
guage processing. PROLOG has been used within the Jean Paul project at the Berlin–
Brandenburg Academy of Sciences [15], where XML transformations based on FN-
QUERY turned out to be easier to write than XSLT transformations. The task is to
find the proper level of abstraction and write suitable macros for frequently occurring
patterns in the code; PROLOG even allows to design dedicated special–purpose lan-
guages [11]. E.g., definite clause grammars have been developed as an abstraction for
parsing; they have been used for parsing controlled naturallanguages [4, 5, 13]. Since
PROLOG code is declarative and very compact, the variations of natural language can
be handled nicely.

Figure 1 shows the typographical layout of the Campe Dictionary. The basic text
has been double–keyed in China. The encoding is based on the TEI P5 Guidelines [16],
using a Relax NG Schema. The encoding structure uses elements to markup the dictio-
nary entry, the form block with inflectional and morphological information, the sense
block handling semantic description and references, quotations, related entries, usage as
well as notes. In the future, this encoding will help us to structure the digital world ac-
cording to semantic criteria and thus provide an essential basis for constructing reliable
ontologies.

Figure 1. Excerpt from the Campe Dictionary.

The rest of this paper is organized as follows: In Section 2 wewill show how to
extract entries of a dictionary using our XML query and transformation language FN-
QUERY. The process for parsing and annotating elements for creating a well–formed
and valid TEI structure is illustrated for the Campe Dictionary in Section 3: we can
access and create elements with PROLOG using DCG’s and EDCG’s in an easy and ef-
ficient way. Section 4 describes the use of transformation rules for the annotation and
the further processing of XML elements. Section 5 gives an overview of our declara-
tive annotation toolkit and compares the declarative techniques with a JAVA and XSLT

approach, which we had implemented earlier.

123

2 Basic XML Handling in PROLOG and FNQUERY

Currently, the Campe Dictionary, which was written in the early years of the 19th cen-
tury, is converted into a machine readable structure. Within this process, the only anno-
tations available so far, were the declaration of the different font sizes Joachim Heinrich
Campe uses for displaying the structure of his act, the numbering of the line and page
breaks in the dictionary, and paragraphs; thus, we found a very limited XML structure
in the source file which we used for the first basic transformaions.

In this paper, we present how to annotate documents with PROLOG and the XML

query and transformation language FNQUERY [14], which is implemented in SWI–
PROLOG. To exemplify these annotations, we use the Campe Dictionary as a low–
structured base for obtaining a well–formed XML document according to TEI.

The PROLOG Data Structure for X ML . The field notation developed for FNQUERY

represents an XML element<T a1 = ”v1” . . .an = ”vn”>. . .</T> as a PROLOG term
T:As:C, called FN triple, with the tag ”T” and an association listAs= [a1 : v1, . . . ,an : vn]
of attributesai and their corresponding valuesvi (with 1≤ i ≤ n), which are PROLOG

terms. The contentC can be either text or nested sub–elements represented as FN triples.
If As is empty, then the FN triple can be abbreviated as a pairT:C.

In most available dictionaries, each entry is encapsulatedin its own paragraph, and
thus, it could be easily detected. In the following example,an entry is annotated with
paragraph and is followed by an elementW_2, which shows the lemma of the entry
in a larger font; recognizing both elements is necessary, because there could exist other
paragraph elements, which do not represent entries.

<paragraph>
<W_2>Der Aal</W_2>, <W_1>des -- es, Mz. die -- e</W_1>, ...

</paragraph>

An XML document can be loaded into an FN triple using the predicatedread. For the
paragraph element above we get FN triples with empty attribute lists:

paragraph:[’W_2’:[’Der Aal’], ’, ’,
’W_1’:[’des -- es, Mz. die -- e’], ’, ...’]

Extraction of Entries using FNQUERY. The query language FNQUERY allows for
accessing a component of an XML document by its attribute or tag name. Furthermore,
complexpathor tree expressionscan be formulated in a way quite similar to XPATH.

The XML element from above could now be parsed with the following predicate
campe_find_entry/2. The path expressionCampe/descendant::paragraph selects
a descendant element ofCampe with the tagparagraph. For avoiding the recogni-
tion of a new paragraph without a followingW_2 tag, we use another path expression
Entry/nth_child::1/tag::’*’ for computing the tag of the first child of the consid-
ered entry.

campe_find_entry(Campe, Entry) :-
Entry := Campe/descendant::paragraph,
’W_2’ := Entry/nth_child::1/tag::’*’.

