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Abstract: An original control structure dedicated to a class of second-order state feedback control systems is presented 
in the paper. The controlled processes are accepted to be characterized by second-order servo systems with 
integral component. Optimal state feedback control systems are designed for those processes making use of 
the Iterative Feedback Tuning (IFT) approach. The state feedback control system structure is extended with 
an integral component to ensure the rejection of constant disturbances. A case study concerning the position 
control of a DC servo system with backlash is included. Real-time experimental results validate the 
theoretical part of the IFT approach. 

1 INTRODUCTION 

The second-order servo systems with integral 
component are applied widely as controlled 
processes in real-world applications including 
mechatronics, electrical drives, sub-systems in 
power plant control systems, positioning systems in 
manipulators, mobile robots, machine tools, flight 
guidance and control (Škrjanc et al., 2005; Gomes et 
al., 2007; Petres et al., 2007; Barut et al., 2008; 
Costas-Perez et al., 2008; Denève et al., 2008; De 
Santis et al., 2008; Orlowska-Kowalska and Szabat, 
2008; Precup et al., 2008b; Vaščák, 2008). Those 
controlled processes are acknowledged as particular 
cases of benchmark systems (Åström and Hägglund, 
2000; Isermann, 2003; Horváth and Rudas, 2004; 
Kovács, 2006). Accepting that they are linearized 
versions of nonlinear servo systems, the parameters 
are variable with respect to the operating points. 
Hence the parameter variation makes their control a 

challenging task when very good control system 
performance indices are required. Their control 
problems become even more challenging when low-
cost automation solutions are needed in the design 
and implementation of the control system structures. 

One control solution to cope with the accepted 
class of processes described is represented by state 
feedback control systems. Since the main control 
aims, high performance indices in reference input 
tracking and regulation with respect to several types 
of load disturbance inputs, are difficult to be 
fulfilled, one typical approach is to design optimal 
control systems. The improvement of the control 
system performance indices (fore example settling 
time and overshoot) is enabled by the minimization 
of appropriately defined objective functions 
resulting in optimal state feedback control systems. 
An alternative to the minimization of the objective 
functions is represented by Iterative Feedback 
Tuning (IFT) (Hjalmarsson et al., 1994, 1998). IFT 
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algorithms make use of the input-output data 
measured from the closed-loop system during its 
operation to calculate the estimates of the gradients 
and Hessians of the objective functions. Several 
experiments are done per iteration and the updated 
controller parameters are calculated based on the 
input-output data and the estimates. 

The application of IFT to one-degree-of-freedom 
controllers needs two experiments per iteration. The 
first experiment is referred to as the normal one and 
it corresponds to the usual operation of the control 
system. The second experiment is the gradient one. 
The reference input in the gradient experiment is the 
control error of the first experiment. An additional 
normal experiment is needed in case of two-degree-
of-freedom controllers. Even more experiments are 
needed to tune the state feedback controllers and the 
Multi Input-Multi Output (MIMO) ones. So it is 
natural to strive for the alleviation of the number of 
experiments (Hjalmarsson and Birkeland, 1998; 
Hjalmarsson, 1999; Jansson and Hjalmarsson, 
2004). 

The paper aims three main contributions. The 
first contribution of the paper is the proposal of an 
IFT algorithm resulting in a method to obtain the 
partial derivatives needed in the calculation of the 
gradient of the objective function in state feedback 
control systems. The second contribution concerns 
the new experiments to be done in the IFT of the 
accepted class of second-order state feedback 
control systems dedicated to servo systems. The 
third contribution involves the highlighting of the 
specific aspects related to the actuator saturation 
problem proved by the low-cost implementation and 
the real-time experimental results included. The 
main advantages of the contributions are the 
simplification of the experiments and the smooth 
decrease of the objective function. Thus the local 
minimum will be reached. 

The paper treats the following topics. The 
controlled processes and the new IFT algorithm 
dedicated to the accepted class of state feedback 
control system are presented in Section 2. Next, 
Section 3 points out original and attractive aspects 
concerning the actuator saturation problem. A case 
study concentrated on the state feedback position 
control of a DC servo system with backlash is 
described in Section 4. The real-time experimental 
results validate the IFT algorithm. The conclusions 
are drawn in Section 5. 

