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Abstract: This work introduces a new methodology to infer environment structure by using monocular techniques. 
The monocular field of view is constrained to the vicinity of the mobile robot. The cooperative strategy 
proposed combines DFF and qualitative structure techniques to obtain environment information. The 
remarkable features of the strategy presented are its simplicity and the low computational cost. In this way, 
a simplified DFF method, which uses only one frame, has been implemented; hence, scenario information 
can be achieved when homogeneous radiance background constraint is accomplished. Further structure 
analysis is developed by computing qualitative structure through time integration series of acquired frames; 
within a tessellated probabilistic representation consisting in a local occupancy grid framework. 
Furthermore, the camera pose knowledge is used to correlate the different overlapping image zones. 
Moreover, time integration of the monocular frames allows a larger environment description suitable for 
WMR local path planning. Hence, the reported work can be used in obstacle avoidance strategies or reactive 
behaviours for navigation towards the desired objective. 

1 INTRODUCTION 

Perception of the environment is based on the sensor 
system measurements that provide distances and 
structure knowledge. This essential task could be 
accomplished by different range systems like 
ultrasonic sensors, laser rangefinders, or vision 
based systems. All these sensors have their 
advantages and disadvantages. However, computer 
vision based methods, are one of the most attractive. 
Therefore, they have many interesting advantages 
that can be summarized as follows: the falling prices 
of devices and richer information compared with the 
other traditional ranging devices. In this way the 
increasing capabilities of the personal computers, 
offer an interesting range of real time applications. 
Perception systems based on camera devices have 
attracted robotic research due these interesting 
features. Thus, machine vision systems have used 
some features of eyes, such as stereopsis, optical 
flow or accommodation, as meaningful clues. SVS 
(stereo vision systems), OFM (optical flow methods) 

and DFF (depth from focus) are all methods that 
permit 3D scene recovery. Studies comparing SVS 
and DFF are reported in (Schechner and Kiryati, 
1998). The results show that while SVS has greater 
resolution and sensitivity, DFF has greater 
robustness, requires less computational effort and 
can deal properly with correspondence and 
occlusion problems. The need for several images of 
the same scene, acquired with different optical 
setups, may be considered as a significant drawback 
in using DFF methods in major robotic applications. 
The scientific community has proposed the use of 
special cameras, such as a multi-focus camera that 
acquires three images with three different focus 
positions (Hiura and Matsuyama, 1998). However, 
other proposals were developed due to a lack of 
multi-focus commercial cameras. The use of DFF in 
WMR (wheeled mobile robots) has been reported in 
(Nourbakhsh, 1997); in which Noubakhsh used three 
cameras with almost the same scene to achieve 
robust and efficient obstacle detection.  

This work presents a new cooperative monocular 
strategy; where DFF and QSM (Qualitative 
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Structure Methods) are combined. Thus, one bit 
depth can be obtained using the DFF methodology 
as well as a set of multi-resolution focus thresholds, 
when homogeneous radiance background constraint 
is accomplished. However, when homogeneous 
radiance constraint fails, we propose to use QSM 
over discrepancy areas in order to infer environment 
structure by using an occupancy grid framework. 
Therefore, the main contributions of this research 
are to propose the occupancy grid as a suitable 
structure in order to infer qualitative obstacle 
structure and obtaining larger scenario descriptions. 
The results depicted are directed towards real 
applications by using the WMR PRIM, which 
consists of a differential driven one with a free 
rotating wheel (Pacheco et al., 2008). The 
experiments are orientated so as to obtain a local 
map in the robot’s neighborhood that can be used to 
plan navigation strategies.  

This paper is organized as follows. In Section 1, 
the main ideas and research objectives are presented. 
Section 2 introduces the DFF methodology as well 
as the algorithms and results implemented. Section 3 
depicts the QSM concept and the related algorithms 
used. In this way, the local occupancy grid 
framework is also formulated as a way for time 
integrating the acquired frames. In Section 4, the 
experimental preliminary results are drawn by using 
the mobile platform PRIM. In Section 5 the 
conclusions and future research are presented. 

2 THE CONSTRAINED DFF 
SYSTEM DESCRIPTION 

This section briefly introduces the DFF 
methodology. The algorithms implemented as well 
as their results are also depicted by using the 
available WMR platform. Its significant contribution 
is the use of a single image to obtain environment 
information. 