124

Finally, with PROLOG’s backtracking mechanism it is possible to find all entries in
the source file.

3 Annotation with Extended Grammar Rules

In the past, PROLOG has been frequently used for implementing natural languageap-
plications, in which parsing text is one of the main concerns. Most PROLOG systems
include a preprocessor for defining grammar rules for parsing text. Thesedefinite clause
grammarshide arguments which are not relevant for the semantics of the parsing prob-
lems; thus, they are more readable and reliable than standard PROLOG rules.

In this section, we want to discuss this benefit for parsing electronic dictionaries.
We give an example for parsing a lemma of an entry to generate TEI elements. In a
further step, we introduce an extended version of DCG’s (EDCG’s), which give the user
the ability to create compact grammar rules for generating generic FN terms for the
parsed tokens. A comparison to DCG’s and standard PROLOG rules will be elaborated
in addition to the possibility of integrating EDCG’s in the other formalisms.

3.1 Parsing with Definite Clause Grammars

Firstly, we will use DCG’s for parsing the headwords of a single entry and for detecting
punctuation in natural text. Using grammar rules is more reliable than using standard
PROLOG rules, since the code becomes much more compact and readable. Moreover,
we introduce thesequence predicate for parsing a list of XML elements.

Headwords. An entry of a dictionary normally consists of a lemma which ishigh-
lighted with a larger font; in our case, it is annotated withW_2–tags. Often, such a
lemma only consists of one word – in the case of verbs – or a nounand its determiner:

The DCG predicatecampe_headword given below parses a headword XML element
<W_2>Der Aal</W_2> and annotates it to derive the followingform–element:

<form>
<form type="lemma">
<form type="determiner"> <orth>Der</orth> </form>
<form type="headword"> <orth>Aal</orth> </form>

</form>
</form>

There also exist some cases with more than one headword or additional XML tags de-
pending on the current stage of the process, such as line breaks or abbreviations, e.g.,
the following collective reference to related entries:

<W_2>Der Blitzstoffmesser, der Blitzstoffsammler, <lb n="0569.49" />
der Blitzstoffsauger</W_2>

The additional elements have to be passed through and shouldnot be annotated; the
different headwords have to be annotated, and aform–element for each lemma has to
be created.

The following DCG rule forcampe_headword can handle the described variations;
it parses the different types ofW_2 elements to create FN triplesX:

125

campe_headword(X) -->
([X], { X = T:As:Es }
; [X], { atomic(X), campe_is_unicode_char(X) }
; [A, B], { atomic(A), atomic(B),

campe_is_determiner(A),
X = form:[type:lemma]:[

form:[type:determiner]:[orth:[A]],
form:[type:headword]:[orth:[B]]] }

; [A], { atomic(A),
X = form:[type:lemma]:[

form:[type:headword]:[orth:[A]]] }).

With standard DCG technology, this predicate has to be called recursively forpars-
ing a (possibly empty) sequence of headwords. This is done bythe recursive predicate
campe_headwords, which terminates when no more headwords are found:

campe_headwords([X|Xs]) --> campe_headword(X), campe_headwords(Xs).
campe_headwords([]) --> { true }.

To simplify this, we have developed the meta-predicatesequence; like in regular ex-
pressions, the first argument’*’ indicates that we look for an arbitrary number of head-
words (other possible values are, e.g.,’+’ or ’?’):

campe_headwords(Xs) --> sequence(’*’, campe_headword, Xs).

We can applycampe_headwords to produce a sequence of headwords, which are after-
wards enclosed in aform tag and written to the screen:

?- campe_headwords(Xs, [’Der’, ’Aal’], []), dwrite(xml, form:Xs).

Punctuation. For annotating punctuation in a lemma, which can appear between single
headwords, the DCG predicatecampe_punctuation is used for checking each token if
it is a punctuation mark, and – if so – annotating it with ac–tag.

campe_punctuations(Xs) --> sequence(’*’, campe_punctuation, Xs).

campe_punctuation(X) -->
([A], { is_punctuation(A), X = c:[A] } ; [X]).

The meta-predicatesequence used in the DCG predicatecampe_punctuations
parses a list of elements.

3.2 Parsing with Extended Definite Clause Grammars

In the following, we show how nouns can be parsed using EDCG’s. For complex ap-
plications, standard DCG’s can have a complex structure, and understanding and de-
bugging them can be tedious. Thus, we have developed a new, more compact syntax
for writing DCG rules in PROLOG, which we call Extended DCG’s (EDCG). For the
representation of XML elements created by EDCG’s we use a generic field notation.