2 CONTROLLED PROCESS AND 
IFT ALGORITHM 

The controlled process as part of servo systems is 
characterized by the following state-space model: 
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where α=x1 is the first state variable usually 
representing the (angular) position, ω=x2 is the 
second state variable usually representing the 
(angular) speed, u is the control signal, y1 and y2 are 
the controlled outputs, and I2 is the identity matrix. 
The two parameters in (1) are KS>0 which is the 
process gain, and TS>0 which stands for the small 
time constant or the sum of parasitic time constants. 

The two transfer functions from u to ω and u to α 
are )(, sP uω

 and )(, sP uα
, respectively: 
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Therefore the integral component can be observed in 
(2) when α=x1 is taken as controlled output. Such 
situations correspond to positioning systems. 

The state feedback control system structure is 
presented in Figure 1. The dotted connection 
highlighted is valid only when the experiments 
specific to IFT are done. That connection is not 
applied during the normal system operation. 

 
Figure 1: IFT-based state feedback control system 
structure. 

The main variables and blocks illustrated in 
Figure 1 represent: IFT – the IFT algorithm, RM – 
the reference model, 2

21 ][ Rxx T ∈=x  – the state 
vector (T highlights the matrix transposition), 
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][ 21 KKc =k  – the state feedback gain matrix, 

)()( , sPsP uα=  – the transfer function of the 
controlled process when the controlled output is 
y=x1, r – the reference input, e=r–y – the control 
error. The other variables will be presented in the 
sequel. 

If the state feedback gain matrix is regarded as a 
controller, then use will be made of its parameters to 
minimize the tracking error et between the system 
output y and the reference model output yd. Let J be 
a simple objective function defined over a finite time 
horizon N: 
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where mR∈ρ  is the parameters vector containing at 
least the parameters of kc and et is the tracking error: 

d
t yye −= )()( ρρ . (4) 

The IFT results (Hjalmarsson et al., 1994, 1998; 
Pfeiffer et al., 2006) are employed to find the 
solution ρ* to the optimization problem 

)(minarg
        

* ρρ J
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= , (5) 

where several constraints can be imposed regarding 
the process and the closed-loop system. One 
constraint concerns the stability of the system and 
SD represents the stability domain (Precup et al., 
2008). 

Solving the optimization problem (5) requires 
finding the parameters vectors that make the 
gradient equal to zero: 
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Making use of (3) and (4) the equation (6) will be 
transformed into 
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The partial derivatives 
i

y
ρ∂
∂  should be calculated 

to obtain the components of the gradient, 
i

J
ρ∂
∂ , 

mi ,1= . The new IFT approach to be described as 
follows will employ specific experiments to obtain 
those components. Use will be made of the 
following notation: 

iρ∂
α∂

=α'  (8) 

to highlight the partial derivative of the variable α 
taken with respect to ρi and obtain the simplicity of 
the presentation. 

The state-space model (1) can be reconsidered by 
including one additional state variable to the state 
variable. That variable is x3=xR and it corresponds to 
the integrator inserted into the control system 
structure. Thus its gain KR will be subject to IFT as it 
is shown in Figure 1. The extended state-space 
model of the process is 
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where the parameter Kr is not included in the tuning 
scheme. Its value is set prior to the application of 
IFT. One way to choose Kr is to keep a connection 
between the steady-state value of r and the steady-
state value of rx for which the desired r can be 
tracked by the steady-state value of y. That value of 
rx can be subject to the experimental identification of 
the state feedback control system. 

The preparation of the experimental scheme 
needed in the calculation of the gradient starts with 
the reconsideration of the input-output relations 
specific to the control system structure presented in 
Figure 1. Observing that generally 
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Next the gradient of y with respect to each 
parameter can be calculated, where the parameters 
are the m=3 components of the parameters vector 

T
RKKK ][ 21=ρ . (12) 
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Since y and u are functions of ρ it is justified to 
apply 

'' uPy = , (13) 

leading to 

''' EcEcu xKxK += . (14) 

In addition, accepting the MIMO formalism 
suggested in (10), the following relationship can be 
expressed: 

''' yKyK ccu += . (15) 

Equation (15) is of great importance for the new 
approach. The first term in the right-hand side of 
(15), yK 'c , needs to be added to the control signal 
to obtain the desired experimental scheme. That 
term contains the unmodified output vector (in the 
MIMO framework) so the idea is to obtain it from 
one first initial experiment (Hjalmarsson et. al., 
1998). The second term in the right-hand side, 

'yK c , is measured from the control system 
structure. Therefore the experimental scheme to 
calculate the gradients results in terms of Figure 2 
(without the blocks RM and IFT for the sake of 
simplicity). 