The DFF techniques use an image collection of the 
same scene acquired at different focus positions. 
Thus, the camera system PSF (point spread function) 
for unfocused object points produces blurred image 
points. The PSF frequency domain space transform 
representations arise in a first order Bessel OTF 
(optical transfer function), where its main lobe 
volume can determine the FM (focus measure) 
expressed as: 

( )∫∫= . ,0 νωνω ddIM i              (1) 

where  Ii   denotes  the  image  considered,  ω  and ν  

represent the frequency components. Efficient 
energy image measures have been proposed as FM 
(Subbarao et al, 1992). Nayar has proposed a 
modified Laplacian that improves the results in some 
textures (Nayar and Nakagawa, 1994). The 3D scene 
map and passive auto-focus consumer camera 
systems are interesting applications solved by the 
DFF. Recovering the 3D information from DFF 
methods is known as SFF (shape from focus) (Nayar 
and Nakagawa, 1994).  

2.1 The DFF Monocular Algorithms 

The algorithms of the machine vision system 
implemented are based on important assumptions 
that are generally obtained in normal indoor 
scenarios, but also in many outdoor scenarios. These 
constraints are flat and homogenous energy radiance 
from the floor surface and experimental knowledge 
of the focus measurement threshold values. Two 
important aspects, image window size and camera 
pose, should be considered. The size of windows 
should be big enough to receive energy information. 
For example, in the work of Surya, images of 
150x150 pixels were used, and the focus measures 
were computed in 15x15 pixel regions (Surya, 
1994). The camera pose will set the scenario 
perspective and consequently the floor position 
coordinates that should be used in the WMR 
navigation strategy. Figure 1 shows the robot and 
camera configuration considered in this work, 
whereα, β and ϕ are angles of the vertical and 
horizontal field of view and the tilt camera pose 
respectively. The vertical coordinate of the camera is 
represented by H. The robot coordinates 
corresponding to each pixel can be computed using 
trigonometric relationships and the corresponding 
knowledge of the camera configuration (Horn, 
1998). Using trigonometric relationships, the flat 
floor scene coordinates can be computed as follows: 

( ) ( )

( )

( )

( )RK

C
C

K

HY

HX

j

i

j

ji

≤≤=Δ

≤≤=Δ

Δ+−=

Δ
Δ+−

±=

j

i

,

K0    
R

 

2K0              

 2tan

tan
2cos

αα

ββ

ααϕ

β
ααϕ

         (2) 

Ki and Kj are parameters used for covering the 
discrete space of the image pixels. Thus, R and C 
represent the image resolution through the total 
number of rows and columns. It should be noted that 
for each row position corresponding to scene 
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coordinates Yj, there are C column coordinates Xi,j. 
The above equations provide the available local map 
coordinates when no obstacle is detected. The 
algorithms used are explained in the remainder of 
this subsection. The multigrid representation using 
low-pass filtering processes can improve the surface 
radiance homogeneity. Scale space representations 
can reduce the search space, increasing the 
computation performance (Gonzalez and Woods, 
2002). Therefore, a Gaussian filter is applied to the 
frames acquired in PAL format, at 768x576 pixels. 
Three decreasing resolution levels have been used 
with picture sizes of 384x288, 192x144 and 96x72. 
The average image brightness is also computed. In 
order to achieve greater robustness against changes 
in lightness, brightness normalization is performed 
(Surya, 1994). The image energy is computed, over 
3x3 windows at the top level of the scale-space, 
using the modified Laplacian method: 

( ) ( ) ( ) ( )
( ) ( ) ( ) 1,1,,2

1,1,2,

+−−−

++−−−=

yxiyxiyxi

xiyxiyxiyxML
  (3) 

where i(x,y) represents the corresponding pixel value 
at spatial coordinates (x,y). The 96x72 scale-space is 
decreased using a 9x7x2 array, where each cell 
represents the Laplacian mean value and the 
corresponding standard deviation mean computed 
over 10x10 pixel patches. Another interesting 
statistical parameter that has been used is the 
standard deviation, which relates to the homogeneity 
of the floor energy values. The 9x7x2 array is 
explored, from top to bottom; floor segmentation is 
carried out, using both energy and standard 
deviation thresholds. 
 

 
Figure 1: The robot PRIM and the monocular camera 
configuration. Where α is set to 37º, β (horizontal angle) 
of 48º, H set to 109cm, and a tilt angle of 32º. 