126

Assume that a paragraph of a dictionary has to be parsed and annotated for labeling
the inflected forms of a noun. In the Campe Dictionary, lemma variations (such as plural
or genitive forms) are found in nearly all of the regular substantives; thus, an easy to read
structure has to be developed to give the programmer the potential of writing complex
parsers in a user friendly way.

The following line shows such an extract of the Campe Dictionary.

des -- es, Mz. die -- e

These tokens have to be annotated in TEI, and differentform tags with sub–elements
defining the corresponding grammatical structure have to becreated. The following
XML code, which should be produced, shows the complexity of suchannotations, which
indicates that the corresponding PROLOG code will also be complex:

<form type="inflected">
<gramGrp>

<gram type="number"> <abbr>Mz.</abbr> </gram>
<case value="nominative"/>
<number value="plural"/> </gramGrp>

<form type="determiner"> <orth>die</orth> </form>
<form type="headword">

<orth> <oVar> <oRef>-- e</oRef> </oVar> </orth> </form>
</form>

Extended Definite Clause Grammars.For solving a parsing problem using regular
PROLOG rules, the input tokens as well as the field notation for the created XML have
to be processed.

Thus, we have developed a new notation for parsing language where the output is
regular XML . Instead of using the functor--> of DCG’s, we are using the new functor
==> for writing EDCG’s. The output arguments can be hidden, since the output is con-
structed in agenericway: the output of an EDCG rule with the headT is a list[T:Xs]
containing exactly one FN triple, whereXs is the list of FN triples produced by the body
of the rule.

The following EDCG rules parse inflected forms – like indicated above – into FN

triples:

form ==> grammar_determiner, form_headword.
grammar_determiner ==> (gram, !, determiner ; determiner).
gram ==> [’Mz.’].
determiner ==> [X], { campe_is_determiner(X) }.
form_headword ==> orth.
orth ==> [’--’, _].

Below, we call the predicateform for parsing a list of tokens (the second argument)
into a listXs (the first argument) ofform elements; the last argument contains the tokens
that could not be parsed – i.e., it should be empty:

?- form(Xs, [’Mz.’, die, ’--e’], []), dwrite(xml, form:Xs).

127

The output of the predicateform is enclosed in a furtherform tag and written to the
screen:

<form>
<grammar_determiner>
<gram>Mz.</gram> <determiner>die</determiner>

</grammar_determiner>
<form_headword> <orth>-- e</orth> </form_headword>

</form>

From this, the exact, desired XML structure can be derived using some simple trans-
formations, which we will describe in Section 4. The code is much better understand-
able than for DCG’s, because this notation suppresses irrelevant arguments.

If we definegrammar_determiner with the following DCG’s and mix them with
the EDCG’s for the other predicates, then we can get even closer to thedesired XML

structure in one step – at the expense of a less compact code:

grammar_determiner([G, F]) -->
gram([gram:[C]]), !, determiner([determiner:[D]]),
{ G = gramGrp:[gram:[type:number]:[abbr:[C]],

case:[value:nominative]:[],
number:[value:plural]:[]],

F = form:[type:determiner]:[orth:[D]] }.
grammar_determiner([G, F]) -->

determiner([determiner:[D]]),
{ G = gramGrp:[

case:[value:genitive]:[],
number:[value:singular]:[]],

F = form:[type:determiner]:[orth:[D]] }.

Instead of the generic elementgrammar_determiner produced by the EDCG rule,
the DCG rules can produce the two elements (G andF) of the desired XML structure.
Now, we can derive the complete desired XML with very simple transformations.

Finally, the different cases like genitive or dative and theplural forms of a dictionary
entry could be parsed using similar DCG or EDCG rules.

Comparison with DCG’s and Standard PROLOG . In contrast, for our example the
corresponding standard DCG rules of PROLOG (we show only half of them) are more
complex than the EDCG rules:

form([form:Es]) -->
grammar_determiner(Xs), form_headword(Ys),
{ append(Xs, Ys, Es) }.

gram([gram:[’Mz.’]]) --> [’Mz.’].
determiner([determiner:[X]]) --> [X], { campe_is_determiner(X) }.