 
Figure 2: Experimental scheme to calculate the gradients 
in the IFT-based state feedback control system structure. 

The block 'cK  in Figure 2 plays the role of filter. 
It differs from one experiment to another one 
depending on the actual parameter with respect to 
which the gradient is computed. 

Since the calculation of the gradients has been 
derived in the MIMO framework, m+1=4 
experiments are done with it. The first experiment, 
referred to also as the normal one, is done with the 
control system structure presented in Figure 1 in 
order to measure the controlled output y. The next 
m=3 experiments, called the gradient experiments, 
are done with the experimental scheme presented in 
Figure 2. These experiments are done separately for 
each parameter in Kc (defined in (11)) considering 
the zero values of the other m–1=2 parameters 
(because their derivatives with respect to the current 
parameter are zero). 

Once the experiments are done the parameters 
vector must be updated. Newton’s algorithm is 
generally used as one convenient technique which 
iteratively approaches a zero of a function without 
knowledge of it’s expression. The update law to 
calculate the next parameters vector 1+iρ  is 
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where i is the index of the current iteration / 
experiment, iγ  is the step size, )]([ iJest ρ

∂
∂
ρ

 is the 

estimate of the gradient, and the regular matrix Ri 
can be the estimate of the Hessian matrix (positive 
definite) or the identity matrix. The identity matrix is 
employed when simple implementations are needed. 

Making use of all aspects presented before the 
new IFT algorithm consists of the following steps to 
be performed per iteration: 

Step 1. Do the normal experiment and measure y 
based on the control system structure presented in 
Figure 1. Next do the three gradient experiments 
making use of the experimental scheme presented in 
Figure 2 and measure the closed-loop system output 
that gives the gradient of the controlled output, 

'y
ρ
y
=

∂
∂ . 

Step 2. Calculate the output of the reference 
model, yd, in terms of the control system structure 
presented in Figure 3. 

Step 3. Calculate the estimate of the gradient of 
the objective function: 
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Step 4. Calculate the next set of parameters 1+iρ  
according to the update law (16). 

Three aspects can be highlighted with respect to 
the above presented IFT algorithm. First, prior to the 
four steps the designer should set the step size, the 
reference model and the initial controller parameters 
in the vector 0ρ . Second, the first task of the state 
feedback controller is to ensure an initially stable 
control system. The pole placement design can be 
used with this regard. Third, the estimate of the 
Hessian matrix should be calculated in the step 3 is 
it is used as the matrix Ri in the update law (16) or 
an additional experiment can be employed with this 
regard. 
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3 ACTUATOR SATURATION 
PROBLEM 

In many cases the actuator is characterized by a 
nonlinear input-output map caused by the actuator 
saturation. That is a problem because it introduces 
usually nonlinear behaviours in the evolution of the 
process. Hence it should be avoided. When making 
use of the integrator in the controller the actuator 
saturation problem becomes important since the 
actuator that enters a deep saturation region requires 
usually a longer time to re-enter the active region of 
normal operation. 

Analyzing the structure illustrated in Figure 2 
and used in the gradient experiments it is clear that 
when the state vector is injected in the control signal 
it may cause saturation. Hence the experiment will 
be prevented from calculating the correct gradients. 
In the following, an actuator with the active input 
range varying from −1 to +1 is considered. 

One solution to cope with the above mentioned 
problem is to design the experiment in such a 
manner that the actuator never enters saturation. For 
this, the injected quantity must be in the active 
region of the actuator’s input-output static map. The 
quantity can be scaled to its maximum value from its 
evolution. That is obtained by dividing every sample 
to the maximum absolute value from the sample 
vector. So it is guaranteed that the new quantity to 
be injected will be within the accepted domain of the 
actuator input. 

It can be shown as follows how the gradient 
experiments will be influenced. The general case of 
MIMO IFT will be considered. First, the scaled, 
added value to the control is defined as 

|)(|max  ,/)()(
,1

tzMMtztz
Nk

s
=

== . (18) 

Next the gradient of the control signal with respect 
to the parameters vector, 'u , can be expressed in 
(19) accepting a MIMO control loop with the 
controller transfer function C: 

'')('' CyzCyyrCu −=−−= . (19) 

Equation (19) is divided by M resulting in the 
following relationship between the scaled values of 
the gradients, Muus /''=  and Myys /''= : 

'/' ss CyMzu −= . (20) 

Concluding, dividing (13) by (18) the result will 
be 

'' ss Puy = . (21) 

Practically a scaled value of the estimate of the 
gradient can be obtained making use of the (20) and 
(21). After the gradient experiments are done the 
measured values 'sy  are multiplied by M. Thus they 
will give the normal estimate of the gradient to be 
used in the iterative minimization of the objective 
function J. 