2.2 One Bit DFF Experimental Results 

The floor threshold has been experimentally 
computed by averaging several floor images 

acquired in our lab environment with different kinds 
of illumination (from 200-2000 lx). Light 
illumination can change from 2000 lx when light 
from the sun is clearly present where there is 
sunlight through the windows, to less than 200 lx in 
the darker corridor zones. Figure 2 depicts high 
resolution (130x130 pixel windows) corresponding 
to different floor images used to compute focus 
measurement thresholds where the floor texture is 
clearly visible. It is in the locality of those points 
where the information about radiance is obtained. 
Hence, the results obtained with the available 
experimental set up show the decreasing values 
when the distance between the camera and the floor 
is increased. A more complete description of the 
energy floor radiance measures obtained for each 
9x7 visual perception row is shown in (Pacheco et 
al., 2007); in which the image perspective emerges 
from a set of multi-resolution thresholds as a 
function of the camera distances.  
 

 
Figure 2: Fragments of high resolution floor images 
(768x576 pixels under different light conditions 
corresponding to 300, 800, 1400 and 2000 lx, respectively. 

Figure 3 shows the modified Laplacian energy 
and standard deviation values using 9x7 and 96x72 
space-resolutions, when typical indoor obstacles are 
presented. It is shown that 9x7 space resolutions can 
detect radiance discontinuities but because there was  
 

 
Figure 3: (a) Image with obstacles, 96x72; (b) Modified 
Laplacian measures; (c) 9x7 Modified Laplacian mean 
values; (d) ) 9x7 standard deviation mean. 
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a great lack of resolution manifested through soft 
slopes. Thus, it is necessary to use a fine space-
resolution to attain the sharper edges. In this work, 
9x7 resolutions are used to detect the local patches 
where obstacle segmentation is computed within 
96x72 space resolution. 

Despite the good results achieved, some further 
improvements should be considered. Hence, when 
radiance floor discontinuites occur they can be 
considered obstacles (false positives in some cases). 
Therefore in next section OFM is introduced, within 
the occupancy grid framework, to improve the one 
bit DFF methodology. 

3 QUALITATIVE STRUCTURE 
METODS AND OCCUPACY 
GRID 

The camera pose and local field of view will set the 
QSM algorithms reported in this section. The 
different optical flow quantitative approaches are 
generally based on two classical feasible 
assumptions, which are BCM (brightness constancy 
model), and optical flow smoothness. Thus, image 
motion discontinuities are due to the depth and 
motion discontinuity boundaries. Hence, there are 
places where image flow changes are suddenly 
useful as image segmentation clues, but can cause 
problems such as optical flow estimation clusters. 
Therefore, suggestions made to compute the 
algorithms over small neighborhoods, or region-
based matched methods have turn on. Combining 
local and global optic flow differential methods have 
been proposed as a way to share benefits from the 
complementary advantages and short-comings 
(Bruhn, 2002). 

The occupancy field can be depicted by a 
probability density function that relates sensor 
measures to the real cell state. The tessellated 
probabilistic representation has been widely adopted 
by the scientific community in navigation or 
mapping issues. Indoor applications research has 
been mainly concentrated on SLAM (simultaneous 
localization and mapping) issues (Thrun, 2002). 
Their use allows sensor fusion or multiple layer 
representations to segment dynamic objects (Coue, 
2006). The perception system used, in this work, 
consists in monocular and odometer system data. 
The use of these systems in SLAM is reported in 
(Cumani et al., 2004).  

The main difference of the research depicted in 
this paper, as compared with Cumani research, is the 

occupancy grid use that allows integration of 
multiples frames without constraining their number. 
Furthermore, it is obtained a local map description 
suitable for navigation. Thus, the occupancy grid 
developed research increase the camera narrow field 
of view, which provides just the vicinity of the robot 
where floor only is expected to be found. Moreover, 
the floor model is also proposed as a contribution in 
order to build the 2D occupancy grid; hence obstacle 
binary results are time integrated within the local 
occupancy grid framework by considering such 
model. The obstacle structure could be inferred by 
considering optical flow magnification change 
discrepancies from the floor model.  

3.1 The Local QSM Approach 

In the present research the camera field of view 
depicts only the vicinity of the WMR. Perspective 
projection, as shown in Figure 4, should be assumed.  
 

 
Figure 4: Camera system producing an image that is a 
perspective projection of the world. 