In many applications – like the annotation of electronic dictionaries or other pro-
grams producing XML – these DCG rules are quite complex and simplifying them is
necessary. Finally, the implementation in pure, standard PROLOGwould look even more
complicated (again, we show only half of the rules):

128

form([form:Es], As, Bs) :-
grammar_determiner(Xs, As, Cs), form_headword(Ys, Cs, Bs),
append(Xs, Ys, Es).

gram([gram:[’Mz.’], As, Bs) :-
As = [’Mz.’|Bs].

determiner([determiner:[X]], As, Bs) :-
campe_is_determiner(X), As = [X|Bs].

Besides the output in the first argument of the DCG predicates here, which is con-
structed explicitely rather than generic, there are two more arguments for passing the
list of input tokens. DCG’s only use the first argument, and EDCG’s hide all three argu-
ments.

Sequences of Form Elements.If we add the following DCG rule for form at the
beginning of the DCG program and assume that commas have already been annotated
as FN triplesc:[’,’], then we can annotate sequences of inflectedform elements:

form([X]) --> [X], { X = T:As:Es, ! }.

With the predicatesequence it is possible to parse a sequenceTs of tokens to inflected
form elements, even when more than one genitive or plural form occurs. Since the
outputFs is a list of lists of elements, we have to flatten it to an ordinary list Xs before
we can write it to the screen:

?- Ts = [des, ’--’, es, c:[’,’], ’Mz.’, die, ’--’, e],
sequence(’*’, form, Fs, Ts, []),
flatten(Fs, Xs), dwrite(xmls, Xs).

These PROLOG rules are efficient and easly readable. The derived FN triples can be
ouput in XML using the predicatedwrite/2.

4 Annotation with Transformation Rules

In this section, we transform XML elements from the Campe Dictionary with FNQUERY

in a way quite similar to XSLT, but with a more powerful backengine in PROLOG.
A rule with the head--->(Predicate, T1, T2) transforms an FN triple T1 to

another FN triple T2. Arbitrary PROLOG calls could be integrated within the rules; thus,
FNQUERY is a Turing complete transformation language. FN transformation rules are
called by the predicatefn_item_transform. The transformation is recursive; it starts
in the leaves of the XML tree and ends in the root element.

For example, the following rules transform allA elements in an FN triple to anhi
element with an attributerend="roman" and allW_1 elements to anhi element with an
attributerend="large" for labeling the font size. Other elements are left unchanged,
because of rule 3:

--->(antiqua, ’A’:_:Es, hi:[rend:roman]:Es).
--->(large_font, ’W_1’:_:Es, hi:[rend:large]:Es).
--->(_, X, X).

129

Another example is the transformation of the XML elements created by the EDCG’s
of Section 3.

--->(inflected, form:_:[T1, T2], form:[type:inflected]:[G, F1, F2]) :-
D := T1/determiner/content::’*’, O := T2/orth,
(C := T1/gram/content::’*’, C = [’Mz.’] ->
G = ...

; G = ...),
F1 = form:[type:determiner]:[orth:D],
F2 = form:[type:headword]:[oVar:[oRev:[O]]].

This rule transforms an FN triple analogously to the DCG rule forgrammar_determiner
defined in Section 3; an attributetype is added to each of theform elements. The ele-
mentgrammar_determiner is separated into two different elements (namelygramGrp
including two additional elementscase andnumber) and an optionalgram element;
all of them depend on the content of thecase element. Theorth sub–element of the
form element with attributetype="headword" is enclosed in two more elements for
obtaining the desired structure.

5 The Declarative Annotation Toolkit

The annotation techniques presented in the previous sections are part of an integrated
declarative annotation toolkit. In this section, we sketchsome further annotations which
we have implemented in the field of electronic dictionaries.

5.1 Annotations of Electronic Dictionaries

With FNQUERY, DCG’s and EDCG’s we have developed several applications for pars-
ing natural text in electronic dictionaries such as Campe and Adelung. These techniques
give us the possibility to identify and annotate lemmas, their inflected forms, as well as
punctuations and hyphenations in parsed entries.

Furthermore, it is possible to match slightly modified variants of a lemma in the
text and to parse certain German relative clauses. Moreover, we have developed an
application for annotating sub–grouped senses in an entry labeled with list markers
such asI, 1), 2), a., b), where PROLOG’s backtracking mechanism is very useful for
obtaining the proper structure. Figure 2 shows the rendering of an entry, which we had
annotated with PROLOG before.

5.2 Comparison to JAVA and XSLT

In an earlier step of the TEXTGRID–project, we had designed and implemented a tool
for parsing and annotating the Campe Dictionary in JAVA and XSLT. According to the
guidelines of the TEXTGRIDLAB, this implementation was necessary for the commu-
nity project.