4 CASE STUDY AND REAL-TIME 
EXPERIMENTS 

The validation of the theoretical approaches is done 
in terms of a case study consisting of a position 
control, y=α, of a DC servo system with backlash. 
The experimental setup illustrated in Figure 3 is 
built starting with the INTECO DC motor laboratory 
equipment. It makes use of an optical encoder for 
the angle measurement and a tacho-generator for the 
measurement of the angular speed. The tacho-
generator measurements are very noisy. The speed 
can also be observed from the angle measurements. 
The control system performance indices such as 
settling time and overshoot can be assessed easily. 

The process (1) is characterized by the 
parameters 88.139=sK  and s 9198.0=sT , obtained 
after experimental identification. The initial 
parameters vector has been set to 

T]005.00126.00132.0[0 =ρ  which has been 
obtained to stabilize the system. 

A constant reference input has been applied, 
rad 150=r . This allows, without any loss of 

generality, to pre-tune the parameter Kr at the value 
0133.0=rK  and drop it of the variables in the 

optimization problem (5). That value of Kr has been 
obtained by steady-state calculation as a gain that 
connects r with α through the steady-state gain of 
the inner state-feedback loop. The sampling period 
has been set to 0.01 s. The following reference 
model has been considered: 

)15.1/(1)( 2 ++= sssGRM . (22) 

 
Figure 3: Experimental setup. 
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Its corresponding pulse transfer function has been 
obtained for the accepted sampling period. The 
behaviour of the control system before the 
application of the IFT algorithm is illustrated in 
Figure 4. 

 
Figure 4: Reference model output and controlled output 
(position) versus time before IFT. 

The IFT algorithm has been applied according to 
the steps presented in Section 3. The parameters 
have been set to 0001.0=γ i  and 3IRi = . The 
behaviour of the control system after 12 iterations is 
presented in Figure 5. The control system 
performance enhancement is highlighted. It is 
reflected by smaller overshoot and settling time. 

 
Figure 5: Reference model output and controlled output 
(position) versus time after IFT. 

The variation of the objective function versus the 
iteration number is illustrated in Figure 6. It shows a 
good decrease of the objective function and the fact 
that the number of iterations can be even smaller. 

 
Figure 6: Objective function versus iteration number. 

5 CONCLUSIONS 

The paper has been presented a new approach to the 
IFT-based design of state feedback control systems 
meant for a class of second-order systems with 
integral component. The new IFT algorithm can be 
applied without any difficulties to the state feedback 
control of systems of arbitrary order. 

The case study accompanied by real-time 
experimental results validates the theoretical 
approaches. The control system designed exhibits 
better performance indices compared to the situation 
prior to the application of the IFT algorithm. 

The static and kinetic frictions were neglected. 
They can result in the nonlinearity of the input-
output static map )(uf=ω . The idealization 
considered here simplifies the model to be handled 
easily because the nonlinearity is not strong. 

The first limitation of the proposed IFT approach 
concerns the tuning of the initial parameters of the 
controller (grouped in the vector 0ρ ). That problem 
is not simple if nonlinear processes are involved. 
The second limitation is that the global optimum 
cannot be guaranteed. Hence only quasi-optimal 
state feedback control systems can be designed. 

The presence of the parameter Kr presented in 
Figure 1 and Figure 2 is not mandatory because the 
integrator acts in the direction of error alleviation. 
So the control system structure can be simplified. 
However its presence is important because it can 
influence the initial control error with effects on the 
convergence of the IFT algorithm. 

The future research will be focused on: the 
consideration of more complex objective functions 
to include the control signal, the state and output 
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sensitivity functions as well, the generalization to 
nonlinear processes (Cottenceau et al., 2001; 
Johanyák and Kovács, 2007; Savaresi et al., 2006; 
Andrade-Cetto and Thomas, 2008; Giua and Seatzu, 
2008; Precup et al., 2008a; Dolgui et al., 2009) 
including MIMO servo systems, and the mapping of 
the results from the linear case onto the parameters 
of the fuzzy controllers in the framework of state 
feedback fuzzy control systems. The convergence 
analysis of all IFT algorithms is needed. 
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