Introducing the coordinate system, where z 
coordinates are aligned to the optical camera, and 
the xy-plane is parallel to the image plane, the image 
P’ corresponding to the point P of a scene object is 
given by the following expressions: 
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Where z’ in the distance between image plane 
and the camera lenses, and x’ and y’ are the image 
coordinates. The object point coordinates, referred to 
the optic center O, are given by P= (X, Y, Z), being r 
de distance between P and O and α the angle. The 
ratio of the distance between two points measured in 
the image plane and the corresponding points 
measured in the scene is called magnification m.  
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For reduced field of views when the optical rays 
are parallel to the optical axis the magnification m is 
constant for all the image points. However, due to 
the field of view and camera pose assumed in this 
research, magnification changes are expected even 
when just considering a flat floor scenario. Hence, 
the perspective image formation model arises in 
magnification changes. Figure 5 shows the 
magnification changes of the floor model by 
considering the optical axis ray as the unit of 
magnification. Therefore, these changes in 
magnification are made it more complicated to look 
for image patches with similar motion in order to 
detect obstacle depth boundaries. However, by using 
the floor model and the odometer system data, 
binary floor results can be predicted from frame to 
frame; then predicted discontinuities arise due to the 
3D non floor obstacle shapes that produce 
unexpected image boundaries. 

 

 
Figure 5: Magnification changes of the floor model by 
considering the optical axis ray as the unit of 
magnification. The bigger magnification is attained at 
closer robot positions. 

The machine vision system algorithms 
implemented are based on binary results obtained by 
the one bit DFF algorithms explained in subsection 
2.2. Binary images are obtained in the 96x72 space 
resolution level, and blob analysis is developed. The 
blob areas and the extremes of their coordinates are 
computed and small blobs are removed. Then, the 
image is analyzed from top to bottom, searching for 
possible non floor regions. Hence, the QSM can be 
used to detect the possible obstacles, when important 
floor energy radiance discrepancies are met. 
Therefore, using relative robot coordinate 
increments provided by the odometer system, 
qualitative structure estimation could be done by 
comparing predicted positions with the binary 

results obtained. The time integration of the different 
frames acquired is introduced in the next section. 
Thus, the robot coherent interaction with the world 
can be addressed by using the occupancy grid 
framework that provides a robust and unified 
approach to a variety of problems in spatial robot 
perception and navigation (Elfes, 1989).  

3.2 The Local Occupancy Grid 
Framework 

The occupancy grid is considered to be a discrete 
stochastic process defined over a set of continuous 
spatial coordinates (x, y). Hence, the space is divided 
into a finite number of cells representing a 2D 
position, 1≤ j ≤R 1≤ i ≤C. The R and C parameters 
are the number of rows and columns of the grid 
respectively. The cell column coordinates are 
designated by Xi and the rows by Yj. It is assumed 
that local occupancy grid data is provided by the on-
robot perception system. The occupancy probability 
is divided into two ranges only: free and occupied. 
The grid can be updated by using the sensor models 
and the current information. Hence, given a sensor 
measurement m, the occupancy probability P(O,) for 
the different cells, P(Cij), can be computed by 
applying Bayes rule: 

( ) ( )
( ) ( ) /Oijij

ij
ij CPOCP

OCP
COP

+
=              (6) 

Hence, the probability that a cell is occupied 
P(O⎜Cij) is given by the cell occupancy sensor 
measurement statistics P(Cij⎜O) by also considering 
the probability that the cell will be free P(Cij⎜/O). 
Thus, free cells have binary results equal to zero; 
these non-occupied cells belong to coordinates for 
image pixels within floor radiance thresholds. Other 
available coordinates are provided through time 
integration of the acquired frames when radiance 
energy is bigger than threshold values, by using the 
floor model, and looking for coincidences with the 
acquired frames. The unknown probability value is 
set to 0.5. Therefore, by using the expression (6) 
with the predicted occupied cells and acquired 
frames, the grid positions belonging to the floor will 
provide larger occupancy values. Obstacle positions 
give intermediate occupancy probabilities due to the 
discrepancies between the predicted and the 
acquired image values that arise due to the 3D 
obstacle shape. Next section depicts some 
preliminary results experimented with the available 
WMR platform. 
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(a)         (b)       (c) 

 
(d)        (e) 

Figure 8.a, 8.b, 8.c, 8.d, and 8.e: It is depicted the monocular frames acquired while the WMR is avoiding the first obstacle 
placed on the direction towards the objective. 

4 ON-ROBOT EXPERIENCES 

In this section are presented some experimental 
results using the WMR PRIM. Thus, local 
navigation with static obstacles is used as a 
preliminary test of the research introduced in this 
paper. The navigation and control strategy used, 
under this reduced field of view, is introduced in 
other author’s work (Pacheco and Luo, 2007). 
Therefore, the maximum geometric size of the closer 
obstacle is considered in order to plan safety 
navigation towards the desired coordinates. 