For Volume 1 of the Campe Dictionary, which consists of 26.940 entries, the JAVA

approach needs approximately 44 minutes for parsing and annotating all entries on a

130

Figure 2. Rendering of an Annotated Entry.

dual core CPU system using two threads. In our new approach inPROLOG, we can
reduce this runtime to about 4 minutes while using only one core of the system. Since
we are now using declarative technology, the code length could be reduced to only 5%
of the JAVA implementation.

6 Conclusions

In the BMBF research project onvariations in language, we want to build a meta–
lemma list by analyzing a huge collection of dictionaries from different epochs of the
German language. Both here and in the TEXTGRID community project, we need a fast,
reliable, easy to read and modular toolkit for parsing, annotating and querying data sets.
With the development of FNQUERY and EDCG’s, we have the possibility to fulfil these
requirements; our declarative annotation toolkit is even faster than modern applications
written in JAVA and XSLT.

The usability of the introduced technologies is not limitedto the annotation and
parsing of natural language; in another project we are usingEDCG’s and transformation
rules for analyzing log messages – or even data buses – in order to find root causes in
network systems.

The aspect of integratingtext miningto extend our toolkit will be a subject of future
research.

References

1. Campe, Joachim Heinrich:Wörterbuch der deutschen Sprache. 5 Volumes, Braunschweig,
1807–1811.

2. Covington, M.A.:GULP 3.1: An Extension of Prolog for Unification–Based Grammar. Re-
search Report AI-1994-06, Artificial Intelligence Center,University of Georgia, 1994

131

3. Dereko: The German Reference Corpus Project. http://www.sfs.nphil.uni-
tuebingen.de/dereko/, 2009

4. Fuchs, N.E.; Fromherz, M.P.J.:Transformational Development of Logic Programs from Ex-
ecutable Specifications – Schema Based Visual and Textual Composition of Logic Programs.
C. Beckstein, U. Geske (eds.), Entwicklung, Test und Wartung deklarativer KI–Programme,
GMD Studien Nr. 238, Gesellschaft für Informatik und Datenverarbeitung, 1994

5. Fuchs, N.E.; Schwitter, R.:Specifying Logic Programs in Controlled Natural Language.
Proc. Workshop on Computational Logic for Natural LanguageProcessing (CLNP) 1995

6. Gazdar, G.; Mellish, C.Natural Language Processing in Prolog. An Introduction to Compu-
tational Linguistics.Addison–Wesley, 1989

7. Hausmann, F.J.; Reichmann, O.; Wiegand, H.E.; Zgusta, L.; eds.:Wörterbücher / Dictio-
naries / Dictionnaires – Ein internationales Handbuch zur Lexikographie / An International
Encyclopedia of Lexicography / Encyclopédie internationale de lexicographie. Berlin/New
York, 1989 (I), 1990 (II)

8. Hirakawa H.; Ono, K.; Yoshimura, Y.:Automatic Refinement of a POS Tagger Using a Reli-
able Parser and Plain Text Corpora. Proc. 18th International Conference on Computational
Linguistics (COLING) 2000

9. Landau, S.:Dictionaries. The Art and Craft of Lexicography. 2nd Edition, Cambridge, 2001
10. Lloyd, J.:Practical Advantages of Declarative Programming. CSLI Lecture Notes, Number

10, 1987
11. O’Keefe, R.A.:The Craft of Prolog. MIT Press, 1990
12. Pereira, F.C.N.; Shieber, S.M:Prolog and Natural–Language Analysis. CSLI Lecture Notes,

Number 10, 1987
13. Schwitter, R.:Working for Two: a Bidirectional Grammer for a Controlled Natural Lan-

guage. Proc. 21st Australasian Joint Conference on Artificial Intelligence (AI) 2008, pp. 168-
179

14. Seipel, D.:Processing XML Documents in Prolog. Proc. 17th Workshop on Logic Program-
mierung (WLP) 2002

15. Seipel, D.; Prätor, K.: XML Transformations Based on Logic Programming. Proc. 18th Work-
shop on Logic Programming (WLP) 2005, pp. 5-16

16. TEI Consortium, eds.: TEI P5: Guidelines for Electronic Text Encoding and Interchange.
http://www.tei-c.org/Guidelines/P5/

17. Textgrid:Modular platform for collaborative textual editing – a community grid for the
humanities. http://www.textgrid.de, 2009

132