 

 
Figure 6: It is presented the real scenario that has been 
drawn in Figure 7. It is shown the obstacles placed on the 
floor that the WMR should avoid.   

 
Figure 7: Simplified map scenario where the robot 
trajectory toward the goal is depicted with blue dots. The 
obstacles are drawn in black. 

Figure 6 shows the scenario where the 
experiment has been done, and Figure 7 depicts the 
simplified map scenario with the WMR achieved 
trajectory. 

Thus, Figure 7 shows the lab environment map 
and the path followed when the WMR starts at the 
position (0, 0, 90º) towards the desired coordinates 
(0, 460cm). The scenario contains some static 
obstacles that the WMR should avoid. 
Table 1 depicts the robot coordinates and acquired 
frames during the WMR navigation. 
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(a)        (b)       (c) 

  
 (d)         (e) 

Figure 9: Sequence of occupancy grids obtained by integrating the first 5 acquired frames. 

Table 1: Coordinates from where the frames are acquired. 

F.1 (0, 0, 90º) F.7 (1, 293, 76º) 
F.2 (-11, 66, 110º) F.8 (4, 315, 88º)  
F.3 (-21, 108, 99º) F.9 (4, 339, 96º) 
F.4 (-25, 141, 97º) F.10 (6, 375, 89º) 
F.5  (-26, 176, 94º) F.11 (4, 415, 100º) 
F. 6 (-8, 248, 83º) F.12 (12, 456, 74º) 

The first 5 frames are acquired during the 
obstacle avoidance strategy of the first obstacle 
placed in the middle of the corridor. Figure 8.a, 8.b, 
8.c, and 8.d. show these frames. 

The first obstacle avoidance strategy consists 
into turn to the left in order to avoid the collision 
with the obstacle that appears at the first four 
frames. It is noted that fifth frame, Figure 8.e, 
depicts a part of the scenario where doesn’t appear 
the first obstacleThe local occupancy grid built by 
integrating the first 5 frames is shown in Figure 9.a, 
9.b, 9.c, 9.d, and 9.e. It is depicted that in the first 
frame only the front obstacle is perceived. However, 
when the other frames are integrated the left wall is 
integrated. It is observed how the WMR navigation 
is constrained by the different obstacles obtained on 
the acquired frames and integrated within the 
occupancy grid. Therefore the navigation is 
constrained by both obstacles. Moreover the fifth 
frame is integrated in Figure 9.e where appear as 
time integrated the front obstacle and the left wall. 
Hence, the monocular occupancy grid methodology 

presented increases the field of view perception, and 
a better navigation strategy can be planned. The 
integration of multiple monocular frames also can be 
used as a framework in order to infer 3D obstacle 
structure. 

5 CONCLUSIONS 

The methodology presented in this research has 
provided a local map suitable for WMR navigation. 
Therefore a short-term memory has been obtained. 
Navigation advantages by using short-term memory 
were reported in previous research (Schäfer et al., 
07). However, experimental results conducted to 
obtain the obstacle structure have some aspects that 
should focus the future work. The obstacle shape is 
larger than the real shape due to the magnification 
changes that arise of perspective. The lack of 
accuracy increases the path-width, and consequently 
this can result in larger trajectories or even infeasible 
path perceptions where available paths are possible. 
3D obstacle structure can solve the above problem. 
But, the results obtained in order to obtain 3D 
information have some mismatches when 
overlapping areas between predicted and obtained 
blobs are analysed. The errors can be produced by 
the following sources: 

• Odometry errors. 
• Camera calibration errors. 
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• Flat floor model differences. 
Future work will be addressed to solve the above 

problems. We believe that the occupancy grid 
framework can be used to obtain 3D obstacle 
structure. Therefore, there is not limitation 
concerning to the number of frames that can be time-
integrated. The future goal will consist in to find a 
set of parameters in order to infer 3D obstacle 
structure. These set of parameters should be 
independent of the source of errors pointed in this 
section. The knowledge of 3D structure can afford 
several benefits that can be summarised as follows: 

• To reduce the trajectories. 
• Visual Odometry. 
• Landmark detection. 

Despite the work that remains undone the 
methodology presented can be used to direct the 
future research. Moreover, some good features and 
results are presented in this work.  
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